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Bipartite distance-regular graphs and taut
pairs of pseudo primitive idempotents

Mark S. MacLean & Štefko Miklavič

Abstract Let Γ denote a bipartite distance-regular graph with diameter D > 4, valency
k > 3, and intersection numbers ci, bi (0 6 i 6 D). By a pseudo cosine sequence of Γ we mean
a sequence of complex scalars σ0, σ1, . . . , σD such that σ0 = 1 and ciσi−1 + biσi+1 = kσ1σi

for 1 6 i 6 D − 1. By an associated pseudo primitive idempotent of Γ, we mean a nonzero
scalar multiple of the matrix

∑D

i=0 σiAi, where A0, A1, . . . , AD are the distance matrices of
Γ. Given pseudo primitive idempotents E,F of Γ, we define the pair E,F to be taut whenever
the entry-wise product E ◦ F is not a scalar multiple of a pseudo primitive idempotent, but is
a linear combination of two pseudo primitive idempotents of Γ. In this paper, we determine all
the taut pairs of pseudo primitive idempotents of Γ.

1. Introduction
Let Γ denote a distance-regular graph with diameter D > 4 and Bose–Mesner al-
gebra M . In [14], Terwilliger and Weng introduced the notion of a pseudo primitive
idempotent. Given any complex number θ, a nonzero matrix E ∈ M is said to be a
pseudo primitive idempotent of Γ for θ whenever (A−θI)E is a scalar multiple of AD,
where A is the adjacency matrix and AD is the Dth distance matrix of Γ. We call θ
the associated pseudo eigenvalue of E. By the associated pseudo cosine sequence, we
mean a sequence of scalars σ0, σ1, . . . , σD such that σ0 = 1 and
(1) ciσi−1 + aiσi + biσi+1 = θσi (0 6 i 6 D − 1),
where σ−1 is indeterminate.

There have been a number of papers concerning pseudo primitive idempotents and
their cosine sequences [5, 6, 7, 12, 14]. Given a pair of pseudo primitive idempotents
E,F , in [12], Pascasio and Terwilliger defined the pair to be tight whenever the entry-
wise product E ◦ F is a scalar multiple of a single pseudo primitive idempotent. In
their paper they determine all the tight pairs of pseudo primitive idempotents whose
pseudo eigenvalues are real.

It is natural to consider the case where the entry-wise product E ◦F is not a scalar
multiple of a pseudo primitive idempotent, but instead is a linear combination of two
pseudo primitive idempotents. We define such a pair E,F to be taut. To make this
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problem manageable, we restrict our attention to bipartite distance-regular graphs.
In [11], MacLean and Terwilliger posed the following two problems.

Problem 1.1. ([11, Problem 17.8]) Let Γ denote a bipartite distance-regular graph
with diameter D > 4. Find all the taut pairs of pseudo primitive idempotents of Γ.

Problem 1.2. ([11, Conjecture 17.9]) Let Γ denote a bipartite distance-regular graph
with diameter D > 4 and valency k > 3, and fix vertex x. Let T denote the Terwilliger
algebra of Γ with respect to x. Assume that up to isomorphism there exist exactly
two irreducible T -modules with endpoint 2, and they are both thin. Let E,F denote
pseudo primitive idempotents associated with these modules. We conjecture the pair
E,F is taut.

For a bipartite distance-regular graph with valency k, a pseudo eigenvalue θ is
said to be trivial whenever θ = ±k. A pseudo primitive idempotent or pseudo co-
sine sequence is said to be trivial whenever its associated pseudo eigenvalue is trivial.
With this definition, we note Lang has already made some progress in attacking Prob-
lems 1.1, 1.2. Regarding Problem 1.1, see Theorem 5.4 for his main result. Regarding
Problem 1.2, Lang proved in [7] that if Γ is Q-polynomial with D > 5 and exactly
two non-isomorphic irreducible T -modules with endpoint 2, then the pair of pseudo
primitive idempotents associated with the local eigenvalues of these modules do in-
deed form a taut pair. Lang also provides a feasible intersection array with diameter
4 for which the conjecture in Problem 1.2 is not satisfied. However, at this time no
distance-regular graph is known to exist with this intersection array.

In this paper we solve Problem 1.1. Our results are organized as follows. Let Γ
denote a bipartite distance-regular graph with diameter D > 4 and valency k > 3,
and define a parameter ∆2 in terms of the intersection numbers by

∆2 = (k − 2)(c3 − 1)− (c2 − 1)p2
22.

Let E,F denote nontrivial pseudo primitive idempotents with associated pseudo
eigenvalues θ, θ′, respectively. We determine all taut pairs E,F in the case D = 4
in Theorem 4.9. Now assume D > 5. In Section 5, we determine all taut pairs E,F
for which θ = ±θ′. Now assume E,F is a taut pair for which θ 6= ±θ′. If one of θ, θ′ is
zero, this taut pair is described in Lemma 7.3. Now assume θ, θ′ are both nonzero. If
∆2 = 0, this taut pair is described in Section 8. If ∆2 6= 0, this taut pair is described
in Section 9.

We are very interested in seeing a solution to Problem 1.2 in the future, since we
are interested in classifying the bipartite distance-regular graphs with exactly two
irreducible T -modules of endpoint 2, both of which are thin.

2. Preliminaries
In this section we review some definitions and basic results concerning distance-regular
graphs. See the book of Brouwer, Cohen and Neumaier [2] for more background in-
formation.

Let C denote the complex number field and let X denote a nonempty finite set. Let
MatX(C) denote the C-algebra consisting of all matrices whose rows and columns are
indexed by X and whose entries are in C. Let Γ = (X,R) denote a finite, undirected,
connected graph, without loops or multiple edges, with vertex set X and edge set R.
Let ∂ denote the path-length distance function for Γ, and setD := max{∂(x, y) | x, y ∈
X}. We call D the diameter of Γ. For a vertex x ∈ X and an integer i let Γi(x) denote
the set of vertices at distance i from x. We abbreviate Γ(x) := Γ1(x). For an integer
k > 0 we say Γ is regular with valency k whenever |Γ(x)| = k for all x ∈ X. We say Γ
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is distance-regular whenever for all integers h, i, j (0 6 h, i, j 6 D) and for all vertices
x, y ∈ X with ∂(x, y) = h, the number

phij := |Γi(x) ∩ Γj(y)|

is independent of x and y. The phij are called the intersection numbers of Γ.
For the rest of this paper we assume Γ is distance-regular with diameter D > 4

and valency k > 3. Note that phij = phji for 0 6 h, i, j 6 D. For convenience set
ci := pi1,i−1 (1 6 i 6 D), ai := pi1i (0 6 i 6 D), bi := pi1,i+1 (0 6 i 6 D − 1),
ki := p0

ii (0 6 i 6 D), and c0 = bD = 0. By the triangle inequality the following hold
for 0 6 h, i, j 6 D:

(i) phij = 0 if one of h, i, j is greater than the sum of the other two;
(ii) phij 6= 0 if one of h, i, j equals the sum of the other two.

In particular ci 6= 0 for 1 6 i 6 D and bi 6= 0 for 0 6 i 6 D− 1. We observe that Γ is
regular with valency k = k1 = b0 and that

(2) ci + ai + bi = k (0 6 i 6 D).

Note that ki = |Γi(x)| for x ∈ X and 0 6 i 6 D. By [2, p. 127],

ki = b0b1 · · · bi−1

c1c2 · · · ci
(0 6 i 6 D).

We recall the Bose–Mesner algebra of Γ. For 0 6 i 6 D let Ai denote the matrix
in MatX(C) with (x, y)-entry

(Ai)xy =
{

1 if ∂(x, y) = i,
0 if ∂(x, y) 6= i

(x, y ∈ X).

We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the
adjacency matrix of Γ. We observe

(ai) A0 = I;
(aii)

∑D
i=0 Ai = J ;

(aiii) Ai = Ai (0 6 i 6 D);
(aiv) Ati = Ai (0 6 i 6 D);
(av) AiAj =

∑D
h=0 p

h
ijAh (0 6 i, j 6 D),

where I (resp. J) denotes the identity matrix (resp. all 1’s matrix) in MatX(C).
Using these facts we find A0, A1, . . . , AD is a basis for a commutative subalgebra M
of MatX(C). We call M the Bose–Mesner algebra of Γ. It turns out that A generates
M [1, p. 190]. Since each entry in the distance matrices is either 0 or 1, we have

Ai ◦Aj = δijAi (0 6 i, j 6 D),

where ◦ denotes the entry-wise matrix product. It follows that M is closed under ◦.
By [2, p. 45], M has a second basis E0, E1, . . . , ED such that
(ei) E0 = |X|−1J ;
(eii)

∑D
i=0 Ei = I;

(eiii) Ei = Ei (0 6 i 6 D);
(eiv) Eti = Ei (0 6 i 6 D);
(ev) EiEj = δijEi (0 6 i, j 6 D).

