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ANNALES MATHEMATIQUES BLAISE PAscaL 10, 133-160 (2003)

LP—boundedness of oscillating spectral
multipliers on Riemannian manifolds

Michel Marias

Abstract

We prove endpoint estimates for operators given by oscillating
spectral multipliers on Riemannian manifolds with C'*°-bounded ge-
ometry and nonnegative Ricci curvature.

KEYWORDS: spectral multipliers, wave equation, Riesz means
AMS SUBJECT CLASSIFICATION: 58G03

1 Introduction and statement of the results

Let M be an n—dimensional, complete, noncompact Riemannian manifold
with nonnegative Ricci curvature and let us assume that it has C*°-bounded
geometry, that is, the injectivity radius is positive and every covariant deriva-
tive of the curvature tensor is bounded (cf. [25]). Let d(.,.) denote the Rie-
mannian distance on M, dz its volume element. Let us denote by B(x,r)
the ball of radius » > 0 centered at x € M and by |B(z,r)| its volume.
By the Bishop comparison theorem (cf. [5]), the assumption that M has
nonnegative Ricci curvature implies that

|B(z,r)| _ (r\"

— < (- >t>0 1.1

Bz, t)] — (t) =t (L.1)
and hence

|B(z,2r)| <2"|B(z,r)|, r>0.

This is the so called ‘doubling volume property’ and makes M a ‘space of
homogeneous type’ in the sense of Coifman and Weiss [8]. Thus we can define
the atomic Hardy space H' (M) and BMO (M), the space of functions of
bounded mean oscillation, in the standard way (cf. [8]). Further, by Theorem
B of [8], BMO (M) is the dual of H* (M).
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M. MARIAS

Let L be the Laplace-Beltrami operator. It admits a selfadjoint extension
on L?(M), also denoted by L and hence the spectral resolution

L:/ AdE}.
0

Given a bounded measurable function m(\), we can define, by the spectral
theorem, the operator

m(L) = /Ooo m(\)dE}.

This operator is bounded on L*(M). The function m(\) is called multiplier.
Oscillating multipliers are multipliers of the type

mas(A) = H(A) AP >0, 8>0. (1.2)

with ¢ a smooth function which is 0 for |A| <1 and 1 for |A\| > 2.
In this article we shall prove some endpoint results concerning the L?
boundedness of the family of operators

mavg(L) = /0 maﬁ(/\)dE,\.

We have the following;:
Theorem 1.1: Let m, 5 be as above and let o € (0,1). The following hold:

(i). If B = %, then map(L) is bounded from H*(M) to L*(M), on LP(M),
1 <p < oo and from L>(M) to BMO (M).

(ii). If0 < B < %, then mq (L) is bounded on LP(M), for 3 > an
1 <p<oo.

_1
2

1
D ’

(iii). If B> G, then mqg(L) is bounded on LP(M) for 1 < p < oco.

Oscillating multipliers fall outside the scope of Calderén-Zygmund theory
and they have been studied extensively. See for example [31, 14, 10, 11, 21,
22, 23, 28, 26] for R™ and [9, 1, 20, 12] for more abstract settings.

The above result, in the context of R” and for 0 < # < an/2, has
been proved by Fefferman and Stein in [11]. In the context of Riemannian
manifolds of nonnegative Ricci curvature, Alexopoulos [1], has proved that
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OSCILLATING SPECTRAL MULTIPLIERS

31 1<p < oo
According to [11], the results above, for 0 < § < an/2, are optimal.

for any a > 0, mq (L) is bounded on L? for 8 > an %—

For the proof of the H' — L' boundedness of mg,an (L), we follow the
strategy that Alexopoulos sketches at the end of the paper [1]. The idea,
which is due to M. Taylor, is to express m, g(L) in terms of the wave operator
costy/L and then use the Hadamard parametrix method to get very precise
estimates of its kernel near the diagonal. Away from the diagonal, we use
the finite propagation speed property of costv/L and the fast decay of the
multiplier at infinity to obtain that m, g(L) is bounded on LP, p > 1.

To prove that the operator m, (L) is bounded on L? for 5 = an )l — %’,
1 < p < 0o, we compose Mg, e (L) with the imaginary powers of the Lapla-
cian, which are bounded on H*, (cf. [19]), and then use the H* — L' bound-

edness of mg,en (L) and complex interpolation.

We shall apply Theorem 1.1 in order to obtain snnllar results for the Riesz
means associated with the Schrodinger type group esL** j e, for the family
of operators

t
Iio(L) = kt—’f/ (t—s)F e ds, 0<a <1, k>0.
0

We have the following
Theorem 1.2: For any o € (0,1), the following hold:

(i). If k =%, then Iy (L) is bounded from H'(M) to L'(M), on LP(M),
1 <p<oo, and from L>®(M) to BMO (M).

(11). If k < %, then I (L) is bounded on LP(M), for k > n

27
p < 0.

