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Paths to Understanding Birational
Rowmotion on Products of Two Chains

Gregg Musiker & Tom Roby

Abstract Birational rowmotion is an action on the space of assignments of rational functions to
the elements of a finite partially-ordered set (poset). It is lifted from the well-studied rowmotion
map on order ideals (equivalently on antichains) of a poset P , which when iterated on special
posets, has unexpectedly nice properties in terms of periodicity, cyclic sieving, and homomesy
(statistics whose averages over each orbit are constant). In this context, rowmotion appears
to be related to Auslander–Reiten translation on certain quivers, and birational rowmotion to
Y -systems of type Am × An described in Zamolodchikov periodicity.

We give a formula in terms of families of non-intersecting lattice paths for iterated actions
of the birational rowmotion map on a product of two chains. This allows us to give a much
simpler direct proof of the key fact that the period of this map on a product of chains of lengths
r and s is r + s + 2 (first proved by D. Grinberg and the second author), as well as the first
proof of the birational analogue of homomesy along files for such posets.

1. Introduction
The rowmotion map ρ, defined on the set J(P ) of order ideals (equivalently on an-
tichains) of a poset P , has been thoroughly studied by a number of combinatorial-
ists and representation theorists. When iterated on special posets, particularly root
posets and (co)minuscule posets associated with representations of finite-dimensional
Lie algebras, ρ has unexpected nice properties in terms of periodicity, cyclic siev-
ing [22, 23], and homomesy [1, 2, 8, 3, 20, 21, 25, 26, 31, 33]. Excellent summaries
of the history of this map and further references are available in the introductions of
Striker–Williams [31] and Thomas–Williams [33].

Armstrong, Stump, and Thomas [1] proved a conjecture of Panyushev [20,
Conj. 2.1(iii)] that under the action of rowmotion on antichains of root posets, for
any orbit O, the value 1

#O
∑
A∈O#A is a constant, independent of the choice of O.

This was one of the first explicit statements of a type later isolated by Propp and
the second author as the much more widespread homomesy phenomenon [21] (see
Definition 2.14). (In particular, the antichain-cardinality is homomesic with respect
to rowmotion on antichains of root posets.) Propp and Roby’s result that cardinality
is a homomesic statistic for rowmotion acting on J([a]× [b]) was generalized by Rush
and Wang to all minuscule posets [26]. In the cominuscule (equivalently minuscule)
context, there is a still mysterious connection between rowmotion on certain posets
and Auslander–Reiten translation on related quivers [35].
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Considering an order ideal I ∈ J(P ) as an order-preserving map I : P → {0, 1}
leads naturally to a generalization of ρ to a piecewise-linear action ρPL on the order
polytope [28] of P , i.e., {f : P → [0, 1] : f is order preserving}. This is then detropi-
calized (a.k.a. “geometricized”) to a birational map ρB , as detailed in [5, 6], following
in the footsteps of Kirillov and Berenstein [19]. A key aspect of this is the insight
of Cameron and Fon-Der-Flaass that ρ can be decomposed as a product of toggles,
i.e., involutions defined for each element of P ; thus, to generalize ρ to other maps,
it suffices to generalize the definition of toggles. (For more on the general utility of
toggles see Striker [30].) None of this background is logically necessary for the current
paper, but it serves as motivation for why the birational rowmotion map ρB is of
interest.

At the birational level, ρB is a map on the set of assignments of rational functions to
the elements of the poset (with some genericity assumptions or domain restrictions to
avoid dividing by zero). Theorems proven at the birational level generally imply their
corresponding theorems at the piecewise-linear level, and then at the combinatorial
level, but not vice-versa. For example, the only proof available as of this writing to
show that piecewise-linear rowmotion is periodic uses the corresponding result for
birational rowmotion (Corollary 2.12).

Periodicity of birational rowmotion was proved by Grinberg and Roby for a number
of special classes of posets, including for skeletal posets (a generalization of graded
forests) [15, 17] and for triangles and rectangles [15, 16], with the latter being the
fundamental and most challenging case. In this paper we give a formula in terms of
families of non-intersecting lattice paths for iterated actions of the birational row-
motion map ρB on a product of two chains. This allows us to give a direct and
significantly simpler proof that ρB is periodic, with the same period as ordinary
(combinatorial) rowmotion (Corollary 2.12). In this context, the homomesy phenom-
enon manifests itself as “constant products over orbits” since arithmetic means get
replaced with geometric means in the detropicalization process by which ρB is de-
fined. We apply our formula to prove two fundamental instances of homomesy for
birational rowmotion on a product of two chains: reciprocity (Corollary 2.13) and
file homomesy (Theorem 2.16). It is expected that for the product of two chains, all
“natural” homomesies for birational rowmotion can be constructed as multiplicative
combinations of these two [5, §10–11], in parallel with the situation for the action of
ordinary (combinatorial) rowmotion [21, §4.1].

Many proofs of periodicity or homomesy in dynamical algebraic combinatorics in-
volve finding an equivariant bijection between rowmotion and an action that is easier
to understand, or at least already better understood. At the combinatorial level, row-
motion can be equivariantly and bijectively mapped, via the Stanley–Thomas word,
to bitstrings under cyclic rotation [21, §7]. For birational rowmotion, Grinberg and
Roby parameterize poset labelings by ratios of determinants, and then show period-
icity and reciprocity via certain Plücker relations (overcoming a number of technical
hurdles) [16]. By contrast, the methods of this paper involve working directly from
our path formula, yielding more explicit direct proofs of periodicity (Corollary 2.12)
and the reciprocity homomesy (Corollary 2.13). Additionally, our methods yield the
first proof of a birational homomesy result along files of our poset, namely that the
product over all iterates of birational rowmotion over all elements of a given file is
equal to 1 (Theorem 2.16). This was first stated in Einstein–Propp [5, Thm. 9 and
remarks below Cor. 7], with some ideas of how one might construct a possible (more
indirect) proof.