We call E0, E1, . . . , ED the primitive idempotents of Γ. For 0 6 i 6 D define scalars
θi by

A =
D∑
i=0

θiEi.
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Then AEi = EiA = θiEi for 0 6 i 6 D, and θ0 = k. The scalars θ0, θ1, . . . , θD are
real and distinct, since A generatesM [1, p. 197]. The scalars θ0, θ1, . . . , θD are known
as the eigenvalues of Γ. We say that primitive idempotent Ei is associated with the
eigenvalue θi (0 6 i 6 D). For each integer i (0 6 i 6 D), let mi denote the rank of
Ei; we refer to mi as the multiplicity of Ei.

Let E denote a primitive idempotent of Γ, and let m denote the multiplicity of E.
By [1, §II.3], there exist real scalars σ0, σ1, . . . , σD such that σ0 = 1 and

E = |X|−1m

D∑
i=0

σiAi.

The sequence σ0, σ1, . . . , σD is called the cosine sequence of Γ associated with E. We
abbreviate σ := σ1. By [2, Proposition 4.1.1], the following are equivalent:

(i) θ is an eigenvalue of Γ and σ0, σ1, . . . , σD is the associated cosine sequence;
(ii) σ0 = 1 and ciσi−1 + aiσi + biσi+1 = θσi (0 6 i 6 D),

where σ−1 and σD+1 are indeterminates.
Recall Γ is bipartite whenever ai = 0 for 0 6 i 6 D. Setting ai = 0 in (2) we find

(3) bi + ci = k (0 6 i 6 D).

Assume Γ is bipartite with diameter D > 3. By [2, Lemma 4.1.7], we have

(4) pi2i = bi(ci+1 − 1) + ci(bi−1 − 1)
c2

(1 6 i 6 D − 1).

Definition 2.1. Let Γ denote a bipartite distance-regular graph with diameter D > 4
and valency k > 3. We define scalars ∆i by

(5) ∆i = (bi−1 − 1)(ci+1 − 1)− (c2 − 1)pi2i (2 6 i 6 D − 1).

By [3, Theorem 12], we have ∆i > 0 for 2 6 i 6 D − 1. We note that ∆i = 0 for
2 6 i 6 D − 2 precisely when Γ is almost 2-homogeneous in the sense of Curtin [4].

3. Pseudo primitive idempotents and pseudo cosine sequences
Let Γ denote a bipartite distance-regular graph with diameter D > 4 and valency
k > 3. In this section we define pseudo eigenvalues and pseudo primitive idempotents
of Γ and review some of their properties.

Definition 3.1. Let Γ denote a bipartite distance-regular graph with diameter D > 4
and valency k > 3. Let θ denote any complex number; we call θ a pseudo eigenvalue.
By the pseudo cosine sequence associated with θ, we mean the sequence of complex
numbers σ0, σ1, . . . , σD such that σ0 = 1 and

(6) ciσi−1 + biσi+1 = θσi (0 6 i 6 D − 1),

where σ−1 is an indeterminate. We abbreviate σ := σ1. By a pseudo primitive idem-
potent associated with θ, we mean a nonzero scalar multiple of the matrix

(7)
D∑
i=0

σiAi.

With reference to Definition 3.1, we remark that θ ∈ R is an eigenvalue of Γ if and
only if its associated pseudo cosine sequence satisfies cDσD−1 = θσD.

Remark 3.2. We remark that in the literature about pseudo primitive idempotents
also the case θ = ∞ is often considered. We will not consider this case here, as this
situation was studied in [7] (see [7, Lemma 4.1, Lemma 4.2]).
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Lemma 3.3 ([7, Lemma 3.3]). Let Γ denote a bipartite distance-regular graph with di-
ameter D > 4. Let σ0, σ1, . . . , σD denote a pseudo cosine sequence of Γ with associated
pseudo eigenvalue θ. Then for 0 6 i 6 4, σi = fi(θ), where

f0(λ) = 1, f1(λ) = λ

k
, f2(λ) = λ2 − k

kb1
,

f3(λ) = λ3 − (k + c2b1)λ
kb1b2

, f4(λ) = λ4 − (k + c2b1 + c3b2)λ2 + c3kb2

kb1b2b3
.

Lemma 3.4 (Christoffel–Darboux formula [1, Theorem III.1.3]). Let Γ denote a
distance-regular graph with diameter D > 4. Let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD
denote pseudo cosine sequences of Γ. Then

(8) k(σ − ρ)
i∑

h=0
khσhρh = kibi(σi+1ρi − σiρi+1) (0 6 i 6 D − 1).

Proof. See [12, Lemma 3.2]. We note that the proof in [12] assumes each σi, ρi ∈ R,
but their proof also works when σi, ρi ∈ C. �

For bipartite distance-regular graphs, we now obtain some other formulas similar
to the Christoffel–Darboux equations. We will need the following two corollaries.

Corollary 3.5 ([12, Lemmas 3.3, 3.4]). Let Γ denote a bipartite distance-regular
graph with diameter D > 4. Let σ0, σ1, . . . , σD denote complex numbers. Then the
following (i)–(iv) are equivalent.

(i) σ0, σ1, . . . , σD is a pseudo cosine sequence.
(ii) σ0 = 1 and

(9) ci(σi−1 − σi+1) = k(σσi − σi+1) (1 6 i 6 D − 1).

(iii) σ0 = 1 and

(10) bi(σi+1 − σi−1) = k(σσi − σi−1) (1 6 i 6 D − 1).

(iv) σ0 = 1 and

(11) k(σ − 1)
i∑

h=0
khσh = kibi(σi+1 − σi) (0 6 i 6 D − 1).

Proof. We note that the proof in [12] assumes each σi ∈ R, but their proof also works
for σi ∈ C. �

Corollary 3.6. Let Γ denote a bipartite distance-regular graph with diameter D > 4,
and let σ0, σ1, . . . , σD denote a pseudo cosine sequence of Γ. Then for any integer i
(1 6 i 6 D − 1), the following are equivalent.

(i) σi+1 = σi−1.
(ii) σσi = σi−1.
(iii) σσi = σi+1.

Lemma 3.7. Let Γ denote a bipartite distance-regular graph with diameter D > 4. Let
σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote pseudo cosine sequences of Γ. For 1 6 i 6
D − 1,

(12) k2(σ2 − ρ2)
∑

06h6i−1
i−h odd

khσhρh = kicibi (σi+1ρi−1 − σi−1ρi+1) .

Proof. Similar to the proof of [8, Lemma 3.3]. �
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Corollary 3.8. Let Γ denote a bipartite distance-regular graph with diameter D > 4.
Let σ0, σ1, . . . , σD denote a pseudo cosine sequence of Γ. For 1 6 i 6 D − 1,

(13) k2(σ2 − 1)
∑

06h6i−1
i−h odd

khσh = kicibi (σi+1 − σi−1) .

Proof. Similar to the proof of [8, Corollary 3.4]. �

4. Tight pairs and taut pairs of pseudo primitive idempotents
Let Γ denote a distance-regular graph with diameter D > 4 and valency k > 3. In
this section we recall tight pairs and taut pairs of pseudo primitive idempotents of Γ.

Definition 4.1. Let Γ denote a distance-regular graph with diameter D > 4 and
valency k > 3. Let E,F denote pseudo primitive idempotents for Γ. We say the pair
E,F is tight whenever the entry-wise product E ◦ F is a scalar multiple of a pseudo
primitive idempotent of Γ. We say a pair of pseudo cosine sequences (or pseudo eigen-
values) is tight whenever its pair of associated pseudo primitive idempotents is tight.

In [12], Pascasio and Terwilliger determine all tight pairs of pseudo primitive idem-
potents whose pseudo eigenvalues are real. In the following definition we consider pairs
of pseudo primitive idempotents whose entry-wise product is a linear combination of
exactly two pseudo primitive idempotents.

Definition 4.2. Let Γ denote a distance-regular graph with diameter D > 4 and
valency k > 3. Let E,F denote pseudo primitive idempotents for Γ. We say the pair
E,F is taut whenever the pair E,F is not tight and the entry-wise product E ◦F is a
linear combination of two pseudo primitive idempotents of Γ. We say a pair of pseudo
cosine sequences (or pseudo eigenvalues) is taut whenever its pair of associated pseudo
primitive idempotents is taut. We note that if E,F is taut, then any pair of nonzero
scalar multiples of E,F is taut.

We shall restrict our attention to bipartite distance-regular graphs. We first remind
the reader of the possible tight pairs of pseudo primitive eigenvalues for such graphs.

Theorem 4.3 ([7, Lemmas 4.1, 4.2]). Let Γ denote a bipartite distance-regular graph
with diameter D > 4 and valency k > 3. Then (i)–(iii) hold below.

(i) The pair θ, k is tight for all θ ∈ C.
(ii) The pair θ,−k is tight for all θ ∈ C.
(iii) Γ has no further tight pairs.

Definition 4.4. Let Γ denote a bipartite distance-regular graph with diameter D >
4 and valency k > 3. Let E denote a pseudo primitive idempotent with associated
pseudo eigenvalue θ and pseudo cosine sequence σ0, σ1, . . . , σD. We say θ is trivial
whenever θ ∈ {−k, k}. We note that θ is trivial if and only if σ ∈ {−1, 1}. We
say a pseudo primitive idempotent or pseudo cosine sequence is trivial whenever its
associated pseudo eigenvalue is trivial.