(iii). If k > %, then Iy (L) is bounded on LP(M), 1 < p < oo.

In the context of R", the operators Iy (L) are studied for example in [27]
and [22]. According to [27], the results above, for k < n/2, are optimal. The
operators Ij (L) have also been studied in more abstract contexts, see for
example [1, 2, 17, 18, 4, 6].

135



M. MARIAS

It is worth mentioning that our approach is valid only for o € (0,1). This
is due to the fact that the estimates of the multiplier m, g(\) are available
only for av € (0,1), (cf. [31] and Section 5).

The paper is organized as follows. In Section 2 we recall some known facts
about the Hardy space H' and BMO (Subsection 2.1), the wave operator
and the construction of its parametrix (Subsection 2.2). In Section 3 the
estimates of the Fourier transform of the derivatives of the multiplier m, g(\)
are given. In Section 4 we give the estimates of the kernel of the operator
mq 3(L) near the diagonal and in Section 5 we establish its LP-boundedness
when 3 > n/2. In Section 6 we prove the H' — L' boundedness of the
operator 1, ex (L) and in Section 7 we finish the proofs of Theorems 1.1 and
1.2.

Throughout this article the different constants will always be denoted by
the same letter c. When their dependence or independence is significant, it
will be clearly stated.

2 Preliminaries

2.1 The Hardy space H' and BMO

Let us recall that a complex-valued function a on M is an atom if it is
supported in a ball B (yo,r) and satisfies

lallo < [B(yo.7r)| ™" and [, a(z)dx = 0.

A function f on M belongs to the Hardy space H'(M) if there exist
(Am)men € 1 and a sequence of atoms (ay,),,cy such that

f = E Ama'nu
meN

where the series converges in L' (M). The norm | f||, is the infimum of
Y men | Am| for all such decompositions of f.

A function f belongs to BMO(M), if there exists a constant ¢ > 0 such
that for all balls B(z,r),

1
- ~ fald
‘B(:EvT”/B(x,r) |f(y) fB| Yy <g
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where

1
[B 1Bz, )] /B(m) f(y)dy

The smallest of all such constants ¢ is the BM O norm of f.
Finally we note that the dual of H'(M) is BMO(M), (cf. [8], Theorem
B, p. 593).

2.2 The wave operator

Let Gy(x,y) be the kernel of the wave operator costv/L. Note that Gy(z,y)
is also the solution of the wave equation

(8t2 +Ly) U(t,l‘,y 07

)=
Oyu(0, z,y) = 0.

In this article we shall exploit the fact that Gy(z,y) propagates with finite
propagation speed (cf. [7, 29]):

supp(Gr) € {(z,y) : d(z,y) < [t]}. (2.2)

Next we shall recall some facts about the Hadamard parametrix construc-
tion for the kernel Gy(z,y), (cf. [3, 4, 15]).

Let 0 € (0,79), to be fixed later, and let us consider, for every ball B(z, ¢),
x € M, the exponential normal coordinates centered at x. Let g;;(z,y),
y € B(x,0), be the metric tensor expressed in these coordinates and let
us denote by (¢¥(z,y)) its inverse matrix. We have the following Taylor
expansion of g;;:

9ij(T,y) = 04 +7 At (e — wr) (Y1 — 1)

2 Aijam (e — 1) (Y1 — 20) (Y — ) + .. (23)

where the kAl-j__. are universal polynomials in the components of the curvature
tensor and its first k — 2 covariant derivatives at the point z, (cf. [24], p. 85).
By the term “universal” we mean that the coefficients of the polynomials
’“Aijm depend only on the dimension of the manifold.

It follows from (2.3) and the assumption of C*°-bounded geometry that
for any multi-index « there exists a positive constant ¢, such that

’ag‘gw(%y)’ Scaa xEMv yEB(l’,(S) (24)
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Since g;;(z, z) = 0,5, there is ¢ > 0 and ¢ € (0, r() such that
! < det(gij(z,9)) < c (2.5)

for all z € M and y € B(z,9).

In what follows, we shall fix a 0 € (0, min(1,7)) such that (2.5) is satis-
fied.

