ANNALES MATHEMATIQUES

“‘54?\
:6’ iz i
897 V1)
017 w.
SEEGL k) |
8901 2° -1\
' 2345¢ /7890
w78¢ N 456, VIT3IL
JOC % | 45 720 bz)2
2350 (490 . orf K4
JE 234 Y 67
171156784 Y0
A5 /7119012° _ 4!
‘0. 27454 ny 4
23.6% 3907 s A07 23
»6TRY01234 T3 1563
. < CA55789( Va 01:
3459 /Y901 2"45678)‘: 2 434562
0789V 12345 224567890 )
201 23567890 19123456.

BLAISE PASCAL

MARTINE PICAVET-LL HERMITTE

Cale Bases in Algebraic Orders

Volume 10, n°1 (2003), p. 117-131.
<http://ambp.cedram.org/item?id=AMBP_2003__10_1_117_0>

© Annales mathématiques Blaise Pascal, 2003, tous droits réservés.

L’acces aux articles de la revue « Annales mathématiques Blaise Pascal »
(http://ambp.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://ambp.cedram.org/legal /). Toute utilisation commerciale
ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copy-
right.

Publication éditée par le laboratoire de mathématiques
de l'université Blaise-Pascal, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://ambp.cedram.org/item?id=AMBP_2003__10_1_117_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

ANNALES MATHEMATIQUES BLAISE PAscaL 10, 117-131 (2003)

Cale Bases in Algebraic Orders

Martine Picavet-L’Hermitte

Abstract

Let R be a non-maximal order in a finite algebraic number field
with integral closure R. Although R is not a unique factorization do-
main, we obtain a positive integer N and a family Q (called a Cale
basis) of primary irreducible elements of R such that "V has a unique
factorization into elements of Q for each x € R coprime with the con-
ductor of R. Moreover, this property holds for each nonzero r € R
when the natural map Spec(R) — Spec(R) is bijective. This last
condition is actually equivalent to several properties linked to almost
divisibility properties like inside factorial domains, almost Bézout do-
mains, almost GCD domains.

1 Introduction

Let K be a number field and O its ring of integers. A subring of Ok
with quotient field K is called an algebraic order in K. Let R be a non-
integrally closed order with integral closure R. Since R cannot be a unique
factorization domain, an element of R need not have a unique factorization
into irreducibles. Let R be a quadratic order such that f is the conductor of
R — R. A. Faisant got a unique factorization into a family of irreducibles
for any z¢ where © € R is such that Rx + f = R and e is the exponent of
the class group of R [7, Théoréme 2]. We are going to generalize his result
to an arbitrary order and to a larger class of elements, using the notion of
Cale basis defined by S.T. Chapman, F. Halter-Koch and U. Krause in [4].
In Section 2, we show that there exists a Cale basis for an order R if and
only if the spectral map Spec(R) — Spec(R) is bijective. This condition
is also equivalent to R «— R is a root extension, or R is an API-domain
(resp. AD-domain, AB-domain, AP-domain, AGCD-domain, AUFD). These
integral domains were studied by D. D. Anderson and M. Zafrullah in [3]
and [11]. In Section 3, we consider orders R such that Spec(R) — Spec(R)
is bijective and exhibit a Cale basis Q for such an order. The elements of
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M. P1CAVET-L’HERMITTE

Q are primary and irreducible and we determine a number N, linked to
some integers associated to R, such that ¥ has a unique factorization into
elements of Q for each nonzero x € R. When R is an arbitrary order, we
restrict this property to a smaller class of nonzero elements of R. We do
not know whether the integer N is the minimum number such that = has a
unique factorization into elements of Q for each nonzero x € R, but we get
an affirmative answer for Z[3i].

A generalization of these results can be gotten by considering a residually
finite one-dimensional Noetherian integral domain R with torsion class group
or finite class group and such that its integral closure is a finitely generated
R-module.