Let Γ denote a bipartite distance-regular graph with diameter D > 4 and valency
k > 3. Let E,F denote pseudo primitive idempotents with associated pseudo eigen-
values θ, θ′. In the results that follow, we will typically assume E,F are nontrivial in
order to establish that the pair is not tight. Now assume the pair E,F is taut. In this
section we develop some equations involving θ, θ′. First, we make a definition.

Definition 4.5. Throughout Sections 4 and 5, let Γ denote a bipartite distance-regular
graph with diameter D > 4 and valency k > 3. Let θ0 > θ1 > · · · > θD denote the
distinct eigenvalues of Γ, and for 0 6 i 6 D, let Ei denote the primitive idempotent
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of Γ associated with θi. Furthermore, let E and F denote nontrivial pseudo primitive
idempotents of Γ. We let θ, θ′ denote the corresponding pseudo eigenvalues, and we let
σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote the corresponding pseudo cosine sequences.
We let G and H denote pseudo primitive idempotents of Γ with cosine sequences
γ0, γ1, . . . , γD and ε0, ε1, . . . , εD, respectively, for which we assume γ 6= ε.

Lemma 4.6. With reference to Definition 4.5, the following (i), (ii) are equivalent.
(i) E ◦ F ∈ span{G,H}.
(ii) There exist complex scalars a, b such that for 0 6 i 6 D,

(14) σiρi = aγi + bεi.

Suppose (i), (ii) hold. Then a, b are nonzero and are given by

(15) a = σρ− ε
γ − ε

, b = γ − σρ
γ − ε

.

Proof. Similar to the proof of [8, Lemma 4.2]. �

Lemma 4.7. With reference to Definition 4.5, assume conditions (i), (ii) hold in
Lemma 4.6. Then γ, ε are both roots of the following polynomial in C[x]:

(16) (k − 1)k2b2x
2 − (k − 1)kc2θθ

′x+ θ2θ′2(c2 − 1) + (θ2 + θ′2 − k2)b2.

In particular,

(17) γ + ε = c2θθ
′

kb2
, γε = θ2θ′2(c2 − 1) + (θ2 + θ′2 − k2)b2

(k − 1)k2b2
.

Proof. Without loss of generality, we show ε is a root of (16). We first observe σρ 6= ε,
since otherwise a = 0, contradicting Lemma 4.6. Setting i = 2 in (14) and eliminating
σ2, ρ2, γ2, ε2 using Lemma 3.3, we may solve the resulting equation for γ. Now setting
i = 3 in (14), applying Lemma 3.3, and replacing γ in the result by the expression
just obtained, we find ε is a root of (16), as desired. �

Theorem 4.8. With reference to Definition 4.5, assume E,F is a taut pair. Then

(18) b3((k − 2)b2 − θ2(c2 − 1))((k − 2)b2 − θ′2(c2 − 1)) = −b1∆2(θ2 − b2)(θ′2 − b2).

Proof. Observe conditions (i), (ii) hold in Lemma 4.6 for some pseudo primitive idem-
potents G,H. Using (15) and Lemma 3.3, one can show the expression

(19) (k − 1)2k2b2
2b

2
3(σ4ρ4 − aγ4 − bε4)

is equal to the expression

(k−1)kb2b3(A((γ+ε)θθ′−k2γε)−k2θθ′(γ+ε)((γ+ε)2−2γε)+k4γε((γ+ε)2−γε))
− k3b2

2c3(b3 − 1)− kb2c3(A(θ2 + θ′2)− θ4 − θ′4) + θ2θ′2(A− θ2)(A− θ′2),

where A = b2 + kc2 + c3b2. Replacing γ + ε, γε in this latter expression using (17),
and then using (4), (5), one can show this latter expression equals (k2 − θ2)(k2 −
θ′2)c2(k− 1)−1b−1

2 (b2− 1)−1 times the lefthand side of (18) minus the righthand side
of (18). Since the expression in (19) equals 0, the result follows. �

With reference to Definition 4.5, our goal is to determine all the taut pairs of
pseudo primitive idempotents of Γ. It turns out that the case D = 4 is somewhat
different than the case D > 5. Therefore, we treat this case separately.

Algebraic Combinatorics, Vol. 2 #4 (2019) 505



Mark S. MacLean & Štefko Miklavič

Theorem 4.9. With reference to Definition 4.5, assume that D = 4. Then the follow-
ing (i), (ii) are equivalent.

(i) E,F is a taut pair.
(ii) θ, θ′ satisfy (18) and the two roots of (16) are distinct.

Proof.
(i)⇒ (ii). If E,F is a taut pair, then (18) holds by Theorem 4.8. Clearly, the roots
of (16) are distinct in this case.
(ii) ⇒ (i). Let γ and ε be the roots of polynomial (16), and let a, b be as in (15).
Using (17), it is straightforward to show that (14) holds for 0 6 i 6 3. It follows from
the proof of Theorem 4.8 that since (18) holds we have also σ4ρ4 = aγ4 + bε4. The
result follows. �

With reference to Definition 4.5, for the rest of the paper we assume D > 5.

Theorem 4.10. With reference to Definition 4.5, assume that D > 5 and E,F is taut.
Furthermore, assume θ, θ′ are nonzero and that (c3 − c2)2 + (c4 − c3)(c3 − c2

2) 6= 0.
Then

θ2θ′2 = b2
2(−(c4−1)(b2 +kc2)+c2

3(b4−c2)+c3(c2c4 +3c4 +kc2−2k−2c2))
(c3 − c2)2 + (c4 − c3)(c3 − c2

2) ,

θ2 +θ′2 = (b4−c2)(k−2c2 +c2
2)c2

3−(c4−1)(b2
2 +kc2

2−c3
2 +kc3

2)+c3c
3
2(k+c4−2)

(c3−c2)2 +(c4−c3)(c3−c2
2)

+ c3(c2
2(kc4 − k2 − k + 3) + c2(2k2 − k − 4c4 − kc4)− 2k(k − 2c4))

(c3 − c2)2 + (c4 − c3)(c3 − c2
2) .

Proof. Without loss of generality, we assume G,H are the pseudo primitive idempo-
tents satisfying the equivalent conditions (i), (ii) in Lemma 4.6. Setting i = 5 in (14)
and using Lemma 3.3, (6) and (3), we find

0 = b1b2b3b4[−k4θθ′(((γ+ε)2−2γε)2−2(γε)2)+k6(γε)3 +k6γε(γ+ε)((γ+ε)2−3γε)
− k4θθ′γε((γ + ε)2 − 2γε)− k2γε(k4((γε)2 − γε(γ + ε)) + k2θθ′γε)

+ (c4b3 + c3b2 + c2b1 + k)(k2θθ′((γ + ε)2 − 2γε)− k2γε(k2(γ + ε)− θθ′))] + C,

where C is the constant term with no factors of γ, ε and which is easily isolated using
computer algebra software (but which is too lengthy to include here). Now using (17),
once we divide by a factor of θθ′(k2 − θ2)(k2 − θ′2), we get a linear equation in the
expressions θ2θ′2 and θ2 + θ′2. Now multiplying out (18), we obtain another linear
equation in the expressions θ2θ′2 and θ2 + θ′2. Solving this linear system, we get the
desired result. �

Lemma 4.11. With reference to Definition 4.5, assume that D > 5 and that the pair
θ, θ′ is taut. Furthermore, assume θ, θ′ are nonzero. Then the following (i), (ii) are
equivalent.

(i) ∆3 = ∆2 = 0.
(ii) (c3 − c2)2 + (c4 − c3)(c3 − c2

2) = 0.

Proof.
(i) ⇒ (ii). First, we show a couple of potential denominators are nonzero. Using [2,
Proposition 4.1.6], we observe (b2−c3)+c2(c3−c2) > 0. Suppose (b2−c3)+c2(c3−c2) =
0. Then b2 = c3 = c2, and so c2 = k/2. Since ∆2 = 0, using (5) we find k = 2, a
contradiction. Hence (b2− c3) + c2(c3− c2) > 0. It’s routine to show k− 3c2 + c2

2 > 0.
Now using (4) and (5), we may solve for c3, c4 in terms of k, c2. It is then routine to
check that (ii) holds.
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(ii) ⇒ (i). Let N denote the numerator of the expression for θ2θ′2 in Theorem 4.10.
By the proof of that theorem, since (c3 − c2)2 + (c4 − c3)(c3 − c2

2) = 0, we also have
N = 0. It’s routine to show that
(20) b2

2(c3 − 1)c2∆3 = (k − 2)b2
2((c3 − c2)2 + (c4 − c3)(c3 − c2

2))−N(c2 − 1).
It follows that either ∆3 = 0 or c3 = 1. If ∆3 = 0, we are done by [9, Lemma 3.7].
Suppose c3 = 1, so thus c2 = 1. Using this information and the fact that N = 0, we
find c4 = 1. Hence ∆3 = 0 by (5). �

5. The case where θ = ±θ′

We say pseudo primitive idempotents E,F are equivalent whenever θ = θ′, where
θ, θ′ are the pseudo eigenvalues associated with E,F , respectively. In this case, E,F
are scalar multiples of each other. We say E,F are opposites whenever θ = −θ′.
With reference to Definition 4.5, suppose for the moment that E,F,G,H satisfy
conditions (i), (ii) in Lemma 4.6. In this section, we consider the case when E,F are
equivalent or opposites. We will need the following lemmas.