From (2.4) and (2.5) we also have that there is ¢, > 0 such that

9297 (2.9)]| < . (26)

for all x € M, y € B(z,0).
Let O(x,y) = det (g;;(z,y)). Then, the Laplace-Beltrami operator L can
be written as follows:

1 9 1/2 ij 9
L= W;Gyi(@(%y))) / g (x’y)@'

Note that by (2.4), (2.5) and (2.6), the Laplacian can also be written as

L= z ca(y)a;;

laf<2

with the coefficients satisfying

|85Ca(y>| < Ca,(35 (27)

for all z € M, y € B(x,¢) and any multi-index 3.
Let us consider the following smooth functions:

Up(w,y) = ©7"2(x,y)

and )
Uesaliy) = 0 (a,y) | +€Y2(z, ) Lali (o, p2)ds.
0
where ys, s € [0,1], is the geodesic from x to y and Ly denotes the Laplacian
acting on the second variable. Note that Up(z,x) = 1.
In what follows, we always assume that |t| < § and y € B(z,9), z € M.
Let us consider the kernels

Bt 0.9) = Co 31Tl TP

k=0 2

(2.8)
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where () is a normalizing constant.
They satisfy (cf. [3])
1
(0% + L) En(t2.9) = il 1 (7 = d(e.w)) ) LUx ()
2
EN(07 Z, y) = 51(3/)7
atE'N(Oa z, y) =0.
(2.9)
Now, let us observe that by (2.4), (2.5) and (2.7) there exists a ¢ > 0 such
that
|Uo(z,y)| <¢o and |L,Up(z,y)| < ci. (2.10)

These also imply that for any k € N there is ¢ > 0 such that

Ck Ck+1 Ck
U(z,9)] < 5 1L Uk(z,9)| < S and IV, Ui(z, )| < g, (211)

for z € M and y € B(x,9).
If k > ™t then (2.11) and the fact that

F(/{:—”TH)NM, as k — oo,

imply that

(G875 Y D Vi L

Ur(z,y) |t] PT (k- | S SO0 S R

(2.12)

From (2.8) and (2.12) we get that En(t, x,y) converges uniformly as N —
oo and (2.9), (2.11) and (2.1) that the limit is G¢(x,y). Thus we have the
expansion

k-_i

G, 9) = Co S (-1 Uy o B0 * g g

k=0 4kT (k - n21)

the convergence being uniform for [¢t| < 6 and y € B(y, 9).

3 Estimates of the multiplier and of its deriva-
tives

In this section we shall give some estimates for the derivatives of the Fourier
transform of the multiplier m,, g.
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Let us consider the function

Fap(t) = Mo g(t?) = () [t] 7 "

Let 7o be the injectivity radius of M and us fix § € (0,79). Let xs(t) be a
smooth and nonnegative function such that xs(¢) = 1 for |¢t| < §/2 and 0 for
[t| > 4. Set

8 5(8) = fas(8)xs(2), F5(8) = Fas(®)(1 = xs(2)). (3.1)
In this article we shall need the following:

Lemma 3.1: Let o € (0,1) and = % +¢, € > 0. Then for allm,N € N
andt € R,

A a(n+1)
O f(0)] < el (e TR0, (3:2)

and

am Affﬁ(t)‘ <clt| ™. (3.3)

Before proceed to the proof of Lemma 3.1, let us recall the following
estimates from Wainger [31], Theorem 9. For any a € (0,1) and ¢ > 0,
consider the function

feap(@) = e~y (|l2)|?) (|l ~° eillel”, r € Rk,

We have that
R 2ok - —eu 2y, —b+E iy
feap(llzl) = [z 2 e “PluT)u= e Jica (u |z du (3.4)
0

where J,,(z) is the Bessel function.
Making use of this formula, Wainger proved that the limit

Foalllll) = lim focus(l])

exists and it is continuous for x # 0. Further, if b > k (1 — %), then fa,b is
continuous also at z = 0, while if b < k ( — %) and M € N, then

A —(k=b—2k)/(1—a) ; —a/(1-a) M ma/(l—a
Fupllall) =[]~ (250 gigalial M ap, [0

S N (3.5)
+0 (Il M) 4 (),
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where ag # 0, &, is real and £, # 0; C' is a continuous function.
Furthermore

fa,b(Hl’H)’ =O(«lI™), as || = oo, (3.6)
for any N € N.
PrROOF OF LEMMA 3.1: If m = 0, then (3.2) and (3.3) are an immediate

consequence of (3.5), with £ =1, and (3.6).
If m=2l, 1 > 1, then 6*f, 5 is the Fourier transform of the function

(=0 fas(A) = (D)MW (AP A7 P = (=) fo g ().

Hence (3.2) and (3.3) follow again from (3.5) and (3.6) with b = 8 — 2I.
If m =20+ 1, then 9**1 f, 5 is the Fourier transform of the function

() = (=) R (APIAA|T e

Since this function is odd, we have
. +00
ML 5(t) = —21’/ o(x) sin(tx)dz
0
—+o00
= -2 limHO/ e~ “p(x)sin(tr)dr.
0

Since

we have

1
2

32”“1]3&,5(75) = /27t hmeao/ efez¢(x2)xfﬁ+2l+3/2€izuJ (tx)dx
0
= ctlim,_o {té/ e~ (x2) g TS 2 i J1 (tx)d:p} .
0

The integral in brackets above is the same as the integral feya,b(t) in
formula (3.4), with £ = 3 and b = 3 — 2[. This gives, as ¢ — 0, the Fourier
transform of the multiplier f,,(\) in R?. Therefore, the estimates 0%+ f, 5(t)
follow again from (3.5) and (3.6).
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4 The estimates of the kernel near the diag-
onal
Let us express the operator m, g(L) in terms of the wave operator cos tV'L.