The paper is organized as follows. In Section 2 we give basic definitions, state our
main result (Theorem 2.7, the lattice path formula for iterating birational rowmotion),
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and present an extended illustrative example. We then state the main applications of
our formula (periodicity and homomesy of ρB), deferring complicated arguments to
the end of Section 3.

In Section 3 we prove our formula by way of some colorful combinatorial bijections
for pairs of families of non-intersecting lattice paths. Similar bijections have appeared
earlier in the literature, notably the paper of Fulmek and Kleber [11]. (We are grateful
to Christian Krattenthaler for pointing us to their work.) This section ends with a
proof of file homomesy, Theorem 2.16, using the aforementioned lattice path formula,
a telescoping sequence of cancellations, and an equality proven via a double-counting
argument. In Section 4 we conclude with connections to other work and directions for
further research.

2. Definitions and main result
2.1. Definition of birational rowmotion. Birational rowmotion can be defined
for any labeling of the elements of a finite poset by elements of a field. The original
motivation for considering this came from the work of Einstein and Propp [5, 6]
(following work of Kirillov–Berenstein [19]), which explained how to lift the notion of
toggles: first from the combinatorial setting to the piecewise-linear setting, and second
from the piecewise-linear setting to the birational setting via “detropicalization”. This
allowed them to define piecewise-linear and birational analogues of rowmotion, which
they wished to study from the standpoint of homomesy, whose traditional definition
requires a periodic action. So they were eager to have a proof of periodicity, which
was first supplied in [16]. Another exposition of these ideas and further background
can be found in [24, §4]. For basic information and notation about posets, we direct
the reader to [29, Ch. 3].

Definition 2.1. Let P be any finite poset, and let P̂ be P with an additional global
maximum (denoted 1̂) and an additional global minimum (denoted 0̂) adjoined. Let K
be any field, and f ∈ KP̂ be any labeling of the elements of P̂ by elements of K. We
define the birational toggle Tv : KP̂ 99K KP̂ at v ∈ P by

(Tvf) (y) =


f(y) if y 6= v,

1
f(v) ·

∑
w∈P̂ ;
wlv

f(w)∑
z∈P̂ ;
zmv

1
f(z)

if y = v,

for all y ∈ P̂ . Note that this rational map Tv is well-defined, because the right-hand
side is well-defined on a Zariski-dense open subset of KP̂ . Finally, we define birational
rowmotion by ρB := Tv1Tv2 . . . Tvn : KP̂ 99K KP̂ , where v1, v2, . . . , vn is any linear
extension of P . (“Toggling at each element of P from top to bottom.”)

The toggle map Tv changes only the label of the poset at v, and does this by (a)
inverting the label at v, and (b) multiplying by the sum of the labels at vertices
covered by v, and (c) multiplying by the parallel sum of the labels at vertices covering
v. It is lifted from a piecewise-linear toggle given by

f 7→

{
f(y) if y 6= v,

minz ·>v f(z) + maxw<· v f(w)− f(v) if y = v.

Using the relation min(zi) = −max(−zi), lifting max to + forces us to lift min to the
(associative) parallel sum operation ‖− , defined by a ‖− b := 1

1
a+ 1

b

(when a, b 6= 0 and
a 6= −b).
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The main result of our paper is a formula in terms of families of non-intersecting
lattice paths for the kth iteration, ρkB , of birational rowmotion on the product of
two chains. Accordingly, we will henceforth let P denote this specific poset, i.e., the
product of two chains. For our purposes, it is more convenient to coordinatize our
poset P as [0, r]× [0, s] (where [0, n] = {0, 1, 2, . . . , n}), with minimal element (0, 0),
maximal element (r, s) and covering relations: (i, j)l(k, `) if and only if (1) i = k and
` = j + 1 or (2) j = ` and k = i+ 1. The poset P is clearly a graded poset, where the
rank of (i, j) is i + j. Orthogonally, for k fixed, we call F := {(i, j) ∈ P : j − i = k}
the kth file of P .

We then initially assign the generic label xij (a.k.a. xi,j) to the element (i, j), and
the label 1 to the elements 0̂ and 1̂. No essential generality is lost by assigning 1 to
the elements of P̂ − P (a “reduced labeling”) [16, §4] or [5, §4], but it simplifies our
formulae and figures, which will generally just display the labelings of P itself, not
of P̂ .

Example 2.2. The Hasse diagram of P = [0, 2] × [0, 3] is shown on the left, with
file F = {(2, 3), (1, 2), (0, 1)} highlighted in red. The generic initial labeling f of P̂ is
shown on the right.

(2, 3)

(2, 2) (1, 3)

P = (2, 1) (1, 2) (0, 3)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

1

x23

x22 x13

f = x21 x12 x03

x20 x11 x02

x10 x01

x00

1

Example 2.3. Consider the 4-element poset P := [0, 1] × [0, 1], i.e., the product of
two chains of length one, with the subscript-avoiding labeling shown below. Then f
and the output of toggling f at the top element (1, 1) of P are as follows.