Lemma 5.1. With reference to Definition 4.5, suppose E,F are opposites. Then ρi =
(−1)iσi (0 6 i 6 D).

Proof. Routine using (6) and induction. �

Lemma 5.2. With reference to Definition 4.5, for any pseudo primitive idempotent K,
let K̂ denote an opposite of K. Suppose E◦F ∈ span{G,H}. Then Ê◦F̂ ∈ span{G,H}
and E ◦ F̂ ∈ span{Ĝ, Ĥ}.

Proof. Routine using Lemma 4.6 and Lemma 5.1. �

In the following lemma, we recall this situation in the case when E,F,G,H are
actual primitive idempotents, not just pseudo primitive idempotents.

Lemma 5.3 ([8, Lemma 4.3]). With reference to Definition 4.5, suppose conditions (i),
(ii) hold in Lemma 4.6, and suppose E,F,G,H are primitive idempotents of Γ (not
just pseudo idempotents). Then

(i) E,F are equivalent if and only if one of G,H is equal to E0.
(ii) E,F are opposites if and only if one of G,H is equal to ED.

Furthermore, suppose E = F . Then Γ is 2-homogeneous, and E ∈ {E1, ED−1}. Now
suppose E,F are opposites. Then Γ is 2-homogeneous, and E,F is a permutation of
E1, ED−1.

In [6], Lang has worked out part of this case when E,F are pseudo primitive
idempotents.

Theorem 5.4 ([6, Theorem 1.1]). With reference to Definition 4.5, the follow-
ing (i), (ii) are equivalent.

(i) The entrywise product of E with itself is a linear combination of E0 and a
pseudo primitive idempotent of Γ.

(ii) There exists a scalar λ such that σi−1 + λσi + σi+1 = 0 for 1 6 i 6 D − 1.
Moreover, Γ has such a pseudo cosine sequence and pseudo primitive idempotent if
and only if Γ is almost 2-homogeneous with c2 > 2.

The following result will be useful.

Lemma 5.5. With reference to Definition 4.5, assume that D > 5. Furthermore, as-
sume that conditions (i), (ii) hold in Lemma 4.6, and that E,F are either equivalent
or opposites. Then ∆2 = 0.
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Proof. First, observe θ, θ′ are nonzero, since if θ = θ′ = 0, we quickly reach a contra-
diction using (18). Now observe that if (c3−c2)2+(c4−c3)(c3−c2

2) = 0, then ∆2 = 0 by
Lemma 4.11 and we are done. Therefore, we assume (c3−c2)2 +(c4−c3)(c3−c2

2) 6= 0.
Let θ = x+ iy for some real numbers x, y and let θ′ = ±θ. Then we have that

(21) θ2 + θ′2 = 2(x2 − y2) + 4ixy.

Note that by Theorem 4.10 we have that (21) is real. It follows that either x = 0 or
y = 0. Consequently, θ2 is real.

Setting θ′ = ±θ in (18), we find

b3((k − 2)b2 − θ2(c2 − 1))2 = −b1∆2(θ2 − b2)2.

As θ2 is real, the expression on the left above is nonnegative, and the expression on
the right is nonpositive. Hence both sides must equal 0, and so we find ∆2 = 0. �

Theorem 5.6. With reference to Definition 4.5, assume that D > 5 and that condi-
tions (i), (ii) hold in Lemma 4.6. Furthermore, assume E,F are either equivalent or
opposites. Then c2 > 1, and θ2 = θ′2 = (k−2)b2(c2−1)−1. Furthermore, (i), (ii) hold
below.

(i) E,F are equivalent if and only if one of G,H is a scalar multiple of E0, and
the other has associated pseudo eigenvalue (k − 2c2)(c2 − 1)−1.

(ii) E,F are opposites if and only if one of G,H is a scalar multiple of ED, and
the other has associated pseudo eigenvalue −(k − 2c2)(c2 − 1)−1.

Proof. Setting θ′ = ±θ in (18), we find

b3((k − 2)b2 − θ2(c2 − 1))2 = −b1∆2(θ2 − b2)2.

As ∆2 = 0 by Lemma 5.5, we have that (k − 2)b2 = θ2(c2 − 1). Note that c2 = 1
forces k = 2, a contradiction. This shows that θ2 = θ′2 = (k − 2)b2(c2 − 1)−1.

(i) Assume first that E,F are equivalent. Setting θ′ = θ = ±
√

(k − 2)b2(c2 − 1)−1

in (16) and factoring, we find {γ, ε} = {1, k−2c2
k(c2−1)}. The result follows. Without loss

of generality, assume now that G is a scalar multiple of E0 and that H has associated
pseudo eigenvalue (k− 2c2)(c2− 1)−1. Note that ε = (k− 2c2)(k(c2− 1))−1, and so it
follows from the equation on the left in (17) that θθ′ = (k−2)b2/(c2−1)−1. Plugging
this and x = γ = 1 into (16) we find

θ2 + θ′2 = 2(k − 2)b2

c2 − 1 = 2θθ′.

It follows that θ = θ′, and so E,F are equivalent.
(ii) Similar to the proof of (i) above. �

Corollary 5.7. With reference to Definition 4.5, assume that D > 5.Then Γ has a
taut pair of pseudo primitive idempotents that are equivalent or opposites if and only
if Γ is almost 2-homogeneous with c2 > 2.

Proof. Follows from Theorems 5.4, 5.6, 5.5 and Lemma 5.2. �

6. Equations involving cosine sequences
With reference to Definition 4.5, in the previous section we determined all taut pairs
E,F in which E,F are equivalent or opposites. In the sections that follow we will
determine all other taut pairs of primitive idempotents. To rule out this special case,
we make the following definition.
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Definition 6.1. Let Γ denote a bipartite distance-regular graph with diameter D > 5
and valency k > 3. Let E and F denote nontrivial pseudo primitive idempotents of
Γ such that E,F are neither equivalent nor opposites. We let θ, θ′ denote the corre-
sponding pseudo eigenvalues, and we let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote the
corresponding pseudo cosine sequences.

Lemma 6.2. With reference to Definition 6.1, let G,H denote nontrivial pseudo
primitive idempotents with corresponding pseudo cosine sequences γ0, γ1, . . . , γD and
ε0, ε1, . . . , εD, respectively. Fix an integer i (0 6 i 6 D − 1) and suppose (14) holds
for all nonnegative integers less than or equal to i, where a, b are from (15). Then

(22) σi+1ρi − σiρi+1

σ − ρ
= a

γi+1 − γi
γ − 1 + b

εi+1 − εi
ε− 1 .

Proof. Similar to the proof of [8, Lemma 4.4], using (8), (11). �

Lemma 6.3. With reference to Definition 6.1, let G,H denote nontrivial pseudo
primitive idempotents with corresponding pseudo cosine sequences γ0, γ1, . . . , γD and
ε0, ε1, . . . , εD, respectively. Fix an integer i (1 6 i 6 D − 1) and suppose (14) holds
for all nonnegative integers less than i, where a, b are from (15). Then

(23) σi+1ρi−1 − σi−1ρi+1

σ2 − ρ2 = a
γi+1 − γi−1

γ2 − 1 + b
εi+1 − εi−1

ε2 − 1 ,

where a, b are from (15).

Proof. Similar to the proof of [8, Lemma 4.5], using (12), (13). �

With reference to Definition 6.1, in the rest of this section, we consider the equation

(24) σi+1ρi+1 − σi−1ρi−1 = ασi(ρi+1 − ρi−1) + βρi(σi+1 − σi−1),

where

α = θ

k
+ θ(k2 − θ2)(b2(k − 2)− θ′2(c2 − 1))

k(θ2 − θ′2)b1b2
,(25)

β = θ′

k
+ θ′(k2 − θ′2)(b2(k − 2)− θ2(c2 − 1))

k(θ′2 − θ2)b1b2
.(26)

We shall see that this equation holds for 1 6 i 6 D − 1 whenever E ◦ F is a linear
combination of pseudo primitive idempotents G,H. We have a comment. Observe
that if equation (24) holds for 1 6 i 6 D − 1 for pair E,F , then it holds also for
1 6 i 6 D − 1 for pair E, F̂ . To see this, change β with −β and use Lemma 5.1. We
now need two lemmas addressing the situation when one of G,H is trivial.

Lemma 6.4. With reference to Definition 6.1, assume (24) holds for 1 6 i 6 D − 1.
If 1 is a root of the polynomial in (16), then for 1 6 i 6 D,

(27) 0 = A(σiρi + σi−1ρi−1) +B(σiρi−1 + ρiσi−1) + C,

where

A = (k − 1)k2(θ + θ′)b2,

B = −θθ′k2(k − 1)c2,

C = −(k − 1)(θ + θ′)(k2b2 + θθ′(b2 − kc2)).