If fops(t) = mag(t?), then mys(L) = fas(v/L) and since f, 5 is an even
function, by the Fourier inversion formula we have that

+oo
Mag(L) = (27?)_1/2/ fap(t) costV/Ldt.

Let ma g(x,y) be the kernel of m, g(L). Then by the finite propagation
speed property (2.2)

Mag(x,y) = (27r)_1/2/ fayg(t)Gt(ac,y)dt.

[t|>d(z,y)

This kernel is singular near the diagonal and integrable at infinity. We
want to split m, g(x,y) into these two parts and treat them separately. This
can be done by considering the operators

mg (L) = (2m)~1/2 /oo fgﬁ(t) cos tV/ Ldt

and N
ma (L) = (277)1/2/ f;‘},(t) cos tv/Ldt,
where fg 5 and f2% are defined in (3.1). We have
ma,B(L) = mgﬁ(L) + mzcjﬁ(L)

Let m), 5(x,y) and m%s(x, y) denote the kernels of m), 5(L) and mg>s(L),
respectively. Then

mlleg) = o [ G s (0)
0>|t|>d(x,y)

and

ms(z,y) = (2m) 7Y/ ' 5f§?ﬁ<t>ct<x,y>dt.
t>
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In the present section we deal with the kernel m, 5(x,y). This kernel
contains the singular part of the kernel m, g(x,y) and from (4.1) it follows
that

supp(mg, 5) C {(x,y) € M x M : d(z,y) < 6}. (4.2)

We shall obtain very good L estimates for mgﬂ(m,y) by using the
Hadamard parametrix construction for G(z,y). These estimates allow us
to prove in Section 6 that m, (L) is bounded from H' to L' for 3 = na/2.

We have the following:

Lemma 4.1: Let a € (0,1). Then for all ¢ > 0, there exists a constant
¢ > 0 such that for all z,y € M

‘mg,%-ﬁ—a (CL‘, y)’ < Cd(.T, y)inJrﬁ (43)

and
HW%,&;(MJ)H < cd(a,y)~ T (4.4)
where £ + L =1.
For =< +¢eand k= —1,0,1,..., we set

fe— n+1

) = [ 01 S

(k—23%)

Lemma 4.1 is a consequence of the expansion (2.13) of G, (z,y) and of
the following:

Lemma 4.2: (1). If0 < k < ™%, then there is a ¢ > 0 such that

[I(z,y)| < cd(z,y) "=, Vrye M. (4.5)

(it). If k > 5L then there is a ¢ > 0 such that

52k

(i11). If k = —1 and € = 0, then there is a ¢ > 0 such that

[ Iy(z,y)| < c Va,y € M. (4.6)

(2, y)| < cd(z,y)”(n+2+e) Va,y € M. (4.7)
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PROOF: The proof is given in steps. Let us set, for simplicity, d = d(z,y).
Proof of (4.5) for n = 2p + 1. This is the simpler case. If we put t = ud,
then we have

1

k_nt
~ u?—1
Ik(-r7y) — d2kn+1/R |’LL| fg»ﬁ(Ud)(F(k—):gl)du

2

k—p—1

—n ; k—p—1 (u—1)
= ko +1/]R |'LL‘ fg,ﬁ(U’d) (U + 1) pl Ttp)du

Since .
_ 1)k—p-1
(“F(k>_+p) =6P R (u—1), for k<p+1, (4.8)

(cf. [13], p. 56), we have

Iy = (00 ful f2 5 (ud) (u+ 1))

u=1

= dZm (00 sty (ful (u+1)F77) )
m=0

u=1
p—k

= Py (002 (ud))

m=0

u=1

Making use of Lemma 3.1, we get that for all m =0,....p — k,

m £0 cd™
% f“vﬁ(ual)“:l‘ = Jm—e=mFha) /e
_ cd™de/(1-)
- d+m—(p+)a)/(1-a)
o dmds/(lfoz)
T dd(m—pa)/(1-a)
— cd-Lge/ (1= gop—m)/(1—a)

< Cdflds/(lfa)dak(lfa) )

This implies that for all £ > 0,
’Ik’ < Cd2kfn+1d71d€/(1fa)dak(lfa) < Cdfnds/(lfoz)
which proves (4.5), when n = 2p + 1.
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Proof of (4.5), for n = 2p. In this case we have

— )

i
Iie) = [ 107250 g Sy

The calculations now are more complicated because k — p — % is no more an
integer. If we put ¢t = du and v = u + 1, then

I, = Cd2k—2p+1/ |u f2ﬁ<du) (u2 _ 1)’1—17—% du

[ul>1 ’