1

z

f = x y

w

1

 

1

(x+y)
z

T(1,1)f = x y

w

1

Since the labels at 0̂ and 1̂ never vary, we suppress displaying them in all fu-
ture examples of birational rowmotion. (They are still involved in the computa-
tions.) Computing successively T(0,1)T(1,1)f , then T(1,0)T(0,1)T(1,1)f , and finally
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ρBf = T(0,0)T(1,0)T(0,1)T(1,1)f gives:

(x+y)
z

x (x+y)w
yz ,

w

(x+y)
z

(x+y)w
xz

(x+y)w
yz and

w

(x+y)
z

(x+y)w
xz

(x+y)w
yz .

1
z

Example 2.4. By repeating this procedure (or just substituting the labels of ρBf
obtained as variables), we can compute the iterated maps ρ2

Bf , ρ3
Bf, . . . obtaining

(x+y)
z

ρBf = (x+y)w
xz

(x+y)w
yz ,

1
z

(x+y)w
xy

ρ2
Bf = 1

y
1
x ,

z
x+y

1
w

ρ3
Bf = yz

(x+y)w
xz

(x+y)w ,

xy
(x+y)w

z

ρ4
Bf = x y.

w

Even this small example illustrates several interesting properties of this action. No-
tice that ρ4

Bf = f , which generalizes to ρr+s+2
B f = f for P = [0, r] × [0, s] (Corol-

lary 2.12). More subtly, as one iterates ρB , the labels at certain poset elements are
reciprocals of others occuring earlier at the antipodal position in the poset P . For ex-
ample(1), (ρBf) (0, 0) = 1/f(1, 1),

(
ρ2
Bf
)

(0, 1) = 1/f(1, 0),
(
ρ2
Bf
)

(1, 0) = 1/f(0, 1),(
ρ3
Bf
)

(1, 1) = 1/f(0, 0), and these induce further relations such as
(
ρ2
Bf
)

(0, 0) =
1/ (ρBf) (1, 1). This “reciprocity” phenomenon turns out to generalize to arbitrary
rectangular posets (Corollary 2.13).

Example 2.5. We also note that the poset P = [0, 1] × [0, 1] has three files, namely
{(1, 0)}, {(0, 0), (1, 1)}, and {(0, 1)}. We observe the following identities, one per file,
as we multiply over all iterates of birational rowmotion the values of all the elements
in a given file:

4∏
k=1

ρkB(f)(1, 0) = (x+ y)w
xz

1
y

yz

(x+ y)w (x) = 1,

4∏
k=1

ρkB(f)(0, 0)ρkB(f)(1, 1) = 1
z

x+ y

z

z

x+ y

(x+ y)w
xy

xy

(x+ y)w
1
w

(w) (z) = 1,

4∏
k=1

ρkB(f)(0, 1) = (x+ y)w
yz

1
x

xz

(x+ y)w (y) = 1.

(1)To avoid notation with double parentheses, we write f(a, b) for f(v) whenever v = (a, b) in the
following.
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The fact that each of these products equals 1 is the manifestation of homomesy along
files (of the poset of a product of two chains) at the birational level (Theorem 2.16).

2.2. Our Main Result: A lattice path formula for birational rowmotion.
Here we state our main result, Theorem 2.7. It gives a formula for any iteration of ρB
on a product of two chains, as a ratio of polynomials in A-variables (simple fractions
of the xij ’s), where each monomial corresponds to a family of non-intersecting lattice
paths (NILPs). As a corollary, we give simpler and more direct proofs that the period
of this map on a product of chains of lengths r and s is r+ s+ 2 and that it satisfies
the homomesies on display in the previous examples.

A simple change of variables in the initial labeling greatly facilitates our ability to
write the formula. Let

(1) Aij :=
∑
zl(i,j) xz

xij
= xi,j−1 + xi−1,j

xij
,

where in particular Ai0 = xi−1,0
xi,0

, A0j = x0,j−1
x0,j

and A00 = 1
x00

(working in P̂ ).
We define a lattice path of length ` within P = [0, r] × [0, s] to be a sequence

v1, v2, . . . , v` of elements of P such that each difference of successive elements, vi−vi−1,
is either (1, 0) or (0, 1) for each 2 6 i 6 `. We call a collection of lattice paths non-
intersecting if no two of them share a common vertex. We will frequently abbreviate
non-intersecting lattice paths as NILPs.

Definition 2.6. Given a triple (k,m, n) ∈ N3 (where N denotes the nonnegative
integers {0, 1, 2, . . . }) with k 6 min{r−m, s−n}+1, we define a polynomial ϕk(m, n)
in terms of the Aij’s as follows:

(a) Let
∨

(m,n) := {(u, v) : (u, v) > (m,n)} be the principal order filter at (m,n)
in P , which is isomorphic to [0, r −m] × [0, s − n]. Set 7k(m,n) := {(u, v) ∈∨

(m,n) : m+ n+ k − 1 6 u+ v 6 r + s− k + 1}, the rank-selected subposet
consisting of all elements in

∨
(m,n) whose rank (within

∨
(m,n)) is at least

(k − 1) and whose corank is at least (k − 1).
(b) More specifically, let s1, s2, . . . , sk be the k minimal elements and t1, t2, . . . , tk

be the k maximal elements of 7k(m,n), i.e., s` = (m + k − `, n + ` − 1) and
t` = (r − `+ 1, s− k + `) for ` ∈ [k]. (When k = 0, there are no s`’s or t`’s.)
Our condition that k 6 min{r−m, s− n}+ 1 insures that these points all lie
within 7k(m,n).