Proof. By our assumptions, we first note Q = 0, where

(28) Q = (k − 1)k2b2 − (k − 1)kc2θθ
′ + θ2θ′2(c2 − 1) + (θ2 + θ′2 − k2)b2.
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We proceed by induction on i. It is routine to show that equality holds in (27) for
i = 1. Now suppose i > 2 and that

(29) 0 = A(σi−1ρi−1 + σi−2ρi−2) +B(σi−1ρi−2 + ρi−1σi−2) + C.

We will show equality holds in (27). Define scalars α, β as in (25), (26). Us-
ing (29), (24), and the fact that Q = 0, we observe

A(σiρi + σi−1ρi−1) +B(σiρi−1 + ρiσi−1) + C

= A(σiρi + σi−1ρi−1) +B(σiρi−1 + ρiσi−1) + C

− (A(σi−1ρi−1 + σi−2ρi−2) +B(σi−1ρi−2 + ρi−1σi−2) + C)
= A(σiρi − σi−2ρi−2) +B(σi−1(ρi − ρi−2) + ρi−1(σi − σi−2))
= A(ασi−1(ρi − ρi−2) + βρi−1(σi − σi−2))

+B(σi−1(ρi − ρi−2) + ρi−1(σi − σi−2))
= (Aα+B)σi−1(ρi − ρi−2) + (Aβ +B)ρi−1(σi − σi−2)

=
(
−kθQ
θ′ − θ

)
σi−1(ρi − ρi−2) +

(
kθ′Q

θ′ − θ

)
ρi−1(σi − σi−2)

= 0. �

Lemma 6.5. With reference to Definition 6.1, assume 1 or −1 is a root of (16). Then
the following (i), (ii) are equivalent.

(i) E,F is a taut pair.
(ii) The polynomial in (16) has distinct roots, and there exist complex scalars α, β

such that equality holds in (24) for all integers i (1 6 i 6 D − 1).

Proof.
(i) ⇒ (ii). Let G,H denote pseudo primitive idempotents such that E ◦ F ∈

span{G,H}, and let γ0, γ1, . . . , γD and ε0, ε1, . . . , εD denote the pseudo cosine se-
quences associated with G and H, respectively. Note that γ 6= ε (as E,F is a taut
pair) and that γ, ε are roots of (16).

First, assume 1 is a root of (16). Without loss of generality, we may assume ε = 1
and γ = c2θθ

′(kb2)−1 − 1. Thus εi = 1 (0 6 i 6 D). Observe Q = 0, where Q is the
expression in (28). We now proceed by induction. Let α, β be defined as in (25), (26).
It’s routine to check that (24) holds for i = 1. Now suppose i > 2 and that (24) holds
for all positive integers less than i. Following the proof and notation of Lemma 6.4,
we find

(30) A(σiρi + σi−1ρi−1) +B(σiρi−1 + ρiσi−1) + C = 0.

By this fact and since Q = 0, we find the expression
(31)
A(θ′−θ)(σiρi+σi−1ρi−1)+ρiσi−1(B(θ′−θ)−kθ′Q)+σiρi−1(B(θ′−θ)+kθQ)+(θ′−θ)C

is zero. By (9) and Lemma 4.6,

0 = a(ci(γi−1 − γi+1)− k(γγi − γi+1))(32)
= ci(σi−1ρi−1 − σi+1ρi+1)− k(γσiρi − σi+1ρi+1 − b(γ − 1)),(33)

where a, b are from (15). Now using (6) to eliminate σi+1, ρi+1 throughout, we find
k(k− 1)b2(θ′2− θ2) times the expression in (33), minus the expression in (31), equals

(34) k(k−1)b2bi(θ′2−θ2)(σi+1ρi+1−σi−1ρi−1−ασi(ρi+1−ρi−1)−βρi(σi+1−σi−1)).

Since the expressions in (33) and (31) are both zero, we find (24) holds at i, as desired.
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Next assume that −1 is a root of (16). By Lemma 5.2 the pair E, F̂ is also taut,
and corresponding ε̂ equals 1. By the proof above, (24) holds for the pair E, F̂ . By
the comment below (26), equation (24) holds also for the pair E,F .
(ii) ⇒ (i). First, assume 1 is a root of (16). We define γ, ε to be the roots of the
quadratic equation in (16), where ε = 1. Observe γ = c2θθ

′(kb2)−1 − 1 by (17). We
define εi = 1 (0 6 i 6 D) so that ε0, ε1, . . . , εD is a trivial pseudo cosine sequence. Let
a, b be as defined in (15). We first show a 6= 0. Suppose to the contrary that a = 0,
so that σρ = 1 and θθ′ = k2. Using (17), we routinely find θ2 + θ′2 = 2k2. Thus
(θ − θ′)2 = θ2 + θ′2 − 2θθ′ = 0, so θ = θ′, a contradiction. Hence a 6= 0. We now
define γi = σiρi−b

a (0 6 i 6 D). By Lemma 4.6 it suffices to show that γ0, γ1, . . . , γD
is a pseudo cosine sequence, which we will do in view of Corollary 3.5 by showing
biγi+1 − kγγi + ciγi−1 = 0 for 1 6 i 6 D − 1. We observe

(35) a(biγi+1 − kγγi + ciγi−1) = bi(σi+1ρi+1 − b)− kγ(σiρi − b) + ci(σi−1ρi−1 − b).

We evaluate the right-hand side of the equation in (35) by first eliminating the product
σi+1ρi+1 using (24), and then eliminating σi+1, ρi+1 in the result using (6). Recalling
γ = c2θθ

′(kb2)−1 − 1 and using (25), (26), we find the expression k(k − 1)b2(θ′2 −
θ2)a(biγi+1 − kγγi + ciγi−1) equals
(36)
A(θ′−θ)(σiρi+σi−1ρi−1)+ρiσi−1(B(θ′−θ)−kθ′Q)+σiρi−1(B(θ′−θ)+kθQ)+(θ′−θ)C,

where Q is from (28). Since Q = 0, the expression in (36) equals 0 by Lemma 6.4,
and the result follows.
Assume now that −1 is a root of (16). Then 1 is a root of the equation obtained
from (16) by changing θ′ with −θ′. By the proof above, the pair E, F̂ is taut, and so
by Lemma 5.2 also the pair E,F is taut. �

Theorem 6.6. With reference to Definition 6.1, the following (i), (ii) are equivalent.
(i) E,F is a taut pair.
(ii) The polynomial in (16) has distinct roots, and there exist complex scalars α, β

such that equality holds in (24) for all integers i (1 6 i 6 D − 1).
Furthermore, suppose conditions (i), (ii) hold above. Then (25), (26) hold.

Proof.
(i) ⇒ (ii). Let G,H denote pseudo primitive idempotents such that E ◦ F ∈
span{G,H}. Let γ, ε denote the first pseudo cosines of G,H, respectively. Note that
γ 6= ε, and by Lemma 4.7, γ and ε are roots of (16). If γ = ±1 or ε = ±1, then the
result follows from Lemma 6.5. Suppose γ 6= ±1 and ε 6= ±1. We first note that [8,
Lemma 2.4] holds, since this proof works for pseudo primitive idempotents just as
it does for primitive idempotents. The rest of our proof is similar to the proof of [8,
Theorem 5.1], using [8, Lemma 2.4], (14), (22), (23).
(ii)⇒ (i). By assumption, for all i (1 6 i 6 D − 1), we have

(37) σi+1ρi+1 − σi−1ρi−1 − ασi(ρi+1 − ρi−1)− βρi(σi+1 − σi−1) = 0.

Define real numbers γ, ε to be the roots of the quadratic equation in (16). Now let
γ0, γ1, . . . , γD and ε0, ε1, . . . , εD denote the scalars satisfying γ0 = ε0 = 1 and

(38) ciγi−1 + biγi+1 = kγγi, ciεi−1 + biεi+1 = kεεi (1 6 i 6 D − 1).

Thus these sequences generated by γ, ε are pseudo cosine sequences by construction.
If γ = ±1 or ε = ±1, then the result follows from Lemma 6.5. So suppose γ 6= ±1,
ε 6= ±1. Define scalars a, b as in (15). We will now show by induction on j that

(39) σjρj = aγj + bεj (0 6 j 6 D).
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It’s routine to show that (39) holds for i = 0, 1. Now fix an integer 1 6 i 6 D − 1
and assume (39) holds for all j, 0 6 j 6 i. We shall show (39) holds for j = i + 1.
Adding (22) at i to (22) at i− 1, we obtain

(40) σi(ρi−1 − ρi+1)
σ − ρ

− ρi(σi−1 − σi+1)
σ − ρ

= a(γi+1 − γi−1)
γ − 1 + b(εi+1 − εi−1)

ε− 1 .

Evaluating the left-hand side of (23) using [8, Lemma 2.4], we find

(41) σσi(ρi−1 − ρi+1)
σ2 − ρ2 − ρρi(σi−1 − σi+1)

σ2 − ρ2 = a(γi+1 − γi−1)
γ2 − 1 + b(εi+1 − εi−1)

ε2 − 1 .