= ettt [ o ) - 1
u>1

Fed / (—u)f2 (du) Ju — 1773 (~(u+ 1)) 2 du
u<—1

= Cd2k2p+1/ (1} + 1) Aaﬂ(d(v + 1))(1) + Q)k—p_%viﬁ"*%dv
v>0

N _p—1i
ted® [ (v 1) y(—d(v + 1)) (v + 2)F P 3w " 2 du,
v>0

Since fJ ;5 is an even function

A _p_ 1
I = 20d2“”“/ (D) 0 (d(v + 1)) (v + 2)F P3P 2 o,
v>

We shall only treat the term Iy which is the most singular near v = 0.
The integrals I, kK > 0, can be treated similarly. We have

1

Iy = cd %! / (v+1) Aaoﬁ(d(v +1)(v+ 2)7p7%v;p_5dv. (4.9)
0

By replacing the term (v + 2)*”*% by its Taylor’s expansion at v = 0, we can
see that the most singular part of I is the integral

Jo = d~ Pt / fgﬂ(d(v + 1))v;p_%dv.
0
Let us observe that f, s(d(v + 1)) is the Fourier transform of the function
1 t\ . 1 (1] |t
afes <d> S (’d' ) ‘d
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1
Also, the Fourier transform of the distribution v +p % is equal to

ip<p+;)Ffaw9ﬁ%eﬂuwnf%y

(cf. [13], p. 172). So,

> el 1 _1
%:uwwj‘waﬁuwamﬁﬂw&ﬁz_@fﬂﬁ
—0Q

oo 1 1
— d—2p+1dp§/ w (uz) |u’7€70m/2 eilu\aeiud {Clui—§ _ Czuli_é] du
—00

= Jo1+ Joa-

(4.10)
We shall only treat Jy;. The term Jyo can be treated similarly. We have

o0
Jog = Cld2p+1dp_%/ O (u?) u= T Pz cos(ud)du
0

Ve d -t / W (u2) u=F =3 v gin(ud)du (4.11)
0

= d~ ¥ drzcy(Ly +iLs).
Now L is the Fourier transform of the even function
—an_cqp—L gl
Fap(w) = ¢ (Juf*) Ju| =2 75772
with b= %" +c—p+ 1. So, by (3.5), with k = 1, we get that

‘Ll‘ < Cdf(lf%ferpf%f%)/(lfa)

4.12
— g~ (TP 0)/ (1) ytey — -t gase (4.12)

By the formula sinz = /%.J1 (x), we have

Ly z/ ¥ (u?) u= T P2 gin(ud)du
0

= C\/g/ Y (u?) u=% =P i (ud)du
0 2

1

=cd lim0<pH0 {d 2/ efpuz/) (u2> u_(%+E—P+%)+%eiuo‘ J% (ud)du} )
0
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The integral in the brackets above is the same as the integral f;,ayb in (3.4)
with k =3 and b= G +¢—p+ % Therefore, by (3.5), with k£ = 3, we get
that, for

|Lo| < cdd™ (3% -etp3=5)/0-)
— cdd—(30-a)+p(1-))/(1=0) 4e/(1-a) (4.13)
_ dd*%d Pge/ (A=) — - 2d pe/(1—a)

It follows from (4.11), (4.12) and (4.13) that
[ Joa| < ed PP 34773 = cd"d0 (4.14)
Putting all together, from (4.9) to (4.14), we get
Ie(z,y)| < cd T

which proves (4.5), for n = 2p.
Proof of (4.6). If k > ™ then by (3.2) and (3.3) we get

(t2_d2)k—nT+1

I.(z, gc/ FO ()| |t] ol —dit
el sef 72010 Sy

c )/ |ﬂ—(1—6—%)/(1—&) |t‘2k_ndt.

Sp(k_in%

But, if £ > ”7“, then

1—e— 2 9c 4 q(n—1)

2k —n — >0
" 1-a) - 20-a ’
S0,
52k—n+1—(1—5—@)/(1—a) 52k
| In(z,y)] < c — <ec —
(k-2 L (k=5

Proof of (4.7). We shall only treat the case n = 2p + 1. The case n = 2p
can be treated similarly. As in the proof of (4.5), we have to estimate the
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2) 1-24l
1_n= 1) dt
(w-1),

( 1— n21)
—p—2 (u— 1)+

T(—p-1)

) = [Raw1n S

=d " 1/f25 (du) |ul

1,"7“

du
dt

a1 (Jul f5ud) (1)

u=1

p+1

Ny
m,p d1+m—(p+1)a)/(1—c)

m=0

p+1

1 c dm
m,p dd(m—pa)/(1—a)

m=0

p+1

2 m m—ma—m+pa

g Cmp 11—«

p+1

ZE C:npdﬁ(p—m) < cd™"2d—/(1=a) — g—n—2q%"

m=0

O

PROOF OF LEMMA 4.1: (i). It is a consequence of (2.11) and Lemma 4.2.
(ii) Making use of (2.13), we have

V,Gi(z,y) =

_ZUIC(‘T> y) ‘t’

k=0
=I+1I.

