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ON THE THICKNESS OF TOPOLOGICAL SPACES

by Bernard BRUNET

Ann. Math. Blaise Pascal, Vol. 2, N° 2, 1995, pp.25-33

We recall there are three classical definitions of the topological dimension : the

small inductive dimension, denoted by ind, the large inductive dimension, denoted by
Ind and the covering dimension, denoted by dim. (For the definitions, one can see (2).)

In this paper, coming back on a idea of J.P. REVEILLES (7), we give a nonstandard
definition of the topological dimension - the thickness, denoted by ep (for épaisseur),
- and we prove this definition coincides with the classical definitions in the class of

separable metric spaces.

A.M.S. Mathematic Subject Classification (1991) : Primary 54 J 05

Secondary 54 F 45.
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1 : Preliminary.
In the sequel, we consider a topological space X and an enlargment ~ (see, for

example, (4)) containing X.

1) Definition 1.1 :
Let us consider a base B of X, a point a of *X and put Ba = {B E B : a *J3}.
(In the special case where a = * x, Ba = { B E B : x E B}.)

Then, we call halo in base B of a, the set hB(a) = n *B.
B6B.

Remark :

If B’ is the base consisting of finite intersections of elements of B, we have, for

every point a of *X, = h B(a) , whence the convention : we will call base of
X only these bases of X satured by finite intersections.

Proposition 1.2 : :
For every base B of X and for every point a of *X, there exists an element SL of
*Ba such that Q C hB(a).
Indeed, the relation R ~ Ba x Ba defined by «ARB ~ A C B » is concurrent on

Ba. .

Corollary 1.3 : :

For every base B of X, every subset A of X and every a E *X, if a E *A (with A
the closure of A in the space X), then hB(a) n *A ~ 
Note that, in the special case where a = *x, x E A if and only if n *A ~ 0.

2) Definition 1.4 :
Let us considerer a base B of X and a and b two elements of *X.

Since a belongs to h8(b) if and only if is contained in the relation

 defined by « a  b 4=====~ a E hB(b) » is a preorder on *X, called the preorder
associated to B.
Note this relation is not necessarily symmetric.
If we have a  b and b  a, we will say that a and b are equivalent modulo B and
we will write a = b.

Moreover, we will write a  b if and only if a  b but not b  a.
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Proposition 1.5 : :
For every base B of X and for every element a of *X, there exists an element b of
*X such that b  a and b be minimal for the preorder associated to ~3.

Indeed, the set I = {b E *X : b  a} is inductive.

Proposition 1.6 : :
Let B be a base of X and a an element of *X. If there exists B E B such that

a E *FrB (with FrB the boundary of B in the space X ), then a is not minimal

for the preorder associated to B.

Since a E *FrB, it follows from 1.3 that 0 and hB(a) n *(X B B) # 
There exists then an element b of *B such that b  a. If a == b, we would have

hB(a) = hB(b) C *B and consequently, *B n which is impossible. It

follows that we have b  a, so that a is not minimal.

2 : : Thickness of a topological space X.

1) Definition 2.1 :
Let x E X and B be a base of X. . We will call chain of length p (p E IN) of hB(*x)

every finite subset ~ap, ... , a~ } of h~(*x) such that ap  ...  ai  *x and we will

say that :

i) the thickness in x of B is less than n (and we will write ep (x, B)  n) if and only

if , for every chain ~ap, ... of hg{*x), we have p  n.

ii) the thickness in x of B is equal to n if and only if ep (x, ~)  n and ep (x, ~i) > n-1.
Note our definition of thickness is the same as the « intended » definition in (7),
provided the notion of « consecutive halos » is corrected therein p. 707.

2) Definition 2.2 :
Let B be a base of X. We will call thickness of B, the element of D = {n E ZZ :
n > - 1} U {+~}, denoted by ep B, defined by ep B = sup{ep {x, a) : x EX}.

Remark :

Note that one can give another definition of the thickness of a base B, using the
thickness of B in all the points of *X , standard or not. This thickness, denoted Ep B

(= sup{ ep (a, B) : a E *X}), is such of course that ep B  Ep B and it might
happen that ep B  Ep B. However, one can prove that for the « complemented
» bases B, one has ep B = Ep B and that, for every base B, there exists a «

complemented » base C such that ep C  ep B, so that, if necessary, one only
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considers « complemented bases of X. All these results will be proved in another
paper of the author.