(c) Let Sk(m,n) be the set of families of NILPs in 7k(m,n) from {s1, s2, . . . , sk} to
{t1, t2, . . . , tk}. We let L = {L1, L2, . . . , Lk} ∈ Sk(m,n) denote such a family.

(d) Define

(2) ϕk(m,n) :=
∑

L∈Sk(m,n)

∏
(i,j)∈7k

(m,n)
(i,j)6∈L1∪L2∪···∪Lk

Aij .

(e) Finally, set [α]+ := max{α, 0} and let µ(a,b) be the transformation that takes
a rational function in {Au,v} and simply shifts each index in each factor of
each term: Au,v 7→ Au−a,v−b.

We are now ready to state our main result.
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Theorem 2.7. Fix k ∈ [0, r+ s+ 1], and let ρk+1
B (i, j) denote the rational function in

K[xu,v] associated to the poset element (i, j) after (k+1) applications of the birational
rowmotion map to the generic initial labeling of P = [0, r]× [0, s]. Set M = [k− i]+ +
[k − j]+. We obtain the following formula for ρk+1

B (i, j):
(a) When M 6 k:

(3) ρk+1
B (i, j) = µ([k−j]+,[k−i]+)

(
ϕk−M (i− k +M, j − k +M)
ϕk−M+1(i− k +M, j − k +M)

)
where ϕt(v, w) and µ(a,b) are as defined in (d) and (e) of Definition 2.6.

(b) When M > k:

ρk+1
B (i, j) = 1/ρk−i−jB (r − i, s− j)

where ρk−i−jB (r − i, s− j) is well-defined by part (a).

Remark 2.8. We note that in the above formulae we only ever use ϕk(m,n)’s such
that the triple (k,m, n) satisfies the hypothesis of Definition 2.6. In particular, in
part (a) we deduce

0 6 k −M < k −M + 1 6 min{r − i+ k −M, s− j + k −M}+ 1
from the two inequalities r − i > 0, s − j > 0, which both follow from (i, j) ∈
[0, r]× [0, s].

Remark 2.9. Note that our formulae in (a) and (b) agree when M = k, as we will
see as part of Claim 3.7. Additionally, we see that the formula ρk−i−jB (r − i, s − j)
satisfies the hypotheses for part (a) as follows: First by letting K = k − i − j − 1,
I = r − i and J = s− j, we see that the formula ρk−i−jB (r − i, s− j) = ρK+1

B (I, J) is
well-defined by part (a) if [K − I]+ + [K −J ]+ 6 K. Second, we assume that (K − I)
and (K − J) are both positive, because this inequality holds automatically if one or
both of (K− I) or (K−J) are negative. Then the only way the hypothesis would fail
is if (K − I) + (K − J) > K, i.e.,
(k− i− j−1)− (r− i) + (k− i− j−1)− (s− j) = 2k− r− s−2− i− j > k− i− j−1.
But that implies that k > r + s+ 1, contracting our assumption k ∈ [0, r + s+ 1].

Since on P = [0, r]× [0, s] we have ρr+s+2+d
B = ρdB by periodicity (Corollary 2.12),

this gives a formula for all iterations of the birational rowmotion map on P .
In the “generic” case where shifting (i, j) 7→ (i − k, j − k) (straight down by 2k

ranks) still gives a point in P , we get the following much simplified formula (which
we discovered first and then generalized to the main theorem).

Corollary 2.10.

(4) For k 6 min{i, j}, ρk+1
B (i, j) = ϕk(i− k, j − k)

ϕk+1(i− k, j − k) .

Example 2.11. We use our main theorem to compute ρk+1
B (2, 1) for P = [0, 3]× [0, 2]

(the mirror image of the poset in Example 2.2) for every k ∈ N. Here r = 3, s = 2,
i = 2, and j = 1 throughout.
• When k = 0, M = 0 and we get ρ1

B(2, 1) = ϕ0(2,1)
ϕ1(2,1) = A21A22A31A32

A22+A31
. In general,

we have
(5) ϕ0(i, j) =

∏
(m,n)>(i,j)

Am,n,

where the product runs over the order filter of (i, j) in P . (In this situation, there are
no lattice paths to remove factors from the product.)
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32

31 22

30 21 12

20 11 02

10 01
00

32

31 22

30 21 12

20 11 02

10 01
00

32

31 22

30 21 12

20 11 02

10 01
00

32

31 22

30 21 12

20 11 02

10 01
00

32

31 22

30 21 12

20 11 02

10 01
00

32

31 22

30 21 12

20 11 02

10 01
00

Figure 1. The six lattice paths (shown in red) used to compute
ϕ1(1, 0) in [0, 3]× [0, 2]. Corresponding A-variable subscripts are un-
derlined in green.

32
31 22

30 21 12

20 11 02
10 01

00

32
31 22

30 21 12

20 11 02
10 01

00

32
31 22

30 21 12

20 11 02
10 01

00

Figure 2. The three pairs of lattice paths (shown in red and blue)
used to compute ϕ2(1, 0) in [0, 3] × [0, 2]. A-variable subscripts are
underlined in green.