Throughout the paper, we use the following notation:

For a commutative ring R and an ideal [ in R, we denote by Vg(I) the
set of all prime ideals in R containing I and by Dg([) its complement in
Spec(R). If R is an integral domain, U (R) is the set of all units of R and R
is the integral closure of R. The conductor of R < R is called the conductor
of R. For a,b € R\ {0}, we write a|b if b = ac for some ¢ € R. Let J be an
ideal of R and z an element of R: we say that x is coprime to J if Re+J = R
and we denote by Copp(J) the monoid of elements of R coprime to J. The
cardinal number of a finite set S is denoted by |S|. When an element = of a
group has a finite order, o(z) is its order. As usual, N* is the set of nonzero
natural numbers.

2 Almost divisibility

A Cale basis generalizes for an integral domain the set of irreducible elements
of a unique factorization domain. In fact, S.T. Chapman, F. Halter-Koch and
U. Krause first introduced this notion in [4] for monoids and later on extended
it to integral domains.

Definition: Let R be a multiplicative, commutative and cancellative monoid.
A subset of nonunit elements Q of R is a Cale basis if R has the following
two properties:

1. For every nonunit a € R, there exist some n € N* and ¢; € N such that
a® = u H ¢t where u € U(R) and only finitely many of the t;’s are

% €Q
Nnonzero.
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CALE BASES IN ALGEBRAIC ORDERS

2. Ifu H ¢i=v H ¢;" where u,v € U(R) and s;,t; € Nwiths; =¢, =0

¢:€Q 6 €Q
for almost all ¢; € Q, then u = v and t; = s; for all ¢; € Q.

3. A monoid is called inside factorial if it possesses a Cale basis.

4. An integral domain R is called inside factorial if its multiplicative
monoid R\ {0} is inside factorial.

Remark: 1In [4], the authors give the definition of an inside factorial monoid
by means of divisor homomorphisms, but their result [4, Proposition 4] allows
us to use this simpler definition.

Proposition 2.1: Let R be a one-dimensional Noetherian inside factorial
domain with Cale basis Q. Any element of Q is a primary element and there
s a bijective map
{ Q — Max(R)
q — Ry

PROOF: Let ¢ € Q and show that Rgq is a primary ideal. Let 2,y € R\ {0}
be such that q|(zy)* = 2¥Fy* for some &k € N*. By [4, Lemma 2 (f)], there
exists some n € N* such that g|z*" or ¢|y*". This implies that \/Rq is a
maximal ideal in R and Rq is a primary ideal.

Let P € Max(R) and ¢,¢' € Q be two P-primary elements. R being
Noetherian, there exists some n € N* such that R¢" C P" C Rq', so that
q|q". Set ¢ = ¢'x, * € R. Since R is inside factorial, there exist some
k € N* and t; € N such that z* = u H qi where u € U(R). This gives

qi€Q
" = ug'* H ¢;* and g = ¢’ since Q is a Cale basis.
GEQ

Let P € Max(R) and = be a nonzero element of P. There exist some

n € N* and ¢; € N such that 2" = u H ¢ where u € U(R). Then Ra"™ =
GEQ
H qu"' with qui a Pi-primary ideal and ¢; # 0 for each P, containing x.

Gi€Q
Moreover we have P; # P; for ¢ # j. Since P contains x, one of the P; such

that t; # 0 is P so that ¢; is P-primary. So we get the bijection. 0O
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Remark: We recover here the structure of Cale bases gotten in [4, Theorem
2] with the additional new property that every element of the Cale basis is a
primary element.

For a one-dimensional Noetherian domain with torsion class group, the
notion of inside factorial domain is equivalent to a lot of special integral
domains with different divisibility properties we are going to recall now (see
[11], [3] and [1]).

Definition: Let R be an integral domain with integral closure R. We say
that

1. R — R is a root extension if for each x € R, there exists an n € N*
with ™ € R [3].

2. Ris an almost principal ideal domain (API-domain) if for any nonempty
subset {a;} C R\ {0}, there exists an n € N* with ({al'}) principal [3,
Definition 4.2].

3. Ris an AD-domain if for any nonempty subset {a;} C R\ {0}, there
exists an n € N* with ({a!'}) invertible [3, Definition 4.2].

4. R is an almost Bézout domain (AB-domain) if for a,b € R\ {0}, there
exists an n € N* such that (a”,b") is principal [3, Definition 4.1].

