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Analysis
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Abdellah Bounabat

Manfred Goebel

Abstract

We study in this paper a Lipschitz control problem associated to a
semilinear second order ordinary differential equation with pointwise
state constraints. The control acts as a coefficient of the state equa-
tion. The nonlinear part of the equation is governed by a Nemytskĳ
operator defined by a Lipschitzian but possibly nonsmooth function.
We prove the existence of optimal controls and obtain a necessary
optimality conditions looking somehow to the Pontryagin’s maximum
principle. These conditions utilize the notion of Clarke’s generalized
directional derivative. We point out that this work provides comple-
ments to our previous paper [2], where a similar problem was studied
but with tools only from classical analysis.

Key words and phrases. Semilinear second order ordinary differen-
tial equation. Optimality conditions. Nemytskĳ operator. Clarke’s
generalized directional derivative.
2000 Mathematics Subject Classification. 49K15, 49J15.

Résumé: L’objet de cet article est d’étudier un problème de contrôle optimal
gouverné par une équation différentielle ordinaire du second ordre sous con-
ditions aux limites et contraintes sur l’état. Les contrôles sont Lipschitziens
et agissent comme des coefficients pour cette équation. La partie non linéaire
de cette équation est donnée par l’action d’un opérateur de composition (de
Nemytskĳ) défini par une fonction Lipschitzienne mais non nécessairement
régulière. Nous établissons l’existence des contrôles optimaux et trouvons
des conditions nécessaires d’optimalité qui ressemblent au principe du max-
imum de Pontriaguine. Ces conditions utilisent des notions d’analyse non
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régulière telles que les notions de sous-différentiel et la derivée directionnelle
généralisée de Clarke. Ainsi, ce travail complète notre article [2] qui traite le
même problème mais dans le cas régulier avec des outils d’analyse classique.
A la fin de ce travail, nous donnons un exemple d’applications.

1 Introduction and position of the problem
The purpose of this paper is to generalize and complete the results of the
paper [2]. In a precise manner, for a given function h in the Banach space
C([0, 1]) (of continuous functions on [0, 1]), we are interested by finding

inf J (y), J (y) =

∫ 1

0

(y(x)− h(x))2 dx, (1.1)

where the state y verifies the nonlinear boundary value problem:

d

dx
(
y′(x)

u(x)
) + q(x)y(x) + θ(y(x)) = 0, x ∈ (0, 1), y(0) = 0, y′(1) = 0,

(1.2)
under the constraint

0 ≤ y(x) ≤ a ∀x ∈ [0, 1], (1.3)

the controls u are Lipschitz continuous functions belonging to some compact
subset Uad of the Banach space C([0, 1]) which is contained in C1([0, 1]). q
is a fixed continuous function on [0, 1], and θ is a fixed Lipschitz continuous
function on [0, a], which is possibly not belonging to C1([0, a]). We set Q :=
sup{| q(x) |: x ∈ [0, 1]} and b := sup{| θ(x) |: x ∈ [0, a]}. Throughout this

paper, we suppose that the following assumption holds:

θ(y) + q(x)y ≥ 0, ∀x ∈ [0, 1], ∀y ∈ [0, a]. (1.4)

Since θ is Lipschitzian, we can find a positive constant l such that

| θ(x1)− θ(x2) |≤ l | x1 − x2 |,∀x1, x2 ∈ [0, a].

In all this paper, Uad will be the closure, in the Banach space C([0, 1]), of the
following set:

Sφ,k,r :=
{

u ∈ C2([0, 1]) : φ(x) ≤ u(x) ≤ Ω ∀x ∈ [0, 1],

| u′(x) |≤ k, and | u′′(x) |≤ r, ∀x ∈ [0, 1]
}

(1.5)
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where k, r, Ω are fixed numbers in ]0,∞[, and φ is a fixed continuous function
on [0, 1] such that φ(x) > 0 for all x ∈ [0, 1].

