
ANNALES MATHÉMATIQUES BLAISE PASCAL

MOHAMED AKKOUCHI
A note on d’Alembert’s functional equation
Annales mathématiques Blaise Pascal, tome 8, no 1 (2001), p. 1-6
<http://www.numdam.org/item?id=AMBP_2001__8_1_1_0>

© Annales mathématiques Blaise Pascal, 2001, tous droits réservés.

L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http://
math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions générales
d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale
ou impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMBP_2001__8_1_1_0
http://math.univ-bpclermont.fr/ambp/
http://math.univ-bpclermont.fr/ambp/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A NOTE ON

D’ALEMBERT’S FUNCTIONAL EQUATION

Mohamed AKKOUCHI

Ann. Math. Blaise Pascal, Vol. 8, N° 1, 2001, pp 1-6

Departement de Mathematiques.
Faculte des Sciences-Semlalia.

Universite Cadi Ayyad.
Avenue du Prince My. Abdellah. B.P. 2390.
40.000, Marrakech. MAROC (MOROCCO).

RESUME : Dans cette note, nous montrons que toute fonction mesurable reelle bomée
verifiant l’équation fonctionnelle de D’Alembert sur IRn est nécessairement continue et
periodique. Nous montrons aussi que toute fonction presque-périodique a valeurs complexes
satisfaisant 1’equation fonctionnelle de D’Alembert sur IR" doit être reelle et £gale a la
partie reelle d’un caractère du groupe commutatif JR". Ainsi, nous retrouvons un résultat
bien connu concernant l’équation fonctionnelle de D’Alembert sur IRn (voir par exemple [2],
[4] et [14J).

ABSTRACT : In this note, we show that every measurable bounded real valued function
satisfying D’Alembert’s functional equation on IR" must be periodic. We show that every
complex valued solution of D’Alembert’s functional equation on 1Rn which is almost-periodic
must be real valued and given by the real part of a character of the locally compact abelian
group IRn. By this way, we recapture a well known result concerning D’Alembert’s functional
equation (see for example [2], [4] and (14~).

Mathematics Subject Classification (1991). 39B05 and 43A90.
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1. INTRODUCTION

1.1 D’Alembert’s functional equation was first introduced in j4~. It is given by

(1)
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This equation has been intensively studied and generalized. The classical case n = 1 and
some of its applications is discussed in detail in Aczèl [I], section 2.4 and in Aczèl and
Dhombres [2] Ch. 8. Many papers were concerned by generalizing (1) to general locally
compact abelian groups (see Ljubenova [13], O’Connor [14]) or to non abelian groups (see
Corovei [7], Gajda [8], Kannapan (Il~, Penney and Rukhin [16], Szekelyhidi [17]) or to other
contexts like Gelfand pairs (see Stetkaer [18] and [19], Akkouchi et al [3]), where relationships
with Spherical functions and Representation theory are investigated.

1.2 In this note, we work in IR". We use the notion of almost-periodicity to determine
the measurable real bounded solutions of (1). Our method is based on two fundamental
observations. The first one is that, if f is any complex valued function which is almost-
periodic and satisfying (1), then f must be real and given by f(x) = cos  x, ~ >, for all
x E IRn, where , > is the usual inner product of This is proved in the next section.
The second observation is that, if f is any real measurable and essentially bounded function
verifying (1), then f must be periodic, continuous and its modulus is bounded by one. This
is proved in the third section. Combining the two results, we determine the real bounded
solutions of (1) and recapture, by this way, a classical result concerning equation (1) (see
for example [2], [4] and [14]).

2.

2.1 Throughout this paper, IRn is the usual locally compact Abelian group. its Haar measure
will be denoted by dx or dx1...dxn. We set  x, y >:= x1y1 +...+xnyn, for all x, y E IRn. The
Banach space of (all complex) continuous and bounded fuctions on 1R" will be denoted by
Cb(IRn). We denote the Banach subspace of Cb(IRn) formed by the almost-periodic
functions on IRn (see for example [5], [6], [9] and [12]). We know that AP(IRn) is a closed
subalgbra of and that every f E AP(IRn) is uniformly continuous on IRn.

2.2 For every f E AP(IR"), we shall denote the mean of f by M( f ). We recall that M( f )
is the complex number given by

M(f) := lim 
1 2nTnT-T ... 

- x2, ..., xn) dx1dx2...dxn. (2)

For each element 03BE E Bf, we set (03BE) := M(f(.)e-i.,03BE>). The norm spectrum a( f ) is the
set of all elemets 03BE E IRn, verifying (03BE) ~ 0. It is well known that is countable and
that 03C3(f) = 0, if and only if f is identically zero on IRn.

2.3 A trigonometric polynomial is any function P defined on IR" by

m

P(x) = 03A3cjeix,03BEj>, dx E IRn, (3)
1



3

where c; e C, g; e for j = I, ..., m and m e IN 1 (0).