Now consider the equation (*) which is (37), plus (γ + ε) times the equation in (40),
minus the product of (1+γ+ε+γε) with (41). In the equation (*), the right-hand side
is routinely shown to be equal to a(γi+1−γi−1)+b(εi+1− εi−1). Now using (25), (26),
and (17), we find the left-hand side of the equation (*) equals σi+1ρi+1 − σi−1ρi−1.
By the inductive hypothesis, σi−1ρi−1 = aγi−1 + bεi−1, and the result follows by
Lemma 4.6.

Suppose now conditions (i), (ii) of the theorem hold. Solving (24) with i = 1, 2 for
α and β we routinely find that α, β are equal to the scalars (25), (26). �

7. When can σi+1 = σi−1?
With reference to Definition 6.1, assume conditions (i), (ii) hold in Theorem 6.6. In
Section 9, we will obtain equations in which the expressions σσi − σi−1, ρρi − ρi−1
appear as denominators. In this section we explore the circumstances under which
these expressions can be zero. By Corollary 3.5, we note these expressions are zero
precisely when σi+1 = σi−1 and ρi+1 = ρi−1. We will need the following two lemmas.

Lemma 7.1. With reference to Definition 6.1, at least one of σi−1 − σi+1, σi − σi+2
is nonzero for 1 6 i 6 D − 2.

Proof. Suppose, to the contrary, there exists an integer i (1 6 i 6 D − 2) such that
σi−1 − σi+1 = 0 and σi − σi+2 = 0. Applying (9) at i and i+ 1, we find
(42) σσi = σi+1 and σσi+1 = σi+2.

Combining these two equations, we find σ2σi = σi+2 = σi. Suppose σi = 0. Then
by (42), σi+1 = 0. Using (6) and recursion, we find σ0 = 0, a contradiction. Thus
σi 6= 0 and hence σ2 = 1. Thus θ is trivial, a contradiction. �

Lemma 7.2. With reference to Definition 6.1, assume conditions (i), (ii) hold in The-
orem 6.6. Then the following (i), (ii) are equivalent.

(i) α = σ.
(ii) b2(k − 2)− θ′2(c2 − 1) = 0 or θ = 0.

Moreover, suppose (i), (ii) hold above. Then
(43) (σi+1 − σi−1)(ρi+1 − (β + ρ)ρi + ρi−1) = 0 (1 6 i 6 D − 1).

Proof. The fact that (i), (ii) are equivalent follows from (25) and the fact that θ = kσ.
Now suppose (i), (ii) hold. Setting α = σ in (24), we find
(44) (σi+1 − σσi)ρi+1 − (σi−1 − σσi)ρi−1 = βρi(σi+1 − σi−1) (1 6 i 6 D − 1).
Now using (9), (10), we find that for 1 6 i 6 D − 1,

(45) σi+1 − σσi = ci
k

(σi+1 − σi−1), σi−1 − σσi = bi
k

(σi−1 − σi+1).

Evaluating (44) using (45), we find
(46) (σi+1 − σi−1)(ciρi+1 − βkρi + biρi−1) = 0.
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Using (6), it’s routine to show ciρi+1 − βkρi + biρi−1 = k(ρi+1 − (β + ρ)ρi + ρi−1),
and the result follows. �

With reference to Definition 6.1, in the following lemma we describe the taut pairs
θ, θ′ for which θ = 0. We note this case is one instance in which σi+1 = σi−1. In
particular, σi+1 = σi−1 = 0 for even integers i (1 6 i 6 D − 1).

Lemma 7.3. With reference to Definition 6.1, assume θ = 0. Then the follow-
ing (i), (ii) are equivalent.

(i) θ, θ′ is a taut pair.
(ii) ∃β ∈ C such that ρi+1 − (β + ρ)ρi + ρi−1 = 0 for i odd, 1 6 i 6 D − 1.

Assume (i), (i) hold above, and let G,H denote pseudo primitive idempotents such
that E◦F ∈ span{G,H}. Then c3 > 1, θ′2 = c2(b3−1)(k−1)

c3−1 +k, and G,H are opposites.
Furthermore, β is given by (26).

Proof. Using (6), we routinely find

(47) σi =
{

0 if i odd
(−1) i

2
c1c3...ci−1
b1b3...bi−1

if i even (0 6 i 6 D).

(i)⇒ (ii). By Lemma 7.2, (43) holds. The result now follows from (47).
(ii)⇒ (i). Define α := 0. Using (47) and the assumption, it’s routine to show (24)
holds for 1 6 i 6 D − 1. Since θ = 0 and θ′ is nontrivial, it is immediate that the
polynomial in (16) has distinct roots. The result now follows from Theorem 6.6.

Now assume (i), (ii) hold, and let G,H denote pseudo primitive idempotents such
that E ◦ F ∈ span{G,H}. First, it follows from Theorem 6.6 that β is given by (26).
Now suppose c3 = 1. Then c2 = 1, and hence ∆2 = 0 by (5). Thus k = 2 by (18), a
contradiction. Hence c3 > 1. The remaining results are routinely found using (18), (5),
and (17). �

With reference to Definition 6.1 assume conditions (i), (ii) hold in Theorem 6.6,
and that α = σ. If θ 6= 0, then we have b2(k− 2)− θ′2(c2 − 1) = 0 by Lemma 7.2. We
will show that this implies ∆2 = 0, and this case will be further studied in Section 8.

Lemma 7.4. With reference to Definition 6.1, assume conditions (i), (ii) hold in The-
orem 6.6. Furthermore, assume α 6= σ, β 6= ρ. Suppose σi+1 = σi−1 or ρi+1 = ρi−1
for some i, 1 6 i 6 D − 1. Then bi−1 = 1 and c2 = 1. In particular, ∆i = 0, and
i > D

2 + 1.

Proof. Let i denote the minimal integer (1 6 i 6 D − 1) such that σi+1 = σi−1 or
ρi+1 = ρi−1. Without loss of generality, assume σi+1 = σi−1. It’s routine to show
σ2 6= σ0, so i > 2. Thus σi 6= σi−2. By Corollary 3.6, σσi = σi−1 = σi+1. Setting
σi+1 = σσi and σi−1 = σσi in (24) and simplifying, we find

(48) σi(σ − α)(ρi+1 − ρi−1) = 0.

If σi = 0, then using (6) we find σi = σi−2 = 0, a contradiction. Thus ρi+1 = ρi−1,
and ρi 6= ρi−2. Replacing i by i − 1 in (9) and recalling σi−1 = σσi, ρi−1 = ρρi, we
find

ci−1(σi−2 − σi) = kσi(σ2 − 1),(49)
ci−1(ρi−2 − ρi) = kρi(ρ2 − 1).(50)

Combining these two equations, we find

(51) (σi−2 − σi)(ρ2 − 1)ρi − (ρi−2 − ρi)(σ2 − 1)σi = 0.
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Replacing i by i− 1 in (24) and using the facts that σi−1 = σσi, ρi−1 = ρρi, we find

(52) σiρi − σi−2ρi−2 − ασσi(ρi − ρi−2)− βρρi(σi − σi−2) = 0.

Adding ασσi − σi−2 times (51) and (σ2 − 1)σi times (52) and simplifying us-
ing (25), (26), we find σi−2 = σi(kσ2 − 1)(k − 1)−1. Plugging this into (49), we find
ci−1 = k − 1. Thus bi−1 = 1. Now since ∆i > 0, using (5) we find ∆i = 0 and c2 = 1.
The final remark follows from [2, Proposition 4.1.6(ii)]. �

Corollary 7.5. With reference to Definition 6.1, assume conditions (i), (ii) hold
in Theorem 6.6. Furthermore, assume ∆2 6= 0, and θ, θ′ are both nonzero. Then
α 6= σ, β 6= ρ, σi+1 6= σi−1, ρi+1 6= ρi−1 (1 6 i 6 D − 2). If in addition ∆D−1 6= 0,
then also σD 6= σD−2, ρD 6= ρD−2.

Proof. Suppose α = σ. Then by Lemma 7.2, b2(k − 2) = (c2 − 1)θ′2. Now by (18),
we find θ2 = b2. Setting i = 4 in (24) and using (5), we routinely find ∆3 = 0. But
then also ∆2 = 0 by [9, Lemma 3.7], a contradiction. Hence α 6= σ, and similarly,
β 6= ρ. Assume now that σi+1 = σi−1 or ρi+1 = ρi−1 for some i (1 6 i 6 D − 2). By
Lemma 7.4 we have bi−1 = 1 and c2 = 1. As 3 + (i − 1) 6 3 + D − 3 = D, by [2,
Proposition 4.1.6(ii)] we also have that c3 6 bi−1, implying c3 = 1. But this forces
∆2 = 0, a contradiction. If ∆D−1 6= 0, then we have σD 6= σD−2, ρD 6= ρD−2 by
Lemma 7.4. �

8. The case ∆2 = 0
With reference to Definition 6.1, in this section we consider the case when ∆2 = 0.
We will need the following lemma.

Lemma 8.1. With reference to Definition 6.1, assume ∆2 = 0. Then D 6 5 or c2 6 2.
Moreover, if Γ has a taut pair of pseudo eigenvalues, then c2 > 1.