• When k = 1, we still have M = 0, and

ρ2
B(2, 1) = ϕ1(1, 0)

ϕ2(1, 0) =

(
A11A12A21A22 +A11A12A22A30 +A11A12A30A31

+A12A20A22A30 +A12A20A30A31 +A20A21A30A31

)
A12 +A21 +A30

.

For the numerator, s1 = (1, 0), t1 = (3, 2), and there are six lattice paths from s1
to t1, each of which covers 5 elements and leaves 4 uncovered (Figure 1). For the
denominator, s1 = (2, 0), s2 = (1, 1), t1 = (3, 1), and t2 = (2, 2), and each pair of
lattice paths leaves exactly one element uncovered (Figure 2).
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• When k = 2, we get M = [2− 2]+ + [2− 1]+ = 1 6 2 = k. So by part (a) of the
main theorem we have

ρ3
B(2, 1) = µ(1,0)

[
ϕ1(1, 0)
ϕ2(1, 0)

]
= (just shifting indices in the k = 1 formula)(

A01A02A11A12 +A01A02A12A20 +A01A02A20A21

+A02A10A12A20 +A02A10A20A21 +A10A11A20A21

)
A02 +A11 +A20

.

• When k = 3, we get M = [3− 2]+ + [3− 1]+ = 3 = k. Therefore,

ρ4
B(2, 1) = µ(2,1)

[
ϕ0(2, 1)
ϕ1(2, 1)

]
= µ(2,1)

[
A21A22A31A32

A22 +A31

]
= A00A01A10A11

A01 +A10
.

In this situation, we can also use part (b) of the main theorem to get

ρ4
B(2, 1) = 1/ρ3−2−1

B (3− 2, 2− 1) = 1/ρ0
B(1, 1) = 1

x11
.

The equality between these two expressions is easily checked as

A00A01A10A11

A01 +A10
=

1
x00

x00
x01

x00
x10

x01+x10
x11

x00
x01

+ x00
x10

= 1
x11

.

• When k = 4, we get M = [4− 2]+ + [4− 1]+ = 5 > k. Therefore, by part (b) of
the main theorem, then part (a),

ρ5
B(2, 1) = 1/ρ4−2−1

B (3− 2, 2− 1) = 1/ρ1
B(1, 1) = ϕ1(1, 1)

ϕ0(1, 1)

= A12A22 +A12A31 +A21A31

A11A12A21A22A31A32
.

Each term in the numerator is associated with one of the three lattice paths from
(1, 1) to (3, 2) in P , while the denominator is just the product of all A-variables in
the principal order filter

∨
(1, 1).

• When k = 5, we get M = [5− 2]+ + [5− 1]+ = 7 > k. Therefore, by part (b) of
the main theorem, then part (a),

ρ6
B(2, 1) = 1/ρ5−2−1

B (3− 2, 2− 1) = 1/ρ2
B(1, 1) = ϕ2(0, 0)

ϕ1(0, 0) ,

where

ϕ2(0, 0) = A02A12 +A02A21 +A11A21 +A30A02 +A30A11 +A30A20, and
ϕ1(0, 0) = A01A11A02A21A12A22 +A01A11A02A30A12A22

+A01A11A02A30A12A31 +A01A20A02A30A12A22

+A01A20A02A30A12A31 +A01A20A02A30A21A31

+A10A20A02A30A12A31 +A10A20A02A30A21A31

+A10A20A02A30A12A22 +A10A20A11A30A21A31.

The numerator here represents the six pairs of NILPs from s1 = (1, 0) and s2 =
(0, 1) to t1 = (3, 1) and t2 = (2, 2). Each of the ten terms in the denominator corre-
sponds to the complement of a lattice path from s1 = (0, 0) to t1 = (3, 2).
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• When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k. Therefore, by part (b) of
the main theorem, then part (a),

ρ7
B(2, 1) = 1/ρ6−2−1

B (3− 2, 2− 1) = 1/ρ3
B(1, 1) = µ(1,1)

[
ϕ1(1, 1)
ϕ0(1, 1)

]
= µ(1,1)

[
A12A22 +A12A31 +A21A31

A11A11A21A22A31A32

]
= A01A11 +A01A20 +A10A20

A00A01A10A11A20A21
= x21.

We will later see that this last equality is an application of Claim 3.7, but one can
also deduce this by plugging in A00 = 1/x00, A10 = x00/x10, A01 = x00/x01, A11 =
(x10 + x01)/x11, A20 = x10/x20, and A21 = (x20 + x11)/x21. Notice that periodicity
also kicks in for this case and ρ7

B(2, 1) = ρ0
B(2, 1) = x21 using (r + s+ 2) = 7.

• When k > 6, we get by periodicity that ρk+1
B (i, j) = ρgB(i, j), where g = k +

1 mod 7 has already been computed above.
2.3. Applications of the path formula. Our path formula has several applica-
tions, allowing us to give direct proofs of interesting properties of birational rowmow-
tion on products of two chains, namely those displayed in Examples 2.4–2.5. Our first
two results were the original two main theorems of [16].
Corollary 2.12 ([16, Thm. 30]). The birational rowmotion map ρB on the product
of two chains P = [0, r]× [0, s] is periodic, with period r + s+ 2.
Proof. Apply part (b) of the main theorem twice, first with k = r + s+ 1, then with
k = (r − i) + (s− j) (checking in each case that M > k) to obtain

ρr+s+2
B (i, j) = 1/ρr+s+1−i−j

B (r − i, s− j) = 1
/

1
ρ0
B(i, j) = ρ0

B(i, j). �

Corollary 2.13 ([16, Thm. 32]). The birational rowmotion map ρB on the product
of two chains P = [0, r]× [0, s] satisfies the following reciprocity:

ρi+j+1
B (i, j) = 1/ρ0

B(r − i, s− j) = 1
xr−i,s−j

.