We now discuss some examples.
Proposition 2.3 : :

Let us suppose X non empty and let B be a base of X. Then ep B = 0 if and only
if B consists of open-closed subsets of X. .

i) Suppose ep B = 0. Let us consider an element B of B and x an element of B. Then,
we have h,~( *x) n *B ~ ~. Let a E *B such that a  *x. Since ep fi = 0, we have
a = *x and therefore x E B, so that B is closed.

ii) Suppose all the elements of B are open-closed. Let x E X and a  *x. Let us prove
that we have *x  a. Let B E B such that a E *B. Then, we have h8(a) n *J9 ~ 0
and therefore *B ~ 0, so that x E B. Since B is closed, we have x E B
and therefore *x  a.

Proposition 2.4 :

i) For every totally ordered space X (totally ordered set X with ~ts order topology~, if
we denote by So the base o f *X consisting of all open intervals, we have ep Bo  1.

ii) In the special case where X = IR, we have ep Bo == 1.

Proof :

i ) For every x E X and every a E we have = or

= ]*x, ~ [ or hBo(a) = ] ~, *x[.
ii) If X = IR, since Bo is not a base consisting of open-closed subsets of IR, we have 

.

ep Bo > 0 and therefore ep Bo = 1.

Proposition 2.5 : :
Let X a topological space, B a base of X and A a subset of X. If we denote by C
the trace of a on X, , we have ep C  ep B.

Indeed, for every couple ( a, b) x * A, the relations « a  b modulo C » and

« a  b modulo B » are equivalent.

Proposition 2.6 : :
Let X and Y be two topological spaces. For every base B of X and every base C of

Y, we have ep (B x C) ~ ep B + ep C.
Indeed, for every (a, b) E *X x *Y, we have = x hB(b).
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3) Definition 2.7 :
Let X a topological space. We will call thickness o f X the element of D, denoted

by ep X, defined by ep X = in f {ep B : B E l3(X )}, where is the set of all

bases of X.

It follows from this definition and the previous results that :

2.8 : 1 ) If X is non empty, ep X = 0 if and only if X has a base consisting of open-closed
susbsets.

2) For every totally ordered space X, we have ep X  1.

In particular, since IR is connected, we have ep IR = 1.

3) For every topological space X and every subset A of X , we have ep A  ep X.

4) For every topological spaces X and Y, we have ep (X x Y)  ep X + ep Y

2.9 : Remarks.

1) It follows from 2.8.2) and 2.8.4) that, for every n > 1, ep n. (In the sequel,
we will prove that ep IRn = n).

2) In contrast to the classical definitions, there is no need for any special hypothesis
for 2.8.3) and 2.8.4) to be true : recall, for example, there exists (3) two compact
spaces X and Y such that ind(X x Y) > indX + indY.

3 : : Comparison between thickness and classical dimensions.

1 ) Theorem 3.1 : :
For every topological space X, we have :

a) epX = 0 if and only if indX = 0 , ,

b) indX  epX. .
Proof :

a) is immediate since these two assertions are equivalents to « there exists a base of

X consisting of open-closed subsets ».

b) The theorem is obvious if ep X = +00, so that we can suppose ep X  +00.

Let us prove the theorem by induction on n = ep X.

It follows from a) that the statment holds for n = 0.

Suppose it holds for every space Y such that ep Y  ~ 2014 1 and let us prove then

that indX  n, i.e., that, for every point x of X and every neighbourhood V of x,
there exists an open subset 0 such that x E 0 C V and ind(FrO)  n - 1.
Since ep X = n, there exists a base B of X such that ep B = n. Let us prove

then that, for every B E B, we have ep (FrB) ~ ~ 2014 1, which by the induction
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hypothesis, implies indX  n.

Let B E S. Put F = FrB and call C the trace of B on F.

Let us prove that ep C  n - 1. Let x E F and {ap,... a1} be a chain of hc(*x).
Since hC(*x) = n *F, it follows from 1.6 that ap is not minimal for the

preorder associated to B. Consequently, there exists an element ap+i of *X such
that f ap+1, ap, ... , a1} is a chain of hg(*x). Since ep B = n, we have necessarily
p  n - 1, which implies ep (x,C)  n - 1 and therefore ep C  n - 1. Since

e p F  e p C, we conclude e p F  ~ 2014 1.

Corollary 3.2 : :
For every n > 1, we have ep IRn = n.

Indeed, we know that ind lR" = n (see for example (2)) and ep 1R"  n.

Corollary 3.3 : :
For every totally ordered space X, we have indX = epX  1

This assertion follows from 3.1 and 2.8.2).

Remark :

In another paper (1), we have proved that, for every totally ordered space X, indX =
IndX = dimX :5 1. .

2) An example of a space X such that indX = IndX  ep X. .