Our control problem will be denoted by Pθ. We see that the controls are
acting in this setting as coefficients for the state equation associated to Pθ.
We recall that when q is zero and when θ ∈ C1([0, 1]), this problem was stud-
ied in [2] by using tools from classical and regular analysis. In this paper, we
are interested by the more general case where q is not zero and θ is not nec-
essary in C1([0, a]). In this case, we are led to use the notions of non smooth
analysis. Hence, we consider that this paper provides a generalization and
gives complements to our previous paper [2]. Similar problems were studied
in [7], [14], and [12], however, using completely different methods. General
remarks concerning coefficient control problems in both ordinary and partial
differential equations can be found in [13]. We point out that this paper
makes a sequel of the papers [1], [9] and [10], where investigations were made
for smooth and nonsmooth optimal Lipschitz control for problems governed
by semilinear second order differential equations in which the nonlinear part
is given by the action of a Nemytskĳ operator. For other related subjects,
one can see the papers [11], [3], [4], [5], [8].

This paper is organized as follows. In the second section, we establish
existence of the states and optimal controls. The main result of this section
is Theorem 2.1. In the section three, we establish necessary optimality condi-
tions using tools and notions from nonsmooth analysis. The principal result
of this section is Theorem 3.1. We end this paper by providing, in section
four, an illustrative example where our results are applied.

2 Existence of the states and optimal con-
trols

In this section, we provide some sufficient conditions ensuring existence for
solutions to our problem. These conditions are expressed by some inequalities
between the fixed parameters Ω, a, b, l, Q involved in the problem Pθ.
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2.1 Preliminaries
2.1.1 Let u ∈ Uad, and let Gu = Gu(x, ξ) be the uniquely determined Green’s
function to the next boundary problem

d

dx

[
y′(x)

u(x)

]
= 0, x ∈ (0, 1), y(0) = 0, y′(1) = 0, (2.1)

An easy computation shows that Gu is given by
Gu(x, ξ) = −

∫ ξ

0

u(s) ds for 0 ≤ ξ ≤ x ≤ 1, and

Gu(x, ξ) = −
∫ x

0

u(s) ds for 0 ≤ x ≤ ξ ≤ 1.

Gu is continuous and symmetric on [0, 1]× [0, 1] and the following estimation
holds

0 ≤ −
∫ 1

0

Gu(x, ξ) dξ ≤ Ω

2
∀x ∈ [0, 1].

2.1.2 In all this paper, we suppose that

Ω < min
{ 2a

b + aQ
,

2

l + Q

}
. (2.2)

The Banach space C([0, 1]) will be equipped with its usual norm denoted by
‖.‖C([0,1]). We consider the subset B+(a) of C([0, 1]) defined by

B+(a) := {y ∈ C([0, 1]) : 0 ≤ y(x) ≤ a ∀x ∈ [0, 1]}.
For any arbitrary control u ∈ Uad, an element y ∈ C2([0, 1]) ∩ B+(a) is a
solution to the nonlinear boundary value problem (2) if, and only if, y ∈
B+(a) and y is a solution to the Hammerstein integral equation

y(x) = −
∫ 1

0

Gu(x, ξ)θ(y(ξ)) dξ−
∫ 1

0

Gu(x, ξ)q(ξ)y(ξ) dξ ∀x ∈ [0, 1]. (2.3)

2.1.3 To each control u ∈ Σad we associate the unique solution S(u) =
yu to the problem (1.2) (under condition (1.3)). One can see that S is a
Lipschitz continuous map from the compact convex subset Σad of C([0, 1])
to the Banach space C([0, 1]). Indeed, for all controls u, v ∈ Uad, an easy
computation will give the following estimation

‖yu − yv‖C([0,1]) ≤
b + aQ

2− (l + Q)Ω
‖u− v‖C([0,1]). (2.4)

With these preliminaries, we are in position to establish the existence of the
solutions to our control problem.
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2.2 Existence results

Theorem 2.1: (i) For each control u ∈ Uad, the boundary value problem (1.2)
has a unique solution yu. Moreover this solution belongs to C2([0, 1])∩B+(a).

(ii) The optimal control problem Pθ has (at least) an optimal solution u0 ∈
Σad.