Proof. This is the special case k = i+ j in Theorem 2.7(b). �

Our formula also allows us to give the first proof of a “file homomesy” for birational
rowmotion on the product of two chains stated by Einstein and Propp [5, Thm. 9 and
remarks below Cor. 7]. For completeness, we summarize the necessary background
here.
Definition 2.14 ([21, Def. 1]). Given a set S, an invertible map τ from S to itself
such that each τ -orbit is finite, and a function (or “statistic”) g : S → K taking values
in some field K of characteristic zero, we say the triple (S, τ, g) exhibits homomesy(2)

if there exists a constant c ∈ K such that for every τ -orbit O ⊂ S

(6) 1
#O

∑
x∈O

g(x) = c.

In this situation we say that the function g : S → K is homomesic under the action
of τ on S, or more specifically c-mesic.

When S is a finite set, homomesy can be restated equivalently as all orbit-averages
being equal to the global average:

(7) 1
#O

∑
x∈O

g(x) = 1
#S

∑
x∈S

g(x).

(2)Greek for “same middle”
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One important example is that for the action of combinatorial rowmotion ρ acting on
the set of order ideals J(P ), where P = [0, r]× [0, s], the cardinality statistic g = #I
is (r+1)(s+1)

2 -mesic. But there are other homomesies for this action on P as well, e.g.,
for any fixed file (see Example 2.2 and the preceding paragraph) F of P , the statistic
g = #(I ∩F ), which only counts the number of elements of I within F is homomesic.
It is fruitful to consider these statistics as being the sums of the indicator function
statistics {1x : x ∈ P}, where for I ∈ J(P ), 1x(I) = 1 if x ∈ I and 0 otherwise. This
is because linear combinations of such homomesic statistics are also homomesic.

As explained in [21, §4.1], the collection of homomesic statistics that can be written
as linear combinations of the indicator statistics {1x : x ∈ P} can all be generated by
just two kinds of fundamental homomesies: (a) 1x + 1y where x and y are antipodal
elements of the poset and (b)

∑
x∈F 1x, where F is a file of P .

For the detropicalized (or birational) version of homomesy on the rectangular poset
P = [0, r]× [0, s], the sums that define homomesy are transformed into products and
the indicator statistics 1(i,j) (for (i, j) ∈ P ) are replaced by the statistic 1̂(i,j)(f) :=
f(i, j), i.e., simply the value of the birational labeling f at (i, j) ∈ P . Consequently
the first kind of fundamental homomesy becomes a “geometric homomesy” that (a)
1̂(i,j) · 1̂(r−i,s−j) gives 1 when multiplied across a period of ρB while the second kind
is the same statement for (b)

∏
(i,j)∈F 1̂(i,j). The previous corollary (Corollary 2.13)

implies the first fundamental birational homomesy. The second fundamental birational
homomesy is equivalent to the following Theorem 2.16, yielding the complete set of
such birational homomesic statistics expected for ρB .

Definition 2.15. Given an action τ of period n on a set of objects S and a statistic
ξ : S → K, where K is any field, we call ξ birationally homomesic if the value of∏n−1
k=0 ξ(τk(s)) is a constant c ∈ K, independent of s.

Theorem 2.16. Given a choice of file F in P = [0, r]× [0, s], we have the identity

r+s+1∏
k=0

∏
(i,j)∈F

ρkB(i, j) = 1,

i.e., the statistic
∏

(i,j)∈F 1̂(i,j) is birationally homomesic under the action of bira-
tional rowmotion ρB.

More specifically, a choice of file F is determined by the choice of an element on
the upper boundary, which may have the form (r, d) for 0 6 d 6 s or the form (d, s)
for 0 6 d 6 r. Assuming without loss of generality that s 6 r, this second case breaks
further into two subcases depending on whether s 6 d or d < s. Hence, the identity
above becomes one of the following double-product identities:

r+s+1∏
k=0

d∏
c=0

ρk+1
B (r − c, d− c) = 1 if d < s 6 r,(a)

r+s+1∏
k=0

d∏
c=0

ρk+1
B (d− c, s− c) = 1 if d < s 6 r,(b)

r+s+1∏
k=0

s∏
c=0

ρk+1
B (d− c, s− c) = 1 if s 6 d 6 r.(c)

Figure 3 shows the decomposition of an example poset into the above cases. We
defer the proof of Theorem 2.16 to the next section, after the proof of Theorem 2.7.
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43
42 33

41 32 23
40 31 22 13

30 21 12 03
20 11 02

10 01
00

Figure 3. The decomposition of P = [0, 4]× [0, 3] according to the
three cases in Theorem 2.16: (a) with top element (r, d) for d < s (in
red), (b) with top (d, s) for d < s (blue), or (c) with top (d, s) for
d > s (black).

3. Proof of Main Theorems
3.1. Special case k = 0. We first prove Theorem 2.7 for the special case when
k = 0, then for larger k by induction working from the top of the poset. We will often
need to distinguish those elements on the upper boundary of P , namely {(i, j) : i =
r or j = s}, each of which is covered by exactly one element in P̂ . All other elements
of P are covered by exactly two elements.