In (3), V.V. FILIPPOV has proved there exists two compact (non metric) spaces J~i
and X2 such that indXI = IndX1 =1, indX2 = IndX2 = 2 and ind(X1 x X 2 ) =

Ind(X1 x X2) > 4. It follows from this example that X1 or X2 is such that

indX = = IndXi  ep X=. Indeed, if indX1 = IndX1 = ep Xl and indX 2 =

I ndX 2 = ep X ~, we would have, from 2.8.4), ep (Xl x X2 )  3, which is impossible
since ep (X1 x X2) ~ ind(X1 x X2) and ind(X1 x X2) > 4.
Note the space we are looking for is the space X2. Indeed, it is not the space

J~i because Xl is by definition the quotient of a product of a compact totally
disconnected space Z* by a long line L. Since ep Z* = indZ* = 0 and ep L =

indL = 1 (use 3.3), we have ep (Z* x L) = 1 and therefore ep J~i = indX1 =1.
Note the description of the space X2 is quite complicated so that it will not be

reproduced here.
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3) An example of space X such that ep X = indX  IndX = dimX.

In (8), P. ROY has proved there exists a completely metric space X such that
indX = 0 and IndX = dimX = 1. It follows from 3.1 a) that, for this space,
ep X = indX = 0 and ep X  IndX = dimX.

4) An example of space X such that dimX  ep X. .

In (5), O.V. LOKUCIEVSKII has proved there exists a compact (non metric) space
such that dimX = 1  2 = indX = IndX. For this space, we have dimX 

indX  ep X.

4 : : The case of metric spaces.

Theorem 4.1 : :

For every metric space X, we have indX  ep X  dimX = IndX.

Since, for every topological space Y, we have indY  ep Y and, for every metric

space Z, we have dimZ = IndZ (see for example (2)), it suffices to prove that, for

every metric space X, we have ep X  dimX. .

Notations : Let F = (Fi)i~I be an indexed family of subsets of X. Let us put, for

every element x of X, ord (x, F) _ E I : x ~ Fi}| - 1 (where |A| denotes the
cardinal of A) and ord F = sup{ ord (x, F) : x E X } (ord 7 is called the order of

7) .

Lemma 4.1.1 : :

For every base B of X, let F = (FrB)B~B, then ep B  ord F + 1.

Let x be an element of X and {ap, ..., be a chain of hg(*x). There exists then p
distinct elements of B, B1, ..., Bp such that, for every i E ~ 1, ..., p}, a~ E *B~ if and

only if j ~ i and such that x E FrBi. Consequently, by the definition of ord (x, F),
we have p  ord (x, ,~’) + 1, which implies ep (x, f3)  ord (x, ~’) + 1. It follows
then, from the definitions of ep B and ord F, that we have ep B  ord F + 1.

4.1.2. : Proof of 4.1 :

This assertion is obvious if dimX = +00.

If dimX = n, there exists (see, for example, (2) , 4.2.2.)) a o-locally finite base B
of X such that, if we put F = (FrB)B~B, we have ord F ~ n -1. It follows then,
from 4.1.1., that, for this base B, we have ep B  n, which implies that ep X  n.

4.2 : Let us note that ROY’s space is a metric space such that

indX = ep X = 0  dimX = IndX = 1. .
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4.3 : Coincidence theorem for separable metric spaces.
For every separable metric space X, we have ep X = indX = IndX = dimX.
This assertion is an immediate consequence of 4.1 and the well-knowed theorem :

« For every separable metric space X, we have indX = IndX = dimX ».

4.4. : One can give a direct proof of 4.3. Indeed, let X be a separable metric space
such

that indX = n. Let us denote by N2n+1n NOBELING’s space (6), viz, the subspace
of IR2n+1 consisting of all points which have at most n rational coordinates, and,

by C2n+1n the trace on of the base of JR2n+l consisting of all par-

allelepipeds with rational coordinates. One can prove that ep which

implies, since indN2n+1n = n (see, for example, (2) 1.8.5), that ep Nn"+1 = n.
Since indX = n and is universal for the class of separable metric spaces
whose dimension is not larger than n (see also (2), 1.11.5), X is homeomorphic
to a subspace of which implies, from 2.8.3), that ep X  ep and

therefore that ep X = n.

4.5 : An example of a non separable metric space X such that ep X = indX = IndX
= dimX.

In (9), E.K. VAN DOUWEN proved there exists a non separable metric space X
such that indX = IndX = dimX = 1. .

This space is therefore such that ep X = indX = IndX = dimX. .

4.6 : Question : Does there exist a metric space X such that indX  ep X ?

Aknowledgments : I express my deep gratitude to Professor Labib HADDAD for
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