5. R is an almost Priifer domain (AP-domain) if for a,b € R\ {0}, there
exists an n € N* such that (a",b") is invertible [3, Definition 4.1].

6. Risan almost GCD-domain (AGCD-domain) if for a,b € R\ {0}, there
exists an n € N* such that «"R N b"R is principal [11].

7. A nonzero nonunit p € R is a prime block if for all a,b € R with
aR N pR # apR and bR N pR # bpR, there exist an n € N* and
d € R such that (a",0") C dR with (a"/d)R N pR = (a"/d)pR or
(b"/d)R N pR = (b"/d)pR. Then R is an almost unique factorization
domain (AUFD) if every nonzero nonunit of R is expressible as a prod-
uct of finitely many prime blocks [11, Definition 1.10].

8. R is an almost weakly factorial domain if some power of each nonzero
nonunit element of R is a product of primary elements [1].
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CALE BASES IN ALGEBRAIC ORDERS

We first give a result for one-dimensional Noetherian integral domains.

Proposition 2.2: Let R be a one-dimensional Noetherian inside factorial
domain with Cale basis ©@. Then R is an AGCD and an almost weakly
factorial domain.

PROOF: R is obviously an almost weakly factorial domain (see also [1,
Theorem 3.9]). Let a,b € R\ {0}. There exist some n € N* and s;,t; € N

such that " = u H @, bt = H q;* where u,v € U(R). For each i, set

GEQ 7i€Q
m; = sup(s;, t;), m; = inf(s;,t;) and ¢ = H ¢;"". Then Rec C Ra™ N Rb" so
GEQ
that ¢ = v 'a"d = v~V with o’ = H ¢ and b = H ¢ ", Now,
GEQ qi€Q
let z,y € R\ {0} be such that za™ = yb™. It follows that zu H qfi_m;’ =

¢:€Q
Y H qfi_m" where ¢; appears in the product in at most one side and uxb’ =
€9
vya'. Assume m; = s; # t;. Since quiim" is a P;-primary ideal and ¢; ¢ P,

M —S8;

for each j # i by Proposition 2.1, we get that ¢ = qfi_mi divides .

Repeating the process for each i such that ¢; > m/, we get that ¢’ | x and

za"™ € Re. Then Re = Ra™ N Rb™ and R is an AGCD. 0O

More precisely, for one-dimensional Noetherian integral domains with tor-
sion class group, we have the following.

Theorem 2.3: Let R be a one-dimensional Noetherian integral domain with
torsion class group and with integral closure R. The following conditions are
equivalent.

1. R < R is a root extension.
2. R is an API-domain.

3. R is an AD-domain.

4. R is an AB-domain.

5. R is an AP-domain.

6. R is an AGCD-domain.
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7. Ris an AUFD.
8. R is an inside factorial domain.

Moreover, if R is a finitely generated R-module and R is residually finite,
these conditions are equivalent to

9. Spec(R) — Spec(R) is bijective.

ProoOF: (1) & (4) & (5) by [3, Corollary 4.8] since R is a Priifer domain.

(1) & (8) by [4, Corollary 6].

(6) < (7) by [11, Proposition 2.1 and Theorem 2.12].

At last, implications (4) = (2) = (3) = (5) and (4) = (6) are obvious
since R is Noetherian.

(6) = (1) follows from [3, Theorem 3.1] and (1) = (9) is true in any case
by [3, Theorem 2.1].

Moreover, if R is a finitely generated R-module and R is residually finite,
we get (9) = (1). Indeed, it is enough to mimic the proof of [9, Proposition
3] since R — R is factored in finitely many root extensions. 0

Remark: 1In [5, page 178] and [3, page 297], the authors asked about non-
integrally closed AGCD domains of finite t-character or of characteristic 0.
The previous theorem gives examples of such domains.

3 Structure of Cale bases of algebraic orders

In this section, we consider algebraic orders where Theorem 2.3 reveals as
being useful. A generalization to residually finite one-dimensional Noetherian
integral domains R with finite class group and with integral closure R such
that R is a finitely generated R-module can be easily made. We use the
following notation.