As an initial case, at the top element (r, s) of P we obtain

ρ1
B(r, s) = xr,s−1 + xr−1,s

xr,s
= Ars

where the first equality is by the definition of birational rowmotion (a single toggle),
and the second is by the definition of Aij (Equation (1)).

Second, for any element (r, j) with 1 6 j 6 s, we assume by induction that
ρ1
B(r, j) =

∏s
c=j Ar,c. Then

ρ1
B(r, j − 1) = (xr,j−2 + xr−1,j−1)(ρ1

B(r, j))
xr,j−1

=
(
xr,j−2 + xr−1,j−1

xr,j−1

) s∏
c=j

Ar,c =
s∏

c=j−1
Ar,c,

by the definition of Ar,j−1 and using the definition of birational rowmotion in the case
where only a single element covers it. By symmetry we get a formula for all (upper
boundary) elements covered by a single element:

(8) ρ1
B(r, j) =

s∏
c=j

Ar,c, for j ∈ [0, s] and ρ1
B(i, s) =

r∏
c=i

Ac,s, for i ∈ [0, r].

Note that this agrees with Theorem 2.7 as follows. Here k = 0 forces M = 0 and the
shift transformation µ(0,0) acts trivially. Thus, Equation (3) reduces to

ρ1
B(i, j) = ϕ0(i, j)

ϕ1(i, j) .

The numerator is simply
∏

(u,v)>(i,j) Auv, since the defining summation of ϕ0(i, j)
has only a single term, namely the empty tuple of lattice paths, and each element
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of 7k(i,j) =
∨

(i,j) contributes one factor to that term’s product. Hence, the value of
the numerator agrees with the right-hand sides in Equation (8). The denominator,
ϕ1(i, j) for i = r or j = s, equals 1 because there is a unique lattice path from (i, j)
to (r, s) covering the entire order filter

∨
(i,j); thus, the summation consists of a single

term, which is the empty product, i.e., 1.
All other elements (i, j) of the poset are covered by exactly two elements. In the

case that (i, j) also covers (exactly) two elements, we obtain

ρ1
B(i, j) =

(
xi,j−1 + xi−1,j

xij

)
·
(
ρ1
B(i, j + 1) ‖− ρ1

B(i+ 1, j)
)

= Aij ·
(
ρ1
B(i, j + 1) ‖− ρ1

B(i+ 1, j)
)
.

Recall that a ‖− b denotes the parallel sum 1
1
a+ 1

b

.

Remark 3.1. In the case that (i, j) covers a single element of P , i.e., i = 0 or j = 0,
recall that we defined Ai0, A0j , and A00 accordingly (see right after Equation (1)).
Thus,

(9) ρ1
B(i, j) = Aij ·

(
ρ1
B(i, j + 1) ‖− ρ1

B(i+ 1, j)
)

holds for all (i, j) covered by two elements (regardless of how many elements (i, j)
covers).

We claim that by induction (as long as I + J > i+ j) that

ρ1
B(I, J) = 1∑

paths L
1∏

(p,q)∈L
Apq

=
∑ ‖

paths L

∏
(p,q)∈L

Apq,

where the sum is over paths L from the point (I, J) up to the point (r, s). (Here the
large symbol

∑ ‖ denotes parallel summation, the analogue of
∑

for parallel sums,
which is well-defined since ‖− is associative and commutative.)

In particular, in the special case of ρ1
B(r, j), there is a unique such path and its

weight is
∏s
c=j Ar,c, agreeing with the computation above since the parallel sum of

a single value is simply that value (1/ 1
a = a). (By symmetry, we obtain ρ1

B(i, s) =∏r
c=iAc,s as well.) Then inductively,

ρ1
B(i, j) = Aij ·

 ∑ ‖

paths L from (i,j+1)

∏
(p,q)∈L

Apq ‖−
∑ ‖

paths L from (i+1,j)

∏
(p,q)∈L

Apq


=

∑ ‖

paths L from (i,j)

∏
(p,q)∈L

Apq,

simply because every path from (i, j) to (r, s) must go either through (i, j + 1) or
(i+ 1, j), and the Aij term distributes through.
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We finish the k = 0 case by remarking that

(10) ρ1
B(i, j) =

∑ ‖

paths L from (i,j)

∏
(p,q)∈L

Apq

= 1∑
paths L from (i,j)

1∏
(p,q)∈L

Apq

= ϕ0(i, j)∑
paths L from (i,j)

∏
(p,q)6∈LApq

= ϕ0(i, j)
ϕ1(i, j) ,

where the second line comes from multiplying top and bottom by ϕ0(i, j) =∏
(u,v)>(i,j) Auv. This agrees with part (a) of our main theorem, where k = 0 implies

[k − i]+ = [k − j]+ = M = 0.

3.2. General case k > 1. We continue our proof by induction, starting by proving
the case of k = 1 on the upper boundary. Then for each such k, we move downward
through the entire rectangular poset by induction and then start again with a proof
for the case of (k+1) for the upper boundary. To accomplish this proof we first verify
two recurrence relations (Lemmas 3.2 and 3.4) that will be used for the induction step.
Both of these results are proven via combinatorial bijections. Even though Lemma 3.2
looks like a special case, this result will imply Lemma 3.4 and then Theorem 2.7 by
verifying the recurrence used in our induction.

