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Abstract

In this paper, K denotes a complete, non-trivially valued, non-
archimedean field. Sequences and infinite matrices have entries in K.
The main purpose of this paper is to prove some product theorems
involving the methods M and (N, pn) in such fields K.
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Throughout the present paper, K denotes a complete, non-trivially val-
ued, non-archimedean field. Sequences and infinite matrices have entries in
K.

Given an infinite matrix A = (ank), n, k = 0, 1, 2, · · · and a sequence
x = {xk}, k = 0, 1, 2, · · · , by the A-transform of x = {xk}, we mean the
sequence A(x) = {(Ax)n}, where

(Ax)n =
∞∑

k=0

ankxk, n = 0, 1, 2, · · · ,

it being assumed that the series on the right converge. If lim
n→∞

(Ax)n = l, we
say that x = {xk} is A-summable to l. If lim

n→∞
(Ax)n = l whenever lim

k→∞
xk =

l, we say that the matrix method A is regular. Necessary and sufficient
conditions for A to be regular in terms of its entries are well-known (see [2]).

The (N, pn) methods (or Nörlund methods) were introduced in K and
some of their properties were studied earlier by Srinivasan (see [6]). A more
detailed study of the (N, pn) methods was taken up by the author later and
published in a series of articles (for instance, see [4], [5]).
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The (N, pn) method is defined by the matrix A = (ank), where

ank =
pn−k

Pn

, k ≤ n;

= 0, k > n,

where p0 6= 0, |pj| < |p0|, j = 1, 2, · · · and Pn =
n∑

k=0

pk, n = 0, 1, 2, · · ·. The

following result is known ([4], Theorem 1).

Theorem 1.1: The (N, pn) method is regular if and only if

lim
n→∞

pn = 0.

Let {λn} be a sequence in K such that lim
n→∞

λn = 0. Let M = (bnk), where

bnk = λn−k, k ≤ n;

= 0, k > n.

In this context, we note that the M method reduces to the Y method of
Srinivasan (see [6]), when K = Qp, the p-adic field for a prime p, λ0 = λ1 =
1
2
, λn = 0, n ≥ 2.

We need the following definition in the sequel.

Definition: Two matrix methods A = (ank), B = (bnk) are said to be consis-
tent, if whenever x = {xk} is A-summable to s and B-summable to t, then
s = t.

It is clear that the relation “matrices A and B are consistent" is an equiv-
alence relation.

We now recall that a product theorem means the following: given regular
methods A, B, does x = {xk} ∈ (A) imply B(x) ∈ (A), limits being the
same, where (A) is the convergence field of A? i.e., does “A(x) converges"
imply “A(B(x)) converges to the same limit"?

The main purpose of this paper is to prove some product theorems involv-
ing the M, (N, pn) methods in K. In the sequel, we suppose that the (N, pn)
methods are regular.

Theorem 1.2: If (N, pn)(x) converges to l, then (N, pn)(M(x)) converges

to l

(
∞∑

n=0

λn

)
.
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Proof: Let

τn =
p0xn + p1xn−1 + · · ·+ pnx0

Pn

,

tn = λnx0 + λn−1x1 + · · ·+ λ0xn, n = 0, 1, 2, · · · .

By hypothesis, lim
n→∞

τn = l. Since lim
n→∞

pn = 0 and p0 6= 0, lim
n→∞

Pn = P, P 6= 0.

Now,

τ ′n = (N, pn) ({tn})

=
p0tn + p1tn−1 + · · ·+ pnt0

Pn

=
1

Pn

[p0(λnx0 + λn−1x1 + · · ·+ λ0xn)

+p1(λn−1x0 + λn−2x1 + · · ·+ λ0xn−1)

+ · · ·+ pn(λ0x0)]

=
1

Pn

[λ0(p0xn + p1xn−1 + · · ·+ pnx0)

+λ1(p0xn−1 + p1xn−2 + · · ·+ pn−1x0)

+ · · ·+ λn(p0x0)]

=
1

Pn

[λ0Pnτn + λ1Pn−1τn−1 + · · ·+ λnP0τ0]

=
1

Pn

[{λ0Pn(τn − l) + λ1Pn−1(τn−1 − l) + · · ·

+λnP0(τ0 − l)}+ l {λ0Pn + λ1Pn−1 + · · ·+ λnP0}]

=
1

Pn

[{λ0Pn(τn − l) + λ1Pn−1(τn−1 − l) + · · ·+ λnP0(τ0 − l)}

+l {λ0(Pn − P ) + λ1(Pn−1 − P ) + · · ·+ λn(P0 − P )}
+ lP {λ0 + λ1 + · · ·+ λn}] .