Let R be an order with integral closure R and conductor f. Set Z(R) (resp.
Zi(R), Z;(R)) the monoid of all nonzero ideals of R (resp. the monoid of all
nonzero ideals of R comaximal to §, the monoid of all nonzero ideals of R

comaximal to f). In particular, Dg(f) = (Z;(R) N Spec(R)) U {0}. Let P(R)

(resp. Pj(R)) be the submonoid of all principal ideals belonging to Z(R)
(resp. to Zy(R)). Then C(R) = Z(R)/P(R) (resp. C(R) = Iy(R)/P;(R))

is the class group of R (resp. R [9, Proposition 2]) and C(R) — C(R) is
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surjective. Both of these groups are finite. Moreover, we have a monoid
isomorphism ¢ : Zy(R) — Zy(R) defined by ¢(J) = JR for all J € Zy(R) (see

8, §3]). In particular, any ideal of Z;(R), as any ideal of Z(R), is the product
of maximal ideals in a unique way since ¢(Dg(f)) = Dz(f). The image of

an ideal J of Z(R) (resp. Z;(R)) in C(R) (resp. C(R)) is denoted by [J].
The exponent of C(R) is denoted by e(R?) and s(R) is the order of the factor
group U(R)/U(R).

3.1 Building a Cale basis

Proposition 3.1: Let | be the conductor of an order R where the integral
closure is R.

1. Let P € Dg(f) \ {0} and a = o([P]). There exists an irreducible P-
primary element ¢ € P such that P* = Rq.

2. Let P € Vg(f) such that there exists a unique P" € Spec(R) lying over
P. There exists a P-primary element ¢ € P such that P™ = Rq for
some n € N* and such that P = Rq' with ¢ € R implies n < n'.
Such an element q is irreducible in R.

Proor:
(1) P* is a principal ideal. Let ¢ € R be such that P* = Rq and suppose
there exist 2,y € R such that ¢ = xy so that P* = (Rx)(Ry). Using the
monoid isomorphism ¢, we get that Rz = P? and Ry = P with a = 3+ 7.
But the definition of v implies that = or y is a unit and ¢ is an irreducible
element, obviously P-primary.
(2) Set o = o([P']). There exists p' € P’ such that P'® = Rp'.

Let Q € Dg(f). Then Rg — Rg is an isomorphism, so that p’/1 € Ry.

Let P # Q € Vg(f). Then p'/1 € U(Rg). As [U(Rg)/U(Rg)| is finite,
there exists ng € N* such that (p'/1)"? € Ry.

Lastly, Rp — Rp is a root extension in view of Theorem 2.3 (9). It
follows that there exists np € N* such that (p'/1)"" € Rp.

Vr(f) being finite, there exists a least n € N* such that p € RN P’ = P.
In case there exists u € U(R) such that P™* = Rp™, with m < n and
up™ € RN P’ = P, we pick ¢ € P such that P’® = Rq, where 3 is the least
k € N* such that P* = Rq’ with ¢’ € R. Then ¢ is obviously a P-primary
element.
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_ Let z,y € R be such that ¢ = zy, which gives P"® = (Rz)(Ry) so that
Rz = P and Ry = P with 3 =~ + §. But the definition of 3 implies that

zoryisinU(R)N R =U(R) and ¢ is an irreducible element in R. 0
Remark: If we assume that Spec(R) — Spec(R) is bijective in Proposition
3.1, R — R is a root extension in view of Theorem 2.3 (1). Then, there
exists a least n € N* such that p € RN P' = P.

Theorem 3.2: Let R be an order with conductor § and integral closure R.

For each P € Dg(f) \ {0}, let o = o([P]). Choose qp € P such that
Pa:RqP. Set O, :{qP ’ PEDR(f)\{O}} o

For each P € Vg(f) such that there exists a unique P' € Spec(R) lying
over P, choose qp € P such that qp generates a least power of P'. Set
Qs = {qp | P € Vg(f), there exists a unique P’ € Spec(R) lying over P}.

To end, set Q@ = Q1 U Qg and let J be the intersection of all P € Vg(f)
such that there exists more than one ideal in Spec(R) lying over P.