Now, it follows from (2.11) and the estimates (4.5), (4.6

+1

- @y)?)
> (1), Ui, y) [t w
’ (t —d(z y)2) ‘-*21 1
(k - LH) 4kp(k_anl> dey(d)

) for e = 0, that

1] < ed(z, y) ™
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To deal with 11 we first note that ||V,d(z,y)|| <1 for d(z,y) < 1. Then, by
(4.6) and (4.7) we have

1] < ed(a, y)~ 0+’

5 The L? boundedness of m, 3(L) for 3 >

In this Section we prove claim (iii) of Theorem 1.1 which states that for all
a € (0,1) and 8 > G, mqag(L) is bounded on L?, p > 1.

We note that the L? boundedness of mg’;(L) for 3 > 5, can be extracted
from [1]. We shall give below a simple proof of this result by adapting an
argument from [29].

Proposition 5.1: If a € (0,1) and 8 > 5, then m35(L) is bounded on LP,
p=>1.

Proor: We have that
1 e,
m>,(\) = — 0 (+) cos tV/\dt
2= = [ A

and by the estimate (3.3) of Ag,oﬁ(t) we get that m3’s is bounded. Thus
mgs(L) is bounded on L?. Therefore, the Proposition will be a consequence
of the following:

sup/ |mgoﬁ(ac,y)‘ dy < 0. (5.1)
zeM J M

Let us first notice that the Dirac mass d, at x can be written as 0, =
LFo, + 1,, where k = [%] + 1 and where the functions ¢, and v, are in
L*(B(z, 7)), with rq the injectivity radius of M (cf. [29], p. 776). Also by
the assumption of C'*°-bounded geometry, we can assume that there is ¢ > 0
such that ||p,]l, < cand [|1),]|, < ¢ for all z € M. We have

mg(z,y) = ms(L)0x(y) = L*ms(L)pa(y) + ms(L)vs(y)
= (VL)* [25(VL)pa(y) + [35(VL)Ya(y)

_ (_Z-)—% (277)—1/2 /OO o2k Agfﬁ(t) cos t\/Z(pz(y)dt (5.2)

+ (2m) Y2 /OO fgoﬁ(t) cos tv/Lap, (y)dt
= Il(xa y) + 12(1‘7 y)
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By the estimates (3.3) of 9;" Aaofﬁ(t) and the finite propagation speed property
we have that

[o o]

) e
- Cz/j<|t<j+1 ’a%f‘fﬁ (t)‘ ‘COSNZ%(Q) ) dt (5:3)

Jj=z1

‘82’“ :‘fﬂ(t) costv/ L, (y) ‘ dt

< CZ%\;/ ‘1B(:c,ro+j+1)(y) cos tﬁ%(y)‘ dt.
JEIE<+1

Jj=21

By the Cauchy-Schwarz inequality

[ [tsem@eostVIant)| dy < 1B R costvZe,
M

2

< R |Jeos V| oo, Y
< cRM?
since Hcost\/ZH < 1and |||, < cforall z € M.
Let N > 2 —|—2%. Then, it follows from (5.2), (5.3) and (5.4) that
[ ol ey it [ a<ed o
M > I Ji<i<in =)
and hence
sup | [11(z,y)| dy < oo.
The term I(x,y) can be treated similarly. 0

Proposition 5.2: [fa € (0,1) and 3 > %, then mgﬁ(L) 1s bounded on LP,
p=>1

PROOF:  Since m{, 5(L) = ma (L) — mZ4(L), Proposition 5.1 implies that
m?, 5(L) is bounded on L?. If 3 = & 4 ¢, & > 0, then from (4.2) and (4.3)
we have that

sup,ear [y Mo 5(z, )| dy :SupzeM/( ) | (. )| dy
< CSUp,epy / d(z,y) " e dy
B(z,5)

0
- R _e
—csupxeM/ r "t et ldr = cf1a
0
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and the Proposition follows. 0O

6 H'—L'boundedness of the operator m, an(L)

In this section we prove claim (i) of Theorem 1.1. By the duality of H*
with BMO, the H' — L' boundedness of m, an (L) is a consequence of the
following

Proposition 6.1: Ifa € (0,1), then the operator mg, e (L) is bounded from
L®(M) to BMO(M).

The LP-boundedness of mg en(L) for p € (1,00), follows from the L?
boundedness and Proposition 6.1 by interpolation and duality.

The strategy of the proof of Proposition 6.1 is inspired from [11]. It is
based on the following Lemmata.

Lemma 6.2: There is a constant A > 0 such that

M, g,%(%yﬂ dr < A, (6.1)

an (l‘, y) -m
/d(z,y1)>2d(y7y1)1‘“ ’

forallyy € M and y € B(y,9).