Proof: (i) Let u ∈ Σad be fixed and associate to it the map Tu defined
from B+(a) to C([0, 1]) by

Tu(y)(x) := −
∫ 1

0

Gu(x, ξ)θ(y(ξ)) dξ −
∫ 1

0

Gu(x, ξ)q(ξ)y(ξ) dξ ∀x ∈ [0, 1].

(2.5)
An easy computation will show that for all y, z ∈ B+(a), we have

‖Tu(y)− Tu(z)‖C([0,1]) ≤
(l + Q)Ω

2
‖y − z‖C([0,1]). (2.6)

By using assumption (2.2), we see that Tu(B+(a)) ⊂ B+(a), and that Tu

must be a contraction from B+(a) to itself. Since the set B+(a) is a closed
(convex) subset of the Banach space C([0, 1]), we deduce by using the Banach
fixed point theorem that Tu has a unique fixed point yu ∈ B+(a). This proves
(i). It remains to prove (ii).

(ii) For each control u ∈ Σad we set J(u) := J (yu). We obtain by easy
computation the following estimation

| J(u)− J(v) |≤
2(b + aQ)(a + ‖h‖C([0,1])

2− (l + Q)Ω
‖u− v‖C([0,1]). (2.7)

This inequality says that the map J is Lipschitz continuous from the compact
subset Uad of the Banach space C([0, 1]) to the set of real numbers. Hence,
using the classical Weierstrass theorem, we deduce that there exists at least
one optimal control to our problem (Pθ).

3 Necessary optimality conditions

3.1 Preliminaries and recalls
3.1.1 Let u0 ∈ Uad be an optimal control to the problem Pθ and u ∈ Uad

another admissible control. The respective states are denoted by y0 = S(u0)
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and yu = S(u). For any λ ∈ [0, 1] we set uλ := u0 + λ(u − u0) ∈ Σad, and
yλ := S(uλ). From the inequality (2.4) we obtain

‖yλ − y0‖C([0,1]) ≤
λ(b + aQ)

2− (l + Q)Ω
‖u− u0‖C([0,1]), ∀λ ∈ [0, 1]. (3.1)

3.1.2 As in the paper [2], we can prove that if θ belongs to C1([0, a]), then the
quotient φu

λ := yλ−y0

λ
(λ ∈]0, 1]) converges in the Banach space C([0, 1]), when

λ −→ 0+, to the unique fixed point ỹ(u) of the selfmapping Υ of C([0, 1])
defined for all z ∈ C([0, 1]), by

Υ(z)(x) := −y0(x)−m(x)−
∫ 1

0

Gu0(x, ξ)θ′(y0(ξ))z(ξ) dξ ∀x ∈ [0, 1],

where m is the function defined for all x ∈ [0, 1], by

m(x) :=

∫ 1

0

Gu(x, ξ)θ(y0(ξ)) dξ +

∫ 1

0

Gu(x, ξ)q(ξ)y0(ξ) dξ.

Indeed, it is easy to see that Υ(z) verifies the following inequality:

‖Υ(z1)−Υ(z2)‖C([0,1]) ≤
lΩ

2
‖z1 − z2‖C([0,1]). (3.2)

Therefore, the inequality (2.2) and the Banach fixed point theorem ensure
the existence and uniqueness of a unique fixed point which we have denoted
here by ỹ(u).

In our situation, we have no information about the convergence of the
quotient φu

λ in the Banach space C([0, 1]). Instead of this, we shall see next
that we can always find at least a subsequence (λn)n of elements in ]0, 1]
converging to zero for which the quotient ((yλn − y0)λn

−1)n converges in
C([0, 1]).