For each P; € Vg(f) such that there exists a unique P] € Spec(R) lying
over P; let n; be the least n € N* such that P/™ is a principal ideal generated

by an element of R. Lastly, set m =lem(e(R),n;) and N = ms(R). Then

1. Up to units of R, =" is a product of elements of Q in a unique way,
for each x € Copg(J).

In particular, Copg(J) is an inside factorial monoid with Cale basis Q.

2. In particular, Q is a Cale basis for R when Spec(R) — Spec(R) is
bijective.

PROOF: e Since Vg(f) is a finite set, there are finitely many P, € Vg(f)
such that there exists a unique P/ € Spec(R) lying over P;.
Set n; = inf{n € N* | P/" is a principal ideal generated by an element of R}.
We can set m = lem(e(R), n;) so that m = e(R)e’ = n;n; and e(R) = a,a,
where «; = o([P)]) for each i such that P; € Dg(f) \ {0}.

Let z € Copg(J). Then Rx = [[ P/, a; € N*, P! € Max(R). Set
P, = RN P! and ¢; = qp, for each i.
Then we have Rz™ = H P H P

PeVR(f) P;eDr(H\{0}
If P, € Vg(f), we get that P/™® = p/mmi% — ﬁq?mg, with ¢; € Qs.
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If P, € Dg(f) \ {0}, we get that P/ = RP; so that P/™® = p/eR<a _

RP;0% = Rg!" ™, with ¢, € Q.
This gives finally Rz™ = R H g H ¢:“ % so that there ex-

PeVr(f) P;eDr(M\{0}
ists u € U(R) such that 2™ = u H ¢", b, € N. From v = v*® € RNU(R) =
q€Q
U(R), we deduce ™) = ¢ H ¢ Set N = ms(R) and t, = s(R)b, for
qeQ
each ¢ € Q. Then 2V = v H q'.
q€Q

e Let us show that 2V has a unique factorization into elements of Q. Let

v,v" € U(R), t4,t, € N be such that N = H g =1 H g's. This implies
qeQ q€eQ

H Rq's = H eq; in R, with finitely many nonzero t, and t,- Taking into
qeQ qeQ
account the uniqueness of the primary decomposition of Rz in R, we first
get Rq's = Rq's, so that t, = ti, for each ¢ € Q, and then v = v'.

It follows that Q is a Cale basis for Copy(.J), which is an inside factorial
monoid. Part (2) is then a special case of the general case. 0O

Remark: (1) If there exists a maximal ideal P in R with more than one
maximal ideal in R lying over P, then Copg(J) is not the largest inside
factorial monoid contained in R where the elements of the Cale basis are
primary.

Indeed, let ¢ be a P-primary element. The monoid generated by Copp(J)
and ¢ is still inside factorial.

(2) Nevertheless, under the previous assumption, we can ask if there exists
in R a largest inside factorial monoid of the form Copy(K) where K is an
ideal of R and such that the elements of the Cale basis of Copp(K) are
irreducible and primary.

Proposition 3.3: Under notation of Theorem 3.2, J is the greatest ideal
K of R such that Copg(K) is an inside factorial monoid and such that
the elements of the Cale basis of Copr(K) are primary. Moreover, we get
Copgr(K) C Copg(J) for any such an ideal K.

PROOF: Let K be an ideal of R such that Copg(K) is an inside factorial
monoid and such that the elements of the Cale basis Q' of Copg(K) are
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primary. Assume there exists a P-primary element ¢ € Q' with P € Vg(J).
Let Py,..., P, € Spec(R) be lying over P with n > 1, so that f C P. Let
p1 € R be a Py-primary element. We first show that there exist some r and
s € N* such that ¢"p] is a P-primary element of R.

For a maximal ideal M € Max(R), we denote by X' the localization of

an R-module X at M.

o If M € Dg(f), we get an isomorphism R’ ~ R.

Then p;/1 € R and (¢"'p;)/1 € R’ for any ',s' € N*. Moreover, we have
(¢"p)/1 € U(R).

o If M € Vi(f) and M # P, then p,/1 € U(R') and there exists s, € N*
such that (p$™)/1 € U(R') since U(R')JU(R') has a finite order. Because of
Vz(f) being finite too, there exists s € N* such that (¢"'pj)/1 € R for any
M € V() \ {P} and for any 7" € N*. Moreover, (¢"p})/1 € U(R).

o If M = P, we get that f is a P-primary ideal and the conductor of R'.
There exists r € N* such that P C §, so that ¢"/1 € . This implies
(p)/1€ P CR.