PrOOF: Let us fix y; € M and y € B(y1,0). Let y(s), s € [0,d(y,v1)], be
the geodesic segment from y to y;. Then

o 0 d(yy1) 0
(o) = g o) = [ V(o p()ds,
0
By (4.4) and the mean value theorem, we get that

d(y,
() = o )| < o T 0) (62)

P <o

for some y* on y(s).
Let us set d = d(y,v1), Ar = B(y1, 28 1d' =) \ B(yy, 28d' ) and

I, = / )mg%(l’, y) — mg,%(aﬁ,yl)‘ dx.
A
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Then

0, e (2, 9) = 0, e (2, 91) | da

/d(w»y1)>2d(y7y1)1“
= [ [t s o) = 8 g )| e = S
k>17 Ak E>1

Since d < 6 < 1, we have

d(z,y*) > 2kd'= —d > 2+ 1dqt—o, Vr € A, VEk> 1.

Now, by (6.2) and since (1 —a)(1 — ') = 1, we have

di d
I, < C/ d(x S{:)yij—ia' < C/ 1 idf ntl—of
A A (2 d )

n
cdAel o cd(Zide)
— nt+l—a/ — n+l—a’
(del—a) (del—a)
— cd _ c
- (zk)lfo/d(l—a)(l—a/) - (Qk)l—o/ .

It follows that

/d( ! mg’%(fb,y) - mg’%(x, )| d
z,91)>d(y,y1) '~
ogl Y,y1 -
- ka < CE W < 00
k=1 k=1
since 1 — o’ > 0 for a € (0,1). )

The following Lemma is based on a local version of a generalization of
Hardy-Littlewood-Sobolev theorem due to Varopoulos, (cf. [30], p. 12).

Lemma 6.3: For any o € (0,1), mq,en (L) is bounded from L* to L=
Proor: We write
YLD L[ el

(1+ L)~/ (|L]) |[L] "4 (1 4 Lyen/4eiti™”
(1+ L) (L),

ma,%"(L)

where @ () = ¥(|A]) A7 (1 + A)e/4eIN*"? Since @ (X) is bounded, it
suffices to show that the potential operator (1 + L)~*"* is bounded from L?
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to La. To this end, let ¢,(z,y) be the kernel of the semigroup e~**+%) and
pi(z,y) the heat kernel of M. Then

@(r,y) = e 'pil@,y).
By the Li-Yau estimate of p;:
e—d(zy)?/ct
pe(z,y) < Cma
for all t > 0 and z,y € M, (cf. [16]), it follows that

ct—/2, vt <1,
qt(x7y) S { Ce—t S Ct—n/Q7 V¢ Z 1. (63)

From (6.3) it follows that
le 0Dl < et fl,. VL, Vis0.

As it is shown by Varopoulos, (cf. [30], p. 12), this estimate implies that the
operators (1+ L)™7/2, 4 > 0, are bounded from LP to L? for % = % — T and

1 < p < co. The Lemma follows by taking v = an/2 and p = 2. 0O

PROOF OF PROPOSITION 6.1: In order to prove that mg, ax (L) is bounded
from L* to BMO it enough to show that there is a constant ¢ > 0, such
that for every ball B (y;,r) = B and every f € C§°(M)

/B 0,22 (L) f (%) = (ma,op (L) )| do < cl|fll B, (6.4)

where (mg,2x (L) f)p is the mean value of mg,en (L) f on B.
Let us then fix a ball B(y;,r) = B and let us set, in order to simplify
the notation, B, = B(y,2r'™®). If f € C5°(M), then we shall write f =

fxB. + fxsg == fi+ fo
To prove (6.4), we shall show that

/B 1,0 (L) f1 ()] dz < e[| f1]o 1B (6.5)

and

/B |ma,22 (L) fo(@) = (ma,2p (L) )| do < cl|fll 1Bl (6.6)
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Proof of (6.5). If r > 1, then v~ < r and hence

/B\ma,a;(L)fl(ﬁ)\ de < |Jma,sx (L) fi, 1BI' < cllfull, B2

1/2 1/2 1/2
= cllfxpall, |BI'"? < ellfll. |Bal"" B
= ¢[|fll | By, 2 =)V | B|'2
<ecllfll 1By, 2r) Y [BIY* < ¢||fll.. 1B

In the case when 7 < 1, we proceed by arguing as in [11], Theorem 1, p.
143 (see also [9], Theorem 2.1). Let p = 2/ (1 — «) and let p’ be its conjugate
exponent. Then by Lemma 6.3 and Holder’s inequality

/B Moz fu(@)| de < [BIY [[ma,se i, < el B (1l

1/v 1/v
< c|BI"" (| filly = c|BI" || fxaals
/ _an1/2
< ¢|BM (| £l | By, 2 ) "
<cllfllor? T = e ||l < cl|BIf]l. .
since - 4 (1 — )3 = 2+ + % = n. This completes the proof of (6.5).