3.1.3. Recalls. For the generalized gradient and all related topics used
below, one can see [[6], chapter two]. For the sake of completeness, let us
make a brief recall on Clarke’s subdifferential and directional derivative. Let
X be a Banach space. Let x ∈ X and let f be a real valued function defined
and Lipschitz near x. Then, the generalized directional derivative of f at x
in the direction v (in X) is given by

f 0(x; v) := lim sup
y → x
t ↓ 0

f(y + tv)− f(y)

t
. (3.3)
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Let X∗ be the dual space of X. For all ξ ∈ X∗ and v ∈ X, we denote
ξ(v) =< ξ, v > . The generalized gradient of f at x is denoted by ∂f(x), it
is the subset of X∗ given by

∂f(x) := {ξ ∈ X∗ : f 0(x; v) ≥< ξ, v > ∀v ∈ X}. (3.4)

By Proposition 2.1.2 of [[6], p. 27], we know that

f 0(x; v) = max{< ξ, v >: ξ ∈ ∂f(x)}. (3.5)

Let C be a nonempty subset of X, and consider its distance function, that is

dC(x) := inf{‖x− c‖ : c ∈ C}.

Suppose now that x ∈ C and v ∈ X. The vector v is said to be tangent to
C at x provided d0

C(x; v) = 0. The set of all tangents to C at x is denoted
TC(x). The normal cone to C at x is defined by polarity with TC(x)

NC(x) := {ξ ∈ X∗ :< ξ, v >≤ 0 ∀ v ∈ TC(x)}. (3.6)

3.1.4 As it was done in the papers [1], [9] and [10], we shall use tools from
nonsmooth analysis to derive our optimal conditions. We start by pointing
out that since the map J : Uad → R is Lipschitz continuous (but surely not
convex), we have the optimality condition

0 ∈ ∂J(u0) + NUad
(u0). (3.7)

where J is now a Lipschitz continuous extension of the map J : Uad → R to
the whole Banach space C([0, 1]). As usual, the notation ∂J(u0) designates
Clarke’s subdifferential of J at u0 and NUad

(u0) is the normal cone to Uad at
u0 (see [6], p. 52). For each admissible control u we introduce (as in [1], [9],
[10]) the set Φ(u) given by

Φ(u) :=
{

φλ ∈ C([0, 1]) : φλ =
yλ − y0

λ
, λ ∈]0, 1]

}
,

where yλ = yuλ
is the same as before, and define two new functions φ− and

φ+ by setting

φ−(x) := lim inf
λ→0+

φλ(x), φ+(x) := lim sup
λ→0+

φλ(x), ∀x ∈ [0, 1].
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By using the inequality (3.1), we see that Φ(u) is a bounded subset of
C([0, 1]). Next, we will show that the set Φ(u) is equicontinuous. Indeed,
since every φλ is differentiable, then it is sufficient to show that the set of
derivatives {φ′λ : λ ∈]0, 1]} is uniformly bounded. For all x ∈ [0, 1] and all
λ ∈]0, 1], we have

y′λ(x) = uλ(x)

∫ 1

x

θ(yλ(ξ)) dξ + uλ(x)

∫ 1

x

q(ξ)yλ(ξ) dξ, (3.8)

and

y′0(x) = u0(x)

∫ 1

x

θ(y0(ξ)) dξ + u0(x)

∫ 1

x

q(ξ)y0(ξ) dξ. (3.9)

Therefore, by using (3.8) with (3.9) and after easy manipulations, we obtain

φ′λ(x) = (u(x)− u0(x))

∫ 1

x

θ(yλ(ξ)) dξ

−u0(x)

∫ 1

x

q(ξ)
[yλ(ξ)− y0(ξ)]

λ
dξ

+ (u(x)− u0(x))

∫ 1

x

q(ξ)yλ(ξ) dξ

:= A + B + C. (3.10)

By using inequality (3.1) and the assumptions, we get the following estimates:
| A |≤ 2bΩ,

| B |≤ 2(b + aQ)QΩ2

2− (l + Q)Ω
,

| C |≤ 2aQΩ.

Whence, the equicontinuity of the set Φ(u) is proved. Therefore, by Ascoli’s
theorem, this set is relatively compact in the Banach space C([0, 1]). As a
consequence, we deduce that the functions φ− and φ+ are continuous on
[0, 1]. Another consequence is that, if we introduce the new set Φ0(u) given
by

Φ0(u) :=
{

φ ∈ C([0, 1]) : φ = lim
n→+∞

φλn in C([0, 1]), where

(φλn)n ⊂ Φ(u) and (λn)n ⊂ [0, 1] with λn → 0+
}

,
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then Φ0(u) is nonempty and bounded. Now, let us denote by θ any given
Lipschitz continuous extension of the function θ : [0, 1] → R to the whole
R, and let θ0(x; ξ) designates Clarke’s directional derivative of θ at x in the
direction ξ for all x, ξ ∈ R. Then with these notations and preliminaries, we
can state our result providing the optimality conditions.