Using Theorem 1 of [3] and the fact that |Pn| = |P0|, n = 0, 1, 2, · · · , it follows
that

lim
n→∞

1

Pn

[λ0Pn(τn − l) + λ1Pn−1(τn−1 − l) + · · ·+ λnP0(τ0 − l)] = 0
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and

lim
n→∞

1

Pn

[λ0(Pn − P ) + λ1(Pn−1 − P ) + · · ·+ λn(P0 − P )] = 0,

so that

lim
n→∞

τ ′n = l
∞∑

n=0

λn,

i.e., (N, pn)(M(x)) converges to l
∞∑

n=0

λn, completing the proof of the

theorem.

Corollary 1.3: If we want to get the same limit l, we have to choose the

sequence {λn} such that
∞∑

n=0

λn = 1, an example being the Y method of Srini-

vasan.

Corollary 1.4: The Y and (N, pn) methods are consistent.

We make use of well-known properties of analytic elements (a general
reference in this direction is [1]) to prove our next result.

Theorem 1.5: Let |λn| ≤ |λ0|, n = 0, 1, 2, · · ·. If M({an}) converges to l,
then M((N, pn)({an})) converges to l too.

Proof: Let F be a complete, algebraically closed extension of K; let U
be the disk |x| ≤ 1 in F ; let H(U) be the F -algebra of analytic elements in
U, which is known as the set of restricted power series with coefficients in F.
Let A be the algebra of analytic functions in the disk D of F : |x| < 1.

Let φ(x) =
∞∑

n=0

λnx
n. We note that φ ∈ H(U) and φ in invertible in A,

since |λn| ≤ |λ0|, n = 0, 1, 2, · · · .
Let M̂ be the linear mapping defined by M in the space of power series:

if M({an}) = {cn}, then

M̂(f) =
∞∑

n=0

cnx
n.

It is easily seen that
M̂(f) = φ(x)f(x).
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Since M({an}) has limit l,

φ(x)f(x) =
∞∑

n=0

(l + εn)xn

=
l

1− x
+ ε,

where ε =
∞∑

n=0

εnx
n ∈ H(U), since lim

n→∞
εn = 0. Since φ is invertible in A, we

have
f(x) =

l

(1− x)φ
+

ε

φ
.

But
l

(1− x)φ
+

ε

φ
∈ A. Thus f ∈ A and therefore is bounded because so

are
l

1− x
,
1

φ
, ε and so

l

(1− x)φ
+

ε

φ
. Consequently the sequence {an} is also

bounded (see, for instance, [1]).

Let π(x) =
∞∑

n=0

pnx
n. π ∈ H(U), since lim

n→∞
pn = 0.

Let (N̂, pn)(f) =
∞∑

n=0

cnx
n. Since {Pn} converges to a limit P 6= 0 and

since {an} is bounded,

∞∑
n=0

cnx
n =

1

P
{π(x)f(x) + θ(x)},

where θ(x) =
∞∑

n=0

θnx
n, θn =

(
1

Pn
− 1

P

) n∑
k=0

pkan−k, n = 0, 1, 2, · · ·.

Noting that lim
n→∞

θn = 0, we have θ ∈ H(U).

Thus, we have,

PM̂((N̂, pn)(f)) = φ(x)(π(x)f(x) + θ(x))

=
lπ(x)

1− x
+ ε(x)π(x) + φ(x)θ(x)

=
lπ(1)

1− x
+

l(π(x)− π(1))

1− x
+ ε(x)π(x) + φ(x)θ(x).
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It is well-known (see [1]) that x− 1 divides π(x)− π(1) in H(U) and so

PM̂((N̂, pn)(f)) =
lπ(1)

1− x
+ τ(x),

where τ(x) ∈ H(U). Since π(1) = P,

M̂((N̂, pn)(f)) =
l

1− x
+

1

P
τ(x),

which proves that M((N, pn)({an})) has limit l. This completes the proof of
the theorem.
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