Proof of (6.6). We have

n
p

|ma,%(L)f2(x) - (ma,%(L”c)B\
m, (L) fal) = (0, (1) )| (6.7)
(

IN

2

|8, (L) o) = (s (L) )| + [ ez (D) fo(a)|.

+

We write

. (L) is bounded on L? and that, by

=]

and we recall that the operator m

)
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Proposition 5.1, the operator mg‘j%(L) is bounded on L°. Therefore,

‘(mg%( )f2)B — (ma ax(L)f)B

=B /m o L)fa(x d:):—/ma an x)dx

=B /mm ) fi(x d:):+/m an (L) f(x)dx

(6.8)

2

< 1B [l (0] 1B1E 1B mezee ()]|_1B
< elBI If 1 1Bl + el fl = el

It follows from (6.7), (6.8) and the L* boundedness of mgj%(l/) that to
prove (6.6), it is enough to show that

2

[ e (L)) = (L) ] de < Sl B (69)

Let us set

B = mg,%(%yl)fz(x)df
Bg

If y € B(y1,7), then
0—2"( Vfo(y) —c = / {m %(fﬁ y) — 27*1(33 yl)}fQ(x)dx

Also, if x € B(y;,2r'™%)¢ and y € B(y;,r), then
d(z,y1) > 2r' "% > 2d(y, 1)

Therefore, by Lemma 6.2

8, (D) faly) — e

<.

< Ifl /
d(z,y1)>2d(y,y1)
< Al

0, () = 10, (2, 30) || )|

2z (T,Y) = g on (2, 51) | da
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This implies that

2

/ ’m =z (D) fay) = CB‘ dy < A|B[||fll« (6.10)
By (6.10) we have
/ 8,02 (L) o) = (0, o <L>f2>3\ dy

< [t @)~ col s [ oo ot @aofas - 610
< Allfll |BI+ 1Bl ]cB— 0 (D) f2)n] .

Finally, by using once more (6.10) we get

g (00 =es| =180 | [t ot = [ enaty

<1817 [ [ (D110) — en] dy < AT
(6.12)

7 Proof of the results
In this Section we shall finish the proofs of Theorems 1.1 and 1.2.

PROOF OF THEOREM 1.1: The proof of claims (i) and (ii) of Theorem 1.1
are given in Sections 6 and 5 respectively. It remains to prove claim (ii).
This will be done by complex interpolation as in Theorem 6 of [11]. Let us
consider the analytic family of operators

T.(L) = ¢ LT *mgen (L), Rez €[0,1].

Ift € R, then

Tu(L) = e " L myg, an (L).

But the imaginary powers of the Laplacian are bounded on H' and
HLi’YHH1—>H1 Sc (1 + |7|eﬂ-|’}l|/2> , 7ER,
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(cf. [19]). So, if we combine with Theorem 1.1(i), we get that T;(L) is
bounded from H'(M) to L*(M) and

1T Dl g < e (ev/m + Vantlem/s).

for all t € R.
Also, the operators Ty (L) are bounded on L?*(M) and

2
1 Trvie (L) < ce™
By complex interpolation between Rez = 0 and Rez = 1, we obtain that for

0 € (0,1) and p € (1,2), the operator Ty(L) is bounded on L* for ;1) =1- g.

If we choose §# =1 — Z—ﬁ, then

no na 28

2 na o no 2P 2
Ty(L) =" L5 L™ % avmg,en (L) = € mq (L)

and zla -1= % This is the desired result for p € (1,2). The case p € (2, 00)

is just the dual result.

PROOF OF THEOREM 1.2: As in [1], by replacing the operator L by L, =
t?/*L, the operators

t
Iio(L) = kt—’f/ (t—s)F e ds, 0<a<1, k>0,
0

can be written in the form
Ia(L) = Mi(LY?),

with )
M(\) = k:/ (1 — s)FteisPds.
0

Further, the multiplier Mj(\) can be written as
Mp(\) = Crp(M)AFe 4 Q(N),
where v is as in (1.2) and Q()) satisfies
QAN =0\, as X\ — oo,
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for all N € N, (cf. [1], [27], p. 336).
This implies that

Q| < —x5r for =R

A ‘ ¢(N,R)
ol

Making use of this and by arguing in exactly the same way as in Propo-
sition 5.1 we can prove that the operator Q(L) is bounded on LP, p > 1.

Furthermore, by Theorem 1.1(ii), Ckl/)(Ll)L;ak/QeiL?/Q is bounded on L? for

ak > om,‘l — %) ie fork>n|t— %}, 1 < p < oco. This proves the claim
P P

(ii) of Theorem 1.2. The claims (i) and (iii) can be deduced in a similar way
from Theorem 1.1(i) and (iii).
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