To conclude, there exist r,s € N* such that (¢"pj)/1 € Ry for any
M € Max(R), which gives ¢"pj € R and is a P-primary element in R by
the previous discussion. But P + K = R since ¢ € Copg(K). It follows
that ¢"p; € Copg(K) and there exist ¢,z € N* such that (¢"pj)" = ug® (*),

with uw € U(R). As ¢ is a P-primary element, we get in R the two factor-

n
izations Rq = HPf and Rp; = P?, with a;,a € N*. From (x), we get

i=1
Pl‘”t(H P = H P which gives :
i=1 i=1
- if i =1, then rta; + ast = a1z (1)
-if i # 1, then rta; = a;x (1)

so that © = rt by (i) and then ast = 0 by (1), a contradiction.
Hence, any P-primary element ¢ € Q' is such that P € Dg(J).
For any x € Copg(K), let k& € N* be such that ¥ = u H ¢%, so that
qeQ’
any maximal ideal P € Vg(x) is in Dg(J). This implies that € Copy(J).
We have just shown that Copz(K) C Copg(J). To end, any P € Dg(K)
contains some ¢ € Copz(K) C Copg(J) so that P € Dg(J).
Then Vz(J) C Vr(K) and K ¢ VK C VJ = J. 0

Recall that an integral domain is weakly factorial if each nonunit is a
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product of primary elements (D. D. Anderson and L. A. Mahaney [2]). In
particular, the class group of a one-dimensional weakly factorial Noetherian
domain is trivial [2, Theorem 12]. The following corollary generalizes the
quadratic case worked out by A. Faisant [7, Corollaire].

Corollary 3.4: Let R be a weakly factorial order with conductor §. Then
each x € Copg(f) is a product of prime elements of R in a unique way up to
units.

PrROOF: We get |C(R)| = 1. Let z € Copg(f). Then, Rx = H P

P;eDr()\{0}
where each P; is a principal ideal generated by a prime element p; € Q;

(notation of Theorem 3.2). It follows that z = u H P, u e U(R). 0O
pi€Q1

Corollary 3.5:

1. Let R be an inside factorial order with integral closure R. Let Q be the
Cale basis defined in Theorem 3.2. Any overring S of R contained in
R is inside factorial and Q is still a Cale basis for S.

2. Let Ry and Ry be two inside factorial orders with the same integral
closure. Then R = Ry N Ry is inside factorial. Moreover, there exists
a common Cale basis for Ry and Rs.

PROOF: (1) Since R < R is a root extension, so is S < R and S is inside
factorial by Theorem 2.3. Moreover, the spectral map Spec(R) — Spec(S)
is bijective. Then, the construction of Q in the proof of Theorem 3.2 shows
that Q is also a Cale basis for S.

We may also use [4, Proposition 5].

(2) Set R = RyNRy. Then R is an order with the same integral closure R
as Ry and Ry. Since R; — R and R, — R are root extensions, so is R — R
and R is inside factorial by Theorem 2.3. Part (1) gives that any Cale basis

for R is also a Cale basis for R; and R,.
O

Remark: The elements of the Cale basis Q gotten in Theorem 3.2 are irre-
ducible in R. The following examples show how they behave in the integral
closure R.

(1) Consider the quadratic order R = Z[y/—3] with conductor f = 2R, a
maximal ideal in R and R. Then R is weakly factorial and inside factorial
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[10, Corollary 2.2]. Let Q be the Cale basis of Theorem 3.2. Any element of
Q belonging to Copg(f) is irreducible in R as well as in R. By Proposition
3.6 of the next subsection, 2 is the f-primary element of Q irreducible in both
R and R. Then Q is a Cale basis for R and its elements are also irreducible
in R.