3.2 Optimality conditions

Theorem 3.1: Let u0 ∈ Uad be an optimal control to Pθ and y0 ∈ C([0, 1])
the related optimal state. Then for all u ∈ Uad and all φ ∈ Φ0(u) it holds

(i) φ(x) ∈ [φ−(x), φ+(x)] ∀x ∈ [0, 1].

(ii) φ(x) ≤ −
∫ 1

0
Gu0(x, ξ)θ0(y0(ξ); φ(ξ)) dξ−

∫ 1

0

(
Gu(x, ξ)−Gu0(x, ξ)

)
θ(φ(ξ)) dξ

−
∫ 1

0
Gu0(x, ξ)q(ξ)φ(ξ) dξ, for all x ∈ [0, 1].

(iii) 0 ≤
∫ 1

0
φ(x)(y0(x)− h(x)) dx.

Proof: Let u ∈ Uad. We verify first that the assertions (i), (ii) and (iii)
hold if u = u0. Indeed, in this case, we have Φ(u0) = {0}, and therefore
Φ0(u0) = {0}, and φ− = φ+ = 0. Thus we may suppose that u 6= u0.
Consider an element φ ∈ Φ0(u). Then by the definition of the set Φ0(u),
one can find a zero sequence (λn)n ⊂]0, 1] and a sequence (φλn)n ⊂ Φ(u)
converging to φ in the Banach space C([0, 1]). Assertion (i) is obvious. Next,
we prove assertion (ii).

According to the definition of φλn , for all x ∈ [0, 1] we have

φλn(x) =
yλn(x)− y0(x)

λn

= −
∫ 1

0

Gu0(x, ξ)
θ(yλn(ξ))− θ(y0(ξ))

λn

dξ

−
∫ 1

0

[Gu(x, ξ)−Gu0(x, ξ)]θ(yλn(x)) dξ

−
∫ 1

0

Gu0(x, ξ)q(ξ)φλn(ξ) dξ

−
∫ 1

0

[Gu(x, ξ)−Gu0(x, ξ)]q(ξ)yλn(ξ) dξ. (3.11)
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Because of (3.1) and the fact that θ is l−Lipschitz continuous, we have

lim
n→+∞

yλn = y0, and lim
n→+∞

θ(yλn) = θ(y0) in C([0, 1]).

Because of (3.1) and the fact that θ is l−Lipschitz continuous, for all ξ ∈ [0, 1],
we have the following inequality

| θ(yλn(ξ))− θ(y0(ξ)) |
λn

≤ l

λn

| yλn(ξ)−y0(ξ) |≤
b + aQ

2− (l + Q)Ω
‖u− u0‖C([0,1]).

By taking in (3.11) the limit superior and applying Fatou’s lemma we obtain

φ(x) ≤ −
∫ 1

0

Gu0(x, ξ) lim sup
n→+∞

θ(yλn(ξ))− θ(y0(ξ))

λn

dξ

−
∫ 1

0

[Gu(x, ξ)−Gu0(x, ξ)]θ(y0(x)) dξ

−
∫ 1

0

Gu0(x, ξ)q(ξ)φ(ξ) dξ

−
∫ 1

0

[Gu(x, ξ)−Gu0(x, ξ)]q(ξ)y0(ξ) dξ ∀x ∈ [0, 1]. (3.12)

Since θ : [0, a] → R is l−Lipschitz continuous it can be extended to the
whole R in a Lipschitz continuous function denoted again by θ having the
same Lipschitz constant l. For this extension and for all x, ξ ∈ R we will
denote Clarke’s directional derivative of θ at x in the direction ξ by θ0(x; ξ),
and ∂θ(x) will be the corresponding subdifferential (see for example [6], [15]).
By using the mean-value theorem for subdifferentials (see for example [15],
p. 40) we get the following property: For any natural number n ∈ N and any
x ∈ [0, 1] there are two real numbers ζn(x), zn(x) ∈ R satisfying the following
conditions

ζn(x) ∈ ∂θ(zn(x)) ∀n ∈ N lim
n→+∞

(zn(x)) = y0(x) (in R),

| θ(yλn(ξ))− θ(y0(ξ)) |
λn

= ζn(x)φλn(x) ≤ θ0(zn(x); φλn(x)).