Proof. By [10, Theorem 4.4], D 6 5 or c2 6 2. If Γ has a taut pair of pseudo eigen-
values, then we observe c2 6= 1 by Theorem 4.8. �

We now consider the case when ∆i = 0 (2 6 i 6 D − 2). We note that this is
precisely the case when Γ is almost 2-homogeneous.

Lemma 8.2. With reference to Definition 6.1, assume c2 > 1 and ∆i = 0 (2 6 i 6
D − 2). Assume θ′ satisfies (k − 2)b2 = (c2 − 1)θ′2. Then the following (i)–(iii) hold.

(i) If c2 = 2, then the pair θ, θ′ is taut for all θ ∈ C.
(ii) If c2 > 2, then D = 5 and the pair θ, θ′ is taut for all θ ∈ C r
{±
√
−4b2/(c2 − 2)}.

(iii) Γ has no other taut pairs.

Proof. (i) Using (5) and induction, we routinely find ci = i (1 6 i 6 D − 1). Observe
θ′2 = (k − 2)2. We prove the result for θ′ = k − 2; the result for θ′ = −(k − 2) then
follows from Lemma 5.2. Let θ ∈ C and let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote
the pseudo cosines sequences for θ and θ′, respectively. Using (6) and induction, we
routinely find ρi = (k−2i)/k (0 6 i 6 D). Setting α = σ and β = 2−ρ and using (6),
we find (24) holds for 1 6 i 6 D − 1. Moreover, it’s routine to show the polynomial
in (16) has distinct roots in this case. Hence θ, θ′ is a taut pair by Theorem 6.6.

(ii) First, observe D = 5 by Lemma 8.1. Using (5), we may solve for c3, c4 in terms
of k, c2. Now using Lemma 3.3, (6), (25), and (26), it’s routine to check that (24)
holds for 1 6 i 6 D − 1. Using the fact that θ2 6= −4b2/(c2 − 2), it’s routine to show
the polynomial in (16) has distinct roots. Hence θ, θ′ is a taut pair by Theorem 6.6.
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(iii) Let θ,Ψ ∈ C, and assume this is a taut pair of pseudo eigenvalues. Setting
∆2 = 0 in (18), we find at least one of θ2,Ψ2 is equal to (k − 2)b2/(c2 − 1), and the
result follows. �

In the rest of this section, we consider the case when ∆2 = 0 and there exists an
integer i (3 6 i 6 D − 2) for which ∆i 6= 0. With reference to Lemma 8.1, it is natural
to treat cases D = 5 and c2 = 2 separately. We shall classify the taut pairs of pseudo
primitive idempotents in each case.
Lemma 8.3. With reference to Definition 6.1, assume D = 5. Furthermore, assume
∆2 = 0 and ∆3 6= 0. Then the following (i), (ii) are equivalent.

(i) θ, θ′ is a taut pair.
(ii) {θ2, θ′2} = {0, b2(k−2)

c2−1 } or {θ
2, θ′2} = {b2 + c2b3,

b2(k−2)
c2−1 }.

Proof. First, observe that since ∆2 = 0, we find using (5) that

(53) c3 = b2 − kc2 − c2
2 + kc2

2
k − 3c2 + c2

2
.

(i) ⇒ (ii). Since ∆2 = 0 and regarding (18), without loss of generality, we may
assume b2(k − 2)− θ′2(c2 − 1) = 0. Thus by (26) we find

(54) β = θ′(kc2 − b2)
kb2

.

Observe (43) holds by Lemma 7.2. Using the above information and Lemma 3.3, we
may verify that ρi+1−(β+ρ)ρi+ρi−1 = 0 for i = 1, 2, 3, and cannot be zero for i = 4,
or else Γ is almost 2-homogeneous by Theorem 5.4. Thus by (43), σ5 = σ3. Using (6)
and (53), we routinely find that σ5 = σ3 implies either θ = 0 or θ2 = b2 + c2b3. The
result follows.

(ii)⇒ (i). Without loss of generality, assume b2(k − 2)− θ′2(c2 − 1) = 0. Let

(55) α = σ, β = θ′(kc2 − b2)
kb2

.

Using Lemma 3.3 and (6), it’s now routine to show (24) holds for each i, 1 6 i 6 4.
It’s also routine to show the polynomial in (16) has distinct roots. The result now
follows from Theorem 6.6. �

Lemma 8.4. With reference to Definition 6.1, assume b2(k−2) = (c2−1)θ′2, and that
there exists an integer i (2 6 i 6 D − 2) such that
(56) ρi − (β + ρ)ρi−1 + ρi−2 = 0, ρi+2 − (β + ρ)ρi+1 + ρi = 0,
where β is from (26). Then ∆i = 0.
Proof. Applying (9) at i− 1 and i+ 1, we find
(57) ci−1(ρi−2 − ρi) = k(ρρi−1 − ρi), ci+1(ρi − ρi+2) = k(ρρi+1 − ρi+2).
Now solving (56) for ρi−2, ρi+2 and substituting into (57), we find

((β + ρ)ci−1 − kρ)ρi−1 + (k − 2ci−1)ρi = 0,
(−k + 2ci+1)ρi + (bi+1(β + ρ)− kρ)ρi+1 = 0.

Furthermore, by (6),
(58) ciρi−1 − kρρi + biρi+1 = 0.
We observe that we have three linear equations in the variables ρi−1, ρi, ρi+1. This
system has nontrivial solutions, so the associated determinant must be zero. Setting
this determinant equal to zero and using (5), (26), and the fact that θ′2 = b2(k −
2)(c2 − 1)−1, we find ∆i = 0, as desired. �
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Recall that we are assuming that there exists an integer i (3 6 i 6 D−2) for which
∆i 6= 0. Define a positive number f by

f = min{i > 3 | ∆i 6= 0}
and note that f 6 D − 2.

Theorem 8.5. With reference to Definition 6.1, assume that θ, θ′ is a taut pair, and
that ∆2 = 0, c2 = 2. Then the following (i)– (iv) hold.

(i) One of θ, θ′ is equal to ±(k − 2).
(ii) f = D − 2, where f is as defined above.
(iii) ci = i for 1 6 i 6 D − 2.
(iv) Assume θ′ (θ, respectively) is equal to ±(k−2). Then σD = σD−2 (ρD = ρD−2,

respectively).

Proof. Observe that by (18), we have that either θ2 or θ′2 is equal to (k−2)b2/(c2−1).
As c2 = 2 and b2 = k − 2, this shows part (i) of the theorem.

For the rest of the proof, assume without loss of generality that θ′2 = (k − 2)2.
By [13, Lemma 3.6(ii)], we have ci = i for 1 6 i 6 f . Using (6), it is now straightfor-
ward to show that for 0 6 i 6 f+1 we have that either ρi = (k−2i)/k (if θ′ = k−2), or
ρi = (−1)i(k− 2i)/k (if θ′ = −(k− 2)). Consider now equation (43) from Lemma 7.2.
Clearly σ2 − σ0 6= 0, and so ρ2 − (β + ρ)ρ1 + ρ0 = 0 implies that β + ρ is either 2 (if
θ′ = k − 2), or −2 (if θ′ = −(k − 2)). It follows that ρi+1 − (β + ρ)ρi + ρi−1 = 0 for
1 6 i 6 f . Consider now ρf+2 − (β + ρ)ρf+1 + ρf . If this expression is equal to 0,
then ∆f = 0 by Lemma 8.4, a contradiction. Therefore, σf+2 − σf = 0 by (43).

Note that if D = 5, we have f = D − 2 by our assumptions, so consider now the
case D > 6. Assume that f 6 D − 3. Then σf+3 − σf+1 6= 0 by Lemma 7.1, and
so ρf+3 − (β + ρ)ρf+2 + ρf+1 = 0 by (43). By Lemma 8.4 we have that ∆f+1 = 0,
contradicting [13, Lemma 4.13(iv)]. This shows that f = D − 2. Claims (iii) and (iv)
of the theorem now follow from the comments above. �

Theorem 8.6. With reference to Definition 6.1, assume ∆2 = 0, c2 = 2, and ∆D−2 6=
0. Then the following (i), (ii) are equivalent.

(i) The pair θ, θ′ is taut.
(ii) ci = i (1 6 i 6 D − 2), and either θ′ = ±(k − 2) and σD = σD−2, or

θ = ±(k − 2) and ρD = ρD−2.

Proof.
(i)⇒ (ii). This follows from Theorem 8.5.
(ii)⇒ (i). Assume θ′ = k − 2; the proof when θ′ = −(k − 2) (or θ = ±(k − 2)) is
similar. Furthermore, assume ci = i (1 6 i 6 D − 2) and σD = σD−2. Using (6) and
induction, we find ρi = (k − 2i)/k (0 6 i 6 D − 1). Now define scalars α = σ and
β = 2−ρ. Using this information and (6), we find (24) holds for 1 6 i 6 D − 2. Using
the fact that σD = σD−2 and (6), we find (24) holds for i = D − 1. The result now
follows from Theorem 6.6. �

Remark 8.7. Observe that the equation σD = σD−2 gives us a polynomial of degree
D in θ, and that θ = ±k is a root of this polynomial.