(2) Consider the quadratic order R = Z[2i]. Its conductor f = 2R is a
maximal ideal in R. But f = R(1 +4)? where R(1 + ) is a maximal ideal
in R. Then R is weakly factorial and inside factorial [10, Corollary 2.2].
Let Q be the Cale basis of Theorem 3.2. Any element of Q belonging to
Copg(f) is irreducible in R as well as in R. By Proposition 3.6 of the next
subsection, 2 is the f-primary element of Q, irreducible in R but not in R
since 2 = —i(1+4)2. Then Q is a Cale basis for R and its elements need not
be all irreducible in R.

3.2 The quadratic case

In this subsection we keep notation of Theorem 3.2 for N, Q; and Q,. For
a quadratic order, determination of elements of Qs and the number N is
simple. The characterization of quadratic inside factorial orders is given in
[4, Example 3].

Let d be a square-free integer and consider the quadratic number field
K = Q(+v/d). Tt is well-known that the ring of integers of K is Z[w], where
w=31+Vdifd=1 (mod4) and w = Vd if d = 2,3 (mod 4).
Moreover, Z[w] is a free Z-module with basis {1,w}. A quadratic order in K
is a subring R of Z[w] which is a free Z-module of rank 2 with basis {1, nw}
where n € N*. Then Z[w] is the integral closure R of R = Z[nw] and nZw]
is the conductor of R. We denote by N(x) the norm of an element x € Z[w].

Proposition 3.6: Let R = Znw] be a quadratic order with conductor § =
nZlw], n € N*. Then Qs is the set of ramified and inert primes dividing n.

In particular, Znw| — Z[w] is a root extension if and only if no decom-
posed prime divides n.

PrOOF: Let P € Max(R), with pZ = Z N P. There is only one maximal
ideal lying over P in R if p is ramified or inert. By [12, Proposition 12], we
have P = pZ + nwZ when p|n.
o If p is inert, then Rp € Max(R), so that p is irreducible in R and in R.
o If p is ramified, then Rp = P2, where P’ € Max(R).

- If P’ is not a principal ideal, then p is irreducible in R and in R.
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-Let P' = Ryp/, p’ € R. Then p = up™ with u € U(R). Indeed, p is still
irreducible in R. Deny and let z,y € R be nonunits such that p = zy. It
follows that N(p) = p* = N(2)N(y) which gives N(z) = N(y) = £p. But
z € R can be written £ = a + bnw, a,b € Z.

If d =2,3 (mod4), we get N(z) = a® — n?b*d, with p|n and p|N(z).
Then pla, p*la?, p?|n? so that p?|N(z), a contradiction.

Ifd=1 (mod4), we get d =1+ 4k, k € Z. It follows that N(z) =
a® 4+ abn — n?b*k. The same argument leads to a contradiction. O

Corollary 3.7: Let R = Z[nw| be a quadratic order, n € N*, with conductor
f = nZw]. The integer N is

1. N =2e(R)s(R) if e(R) is odd and if a ramified prime divides n
2. N =e(R)s(R) if e(R) is even or if no ramified prime divides n.

Remark: We can ask whether the integer N gotten in Theorem 3.2 or in
Corollary 3.7 is the least integer n such that 2™ is a product of elements of Q
in a unique way, for any nonzero nonunit = of an inside factorial order. We
can answer in the quadratic case by an example.

Ezample: Consider R = Z[3i]. Its integral closure is the PID R = Z[i] and
its conductor is f = 3R € Max(R) since 3 is inert.

As [U(R)/U(R)| = 2, we get |C(R)| = 2 by the class number formula
IC(R)| = [C(R)|JU(R)JU(R)|~*(1 + 3) (see [6, Chapter 9.6]), so that N = 4.
Moreover, 2 = —i(1+4i)? is ramified in R and P = RN(1+4)R = 2Z+3(1+i)Z
is a nonprincipal maximal ideal in R such that P? = 2R, with 2 and 3
irreducible in R. We get 2 € Q; and 3 € Qy. Let t = 3(1 +i) € R. The
only maximal ideals of R containing ¢ are f and P. Now t* = 3%(2i), 3 =
33-2(=1+1i) and t* = —3*- 22, Then t* is the least power which has, up
to units of R, a unique factorization into elements of Q. It follows that
N = e(R)s(R) is the least integer n such that z" is a product of elements of
@ in a unique way, for any nonzero nonunit z of R.
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