According to the upper semicontinuity of Clarke’s directional derivative we
obtain

lim sup
n→+∞

| θ(yλn(ξ))− θ(y0(ξ)) |
λn

≤ θ0(y0(x); φ(x)) ∀x ∈ [0, 1]. (3.13)
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Now, by using the following estimate

θ0(y0(x); φ(x)) ≤ l | φ(x) | ∀x ∈ [0, 1],

we deduce that the function θ0(y0(.); φ(.)) is bounded. Furtheremore, since it
is upper semicontinuous on [0, 1] it is measurable and, hence it is integrable
on [0, 1]. The property (ii) follows then from (3.12) and (3.13). It remains to
prove (iii). To this end, we start by noticing that for all λ ∈]0, 1], we have
the following inequality:

0 ≤ j(uλ)− j(u0)

λ
= 2

∫ 1

0

yλ − y0

λ
(y0 − h) dx +

1

λ

∫ 1

0

(yλ − y0)
2 dx. (3.14)

Now, we use the inequalities (3.1), (3.14) and obtain (iii) by applying Lebesgue’s
theorem of dominated convergence to the sequence φλn which is converging
to φ in the Banach space C([0, 1]).

This theorem may be considered as a generalization of our theorem 3.1.3
stated in the paper [2] in a particular case where θ was supposed to be
continously differentiable.

4 Illustrative example
4.1. We want to determine infu∈Uad

J(u), where

J(u) =

∫ 1

0

[yu(x)− 1]2 dx, (4.1)

Uad = [ω, Ω], with 0 < ω < Ω < ∞, and yu is the unique solution of the
following boundary problem

y′′ − uy + u = 0, y(0) = 0 = y′(1), (4.2)

with the constraint on the state 0 ≤ y ≤ 1.

The solution of this problem is given for all 0 ≤ x ≤ 1 by

yu(x) = 1− cosh((1− x)
√

u)

cosh(
√

u)
. (4.3)
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After some computations, we get

J(u) =
1

2

(
1− tanh2(

√
u) +

tanh(
√

u)√
u

)
. (4.4)

4.2. Let u0 be an optimal control and let u be any arbitrary control in [ω, Ω].
We apply (iii) of Theorem 3.1 to find u0. By easy computations, we obtain
Φ0(u0) = {z(u0,u)}, where

z(u0,u)(x) :=
(u− u0) cosh((x− 1)

√
u0)
[
tanh(

√
u0) + (x− 1) tanh((1− x)

√
u0)
]

2
√

u0 cosh(
√

u0)
.

(4.5)
By (iii) we have

0 ≤
∫ 1

0

z(u0,u)(x)[y0(x)− 1] dx, (4.6)

which implies

0 ≤ (u−u0)

∫ 1

0

cosh2((x− 1)
√

u0)
[
(1− x) tanh((1− x)

√
u0)− tanh(

√
u0)
]

2
√

u0 cosh2(
√

u0)
dx.

(4.7)
It is easy to see that∫ 1

0

cosh2((x− 1)
√

u0) [(1− x) tanh((1− x)
√

u0)− tanh(
√

u0)] dx < 0.

(4.8)
From (4.7) and (4.8) we deduce that

u ≤ u0, ∀u ∈ [ω, Ω], (4.9)

From (4.9), we deduce that u0 = Ω. Thus,

inf
u∈[ω,Ω]

J(u) = J(Ω) =
1

2

(
1− tanh2(

√
Ω) +

tanh(
√

Ω)√
Ω

)
. (4.10)
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