9. The case ∆2 6= 0
In this section we will classify the taut pairs of pseudo eigenvalues in the case where
∆2 6= 0. We will need the following definition.

Definition 9.1. With reference to Definition 6.1, by the weights of the pair of pseudo
eigenvalues θ, θ′, we mean the complex scalars α, β given by the formulae in (25), (26).
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Theorem 9.2. With reference to Definition 6.1, assume that ∆2 6= 0. Furthermore,
assume that θ, θ′ is a taut pair, with θ, θ′ nonzero. Let α, β denote the corresponding
weights. Then

σi+1 − ασi
σσi − σi−1

= βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 2),(59)

ρi+1 − βρi
ρρi − ρi−1

= ασi − σi−1

σσi − σi−1
(1 6 i 6 D − 2).(60)

Observe the denominators in (59), (60) are nonzero by Corollaries 3.6, 7.5. Further-
more, if σD 6= σD−2, ρD 6= ρD−2, then (59), (60) also hold for i = D − 1.

Proof. First, observe that for 1 6 i 6 D − 1,
(61) (σσi − σi+1)(ρi−1 − ρi+1) = (ρρi − ρi+1)(σi−1 − σi+1)
since both sides equal ci(ρi−1 − ρi+1)(σi−1 − σi+1)/k in view of (9). Multiplying
out (61) and cancelling terms, we obtain
(62) σi+1ρi−1 − σi−1ρi+1 = σσi(ρi−1 − ρi+1)− ρρi(σi−1 − σi+1).
Multiplying (24) by σσi − σi−1, multiplying (62) by σi+1 − ασi, and taking the dif-
ference between the two products, we find σi+1 − σi−1 times
(63) (σi+1 − ασi)(ρρi − ρi−1)− (βρi − ρi−1)(σσi − σi−1)
is zero. Observe σi+1 − σi−1 is nonzero for 1 6 i 6 D − 2 by Corollary 7.5, so (63) is
zero. Line (59) follows. We obtain (60) by interchanging the roles of σj , ρj (0 6 j 6
D − 1) and the roles of α, β in the above argument. �

Lemma 9.3. With reference to Definition 6.1, assume that ∆2 6= 0. Furthermore,
assume that θ, θ′ is a taut pair, with θ, θ′ nonzero. Let α, β denote the corresponding
weights. Then

(64) k

bi
= ασi − σi−1

σσi − σi−1
+ βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 2).

Observe the denominators in (64) are nonzero by Corollaries 3.6, 7.5. Furthermore,
if σD 6= σD−2, ρD 6= ρD−2, then (64) also holds for i = D − 1.

Proof. Using (10), we find that for 1 6 i 6 D − 1,
k

bi
= σi+1 − σi−1

σσi − σi−1
(65)

= ασi − σi−1

σσi − σi−1
+ σi+1 − ασi
σσi − σi−1

.(66)

Evaluating the fraction on the right in (66) using (59), we obtain (64). �

With reference to Definition 6.1, assume ∆2 6= 0. To classify the taut pairs of
nonzero pseudo eigenvalues θ, θ′, we will separate our results into two cases, depending
on whether σD = σD−2, ρD = ρD−2. To see that there really are only two cases to
consider, we need the following lemma.

Lemma 9.4. With reference to Definition 6.1, assume ∆2 6= 0 and that the pair θ, θ′
is taut, where θ, θ′ are nonzero. If σD = σD−2, then ρD = ρD−2.

Proof. Suppose to the contrary that σD = σD−2 but ρD 6= ρD−2. Observe α 6= σ by
Corollary 7.5. Setting i = D − 1 in (6), (24), we find σD = σσD−1 and σD = ασD−1.
Thus σσD−1 = ασD−1. Since α 6= σ, we find 0 = σD−1 = σD−2 = σD. Using (6), we
find σD−3 = 0, contradicting Corollary 7.5. �
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Theorem 9.5. Let Γ denote a bipartite distance-regular graph with diameter D > 5
and valency k > 3. Let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote two sequences of
complex numbers satisfying σD 6= σD−2, ρD 6= ρD−2. Abbreviate σ = σ1, ρ = ρ1. Let
α, β denote complex scalars. Assume ∆2 6= 0 and σ 6= ±ρ. Then the following (i), (ii)
are equivalent.

(i) σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD form a taut pair of pseudo cosine sequences
where σ, ρ 6= 0, and where α, β are the weights of the corresponding pseudo
eigenvalues.

(ii) σ0 = 1, ρ0 = 1, σ 6= α, ρ 6= β, the polynomial in (16) has distinct roots (where
θ = kσ, θ′ = kρ), and

σi+1 − ασi
σσi − σi−1

= βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 1),(67)

ρi+1 − βρi
ρρi − ρi−1

= ασi − σi−1

σσi − σi−1
(1 6 i 6 D − 1),(68)

k

bi
= ασi − σi−1

σσi − σi−1
+ βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 1),(69)

and the denominators in (67)–(69) are nonzero.

Proof.
(i) ⇒ (ii). We assume σ0, σ1, . . . , σD is a pseudo cosine sequence, so σ0 = 1 by
Corollary 3.5(ii). Similarly, ρ0 = 1. Observe the polynomial in (16) has distinct roots
by Theorem 6.6, and σ 6= α, ρ 6= β by Corollary 7.5. Equations (67), (68), (69) follow
from Theorem 9.2 and Lemma 9.3.
(ii) ⇒ (i). Replacing the rightmost fraction in (69) using (67) and simplifying, we
obtain

(70) bi(σi+1 − σi−1) = k(σσi − σi−1) (1 6 i 6 D − 1).

We assume σ0 = 1, so σ0, σ1, . . . , σD is a pseudo cosine sequence of Γ by Corollary 3.5.
Similarly, ρ0, ρ1, . . . , ρD is a pseudo cosine sequence of Γ. Observe the pseudo eigen-
values θ, θ′ are nontrivial, since otherwise we would have a zero denominator in (67)
at i = 1. We show θ, θ′ is a taut pair. To do this, we show (24) holds for 1 6 i 6 D − 1.
Fixing an integer i (1 6 i 6 D − 1), we multiply the equations (67), (68) together
and simplify to obtain

(71) (σi+1 − ασi)(ρi+1 − βρi) = (βρi − ρi−1)(ασi − σi−1).

Expanding (71), we routinely obtain (24). We have now shown (24) holds for 1 6 i 6
D − 1. Combining this with Theorem 6.6, we find θ, θ′ is a taut pair with weights
α, β. Finally, we note σ, ρ are nonzero by Lemma 7.2. �

Theorem 9.6. Let Γ denote a bipartite distance-regular graph with diameter D > 5
and valency k > 3. Let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote two sequences of
complex numbers satisfying σD = σD−2, ρD = ρD−2. Abbreviate σ = σ1, ρ = ρ1. Let
α, β denote complex scalars. Assume ∆2 6= 0 and σ 6= ±ρ. Then the following (i), (ii)
are equivalent.

(i) σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD form a taut pair of pseudo cosine sequences
where σ, ρ 6= 0, and where α, β are the weights of the corresponding pseudo
eigenvalues.
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(ii) σ0 = 1, ρ0 = 1, σσD−1 = σD, ρρD−1 = ρD, σ 6= α, ρ 6= β, the polynomial
in (16) has distinct roots (where θ = kσ, θ′ = kρ), and

σi+1 − ασi
σσi − σi−1

= βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 2),(72)

ρi+1 − βρi
ρρi − ρi−1

= ασi − σi−1

σσi − σi−1
(1 6 i 6 D − 2),(73)

k

bi
= ασi − σi−1

σσi − σi−1
+ βρi − ρi−1

ρρi − ρi−1
(1 6 i 6 D − 2),(74)

and the denominators in (72)–(74) are nonzero.
Furthermore, suppose (i), (ii) hold above. Then bD−2 = bD−1 = c2 = 1.

Proof. Similar to the proof of Theorem 9.5. To finish the proof of (i)⇒ (ii), we note
that the equation σσD−1 = σD follows from (9) and our assumption that σD = σD−2.
Similarly, ρρD−1 = ρD.

To finish the proof of (ii)⇒ (i), we note that (24) trivially holds for i = D−1, since
we assume σD = σD−2, ρD = ρD−2. The final statement follows from Lemma 7.4. �

With reference to Definition 6.1, assume ∆2 6= 0. In the following theorem, we
show that Γ has essentially at most one taut pair of nonzero pseudo eigenvalues θ, θ′,
and that any other taut pairs are obtained by taking plus or minus of these pseudo
eigenvalues.

Theorem 9.7. Let Γ denote a bipartite distance-regular graph with diameter D > 5
and valency k > 3. Assume that ∆2 6= 0. Let θ, θ′, ψ, ψ′ denote nonzero nontrivial
pseudo eigenvalues. Suppose the pairs θ, θ′ and ψ,ψ′ are both taut. Then {θ2, θ′2} =
{ψ2, ψ′2}.

Proof. Immediate from Theorem 4.10 and Lemma 4.11. �
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