Using Lemma 5. 18 in (12] , p. 165, one can deduce the following important result.

2.4 Lemma : Given a finite number of points /i , ..., (N e R~ and a number e e]0, 1[, there
exists a trigonometric polynomial P having the following properties :
(I) P(z) > 0, for all z e lR~,
(ii) M(P) = I, and

(I) fi((;) > I - e, for j = I, ..., N.

With all these considerations, we are ready to state our first main result.

2.5 Theorem : Let f e AP(IRn) 1 (0) be a solution of (1). Then there exists a unique
g e IRn such that f(z) = cos  z, g > for all z e IRn. In particular f is real valued.

Proof : Suppose that f e 1 (0) is satisfying (I), and take an element g e a( f).
By Lemma 2.4, there exists a trigonometric polynomial F (depending on f and /) such that
F(z) > 0 for all z e R~, M(F) = I, and F(/) > ). We introduce the function G defined
for all z e by

G(x) := M(f(x - .)F(.)) =1 2nTn /_T °° ° /_T f(x - y)F(y) dy. (4)

Then, a short computation will show that G is also a trigonometric polynomial and that is
given in the form

" £ (~)F(~)eix,~>, ~x E IRn, (5)

where 0396 is a finite subset of IRn containing (. An easy computation will show that f and G
are verifying the following functional equation :

G(" + Y) + - Y) " 2G(x)f(y), ~x,y E (6)

This is on one hand, on the other hand, it is easy to obtain by a computation that

G(z + y) + G(z - y) = 2 £ cos  y, q >, Vz e IRn. (°i°)

From (6) and (7), we get in particular that

/(f)F(/)[ f(y) - cos  y, ( >] = 0, Vy e (8)

Since j(()F(() # 0, then f( y) = cos  y, ( > for all y e Thus, our theorem is proved. fl



4

3.

3.1 In this section, we investigate qualitative properties of the measurable bounded solutions
of (1). More precisely, we shall prove the following theorem :

3.2 Theorem : Let / B {0} &e a &e a real valued function satisfying (1). Then
(i) / Cb(IRn) U C~(IRn), moreover f is periodic, and (iii) supx~IRn |f(x)|  1.

Proof : (i) One may find a C~-function h with compact support verifying  >:=

IRn f(x)h(x)dx ~ 0. Multiplying both members of (1) bt h and integrating, we obtain

~2~~’""~ ’"

where, * designates the convolution and := ~(2014a:). The equality (9) proves that
/ Cb(IRn) and that / is a C~-function.

(iii) We suppose that |f(x)|  C for all x In IR" for some positive constant C > 0. By using
(1), we have .

which implies that

~ lim sup C2-k = 1, ~x ~ IRn.

(ii) It remains to show that / is periodic. We begin by pointing out (since / is not identicaly
zero) that /(0) = 1 and that / is even.

a) We may suppose that / is not identically equal to one on IRn. In this case, / has at
least a zero. Indeed, (following an idea of O’Connor in [14j, see also [2]) we consider an
element ~/o such that  1~ and we choose a natural number m 6 IN such that
/(2/o)  cos(03C0 2m)  1 === /(0). Since / is continuous on the connected metric space !R/B
then there exists at least one element 2:0 in IRn such that f(z0) = cos(03C0 2m). From (1), we
deduce that 

f(2z0) = 2f(z0)2 - 1 = cos(03C0 2m-1). (10)

By the same manner, we have

/(2~o) = (11)

and so on. At the end, we obtain

f(2m z0) = cos(03C0) = -1. .. (12)
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Since f 0) = 1, and since f is continuous on the connected metric space IRn, then there exists
at least one to E IR" such that I(to) = 0.

b) We set g(x) := f(to - x) for all x in By using equation (1), we get

29O)9OJ) = f(2t0 - x - y) + f(y - x), ~x,y ~ IRn . (13)

Replacing a by to - x and y by to in the equation (1), we get f (2to - x) _ -f (x) for every
x E IR". Therefore, we have f(x - 2to) = **/(~) for all element a in In particular, we
deduce that is periodic and that 2to is a period for it, and that f ((2k + 1]t0) = 0, for
every integer k. Now, equation (13) becomes

’ (

from which we deduce that

f(t + s) - f(t) = 2f(to + 2 ) f (to - t - 2 ), ~t, s E mn. (15)

We take s = 4to in (15), then we get .

I(t + 4to) = jet), Vt E IRn. (16)

The last equality shows that f is periodic. []

We conclude from Theorems 2.5 and 3.2 that we have given a new proof to the following
classical result (see (2~, j4J, ~14~, ...) by a method consisting of utilizing the concept of almost-
periodicity due to H. Bohr (see (5~ and (6~). More precisely, we have

3.3 Theorem : Let f E L°°(IR") ~ ~0~ be a real valued function satisfying D’Alembert ’s
functional equation. Then there exists a unique f E 1R" such that f(x) = cos  x, ~ > for
all x E IRn.
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