Lemma 3.2. For 1 6 k 6 min{i, j} we have the Plücker-like relation

(11) ϕk(i− k, j − k)ϕk−1(i− k + 1, j − k + 1)
= ϕk(i− k + 1, j − k)ϕk−1(i− k, j − k + 1)

+ ϕk(i− k, j − k + 1)ϕk−1(i− k + 1, j − k).

Since this statement involves pairs of families of non-intersecting lattice paths,
abbreviated below to NILPs, we prove it via a colorful combinatorial bijection.

Proof. The definition of ϕk (Equation (2)) involves summing monomials in the Aij ’s,
with each term corresponding to the elements left uncovered by a k-tuple of NILPs.
So a term on the left-hand side of the Lemma is represented by a pair of NILPs (B,R)
offset from one another by one rank. Example 3.3 gives an example to illustrate both
this and the bijection below. Specifically, the lower NILPs B, whose endpoints are
marked with ◦, represents a monomial from ϕk(i − k, j − k), and the upper NILPs
R, whose endpoints are marked by ×, represents one from ϕk−1(i− k+ 1, j − k+ 1).
Our goal is to transform this pair into a pair of NILPs counted by one of the terms
on the right-hand side of Lemma 3.2.

Starting from the bottom ◦’s (lowest points in B), we create two bounce paths and
(k − 2) twigs as follows. From the leftmost ◦ on the bottom, move up blue edges,
i.e., edges in B, until encountering a vertex with a downward red edge, i.e., an edge
in R. Then move down red edges until encountering a vertex with an upward blue
edge. Continue in this way, reversing directions whenever possible and only traversing
unused edges, until a terminal vertex is reached. (No such path can terminate at an
internal vertex, since any edge by which one enters must be paired with a possible
exit.) Do the same procedure starting from the rightmost ◦ on the bottom. We refer
to both of these paths as bounce paths.

Since we reverse directions along bounce paths in a systematic way, we always
follow blue edges upward and red edges downward. In addition to these two bounce
paths, each of the (k− 2) ◦’s in the interior of the bottom immediately connects to a
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× in the rank second from the bottom. We refer to these blue edges as twigs. Since
the twigs cover all but 1 of the (k − 2) ×’s, only one of the two bounce paths may
return to the bottom of the poset ending with a segment of downward red edges.
Furthermore the (k− 1) red paths, starting from the ×’s at the top, intersect (k− 1)
of the k topmost ◦’s, leaving only 1 ◦ untouched. Note that a bounce path can only
end at the top of the poset if it does not meet a red path that it can follow downward.
It follows that one of these two bounce paths ends at the top of the interval, at the
◦ on top untouched by the red paths, and the other bounce path ends at the bottom
of the interval, at the × on the bottom not covered by a twig. We call the former a
vertical bounce path and the latter a horizontal bounce path. (Note that in the case
that all blue paths point northeast (resp. northwest) starting from the bottom ◦’s, the
horizontal bounce path turns out to be a twig as well. The remainder of our procedure
is consistent whether or not we treat this as a twig or as a horizontal bounce path.)

We proceed by interchanging the colors of the edges along the horizontal bounce
path, along all the twigs, and swap the × and ◦ endpoints at the bottom, while
leaving the remaining edges of B∪R unchanged (also leaving the colors of the vertical
bounce path unchanged). We then truncate the vertical bounce path by deleting the
bottommost edge. These transformations result in a new pair of lattice path families
which we denote as (B′,R′). The bottom endpoints for B′ will be one step either to
the northeast or northwest of the original ones, indicating respectively whether it is
contributing to the first or second summand on the right-hand side of Lemma 3.2.
The bottom endpoints of R′ are skewed in the other direction, i.e., the southwest or
the southeast, respectively.

Furthermore, if the lattice paths LB ∈ B and LR ∈ R did not originally intersect,
then their edges would not lie along any bounce path. Consequently, LB would be
a lattice path again in B′ unchanged(3), and the same is true for LR in R′. They
would again not intersect. On the other hand, if LB and LR did originally intersect,
then they could meet along a bounce path. Being part of larger NILPs, LB would not
intersect any path in B and LR would not intersect any path in R. Swapping colors
of individual edges along LB and LR might break this intersection-free property, but
since all colors of edges along a horizontal bounce path are swapped simultaneously,
we ensure that each collection of paths, B′ and R′, is still intersection-free.

Hence, the result is a new pair of NILPs (B′,R′) with the lower endpoints of B′
on the second rank from the bottom of the interval skewed left (resp. right) while
the lower endpoints of R′ are on the bottom rank of the interval and skewed right
(resp. left). By construction, this map is well-defined, and B′ is a collection of k lattice
paths from ◦’s to ◦’s, andR′ is a collection of (k−1) lattice paths from×’s to×’s. Thus
the new pair represents a pair of monomials counted by ϕk(i− k, j − k + 1)ϕk−1(i−
k+1, j−k) in the former case, and counted by ϕk(i−k+1, j−k)ϕk−1(i−k, j−k+1)
in the latter case.

Finally this procedure is reversible, yielding the desired bijection. In particular,
given a pair of NILPs (B′′,R′), which has the lower endpoints of B′ skewed left (resp.
right) while the lower endpoints of R′ are skewed right (resp. left), we build a vertical
bounce path starting from the leftmost (resp. rightmost) lower endpoint of B′ and a
horizontal bounce path starting from the rightmost (resp. leftmost) lower endpoint of
R′. Swapping colors along the horizontal bounce path and the twigs (defined similarly
to as above) yields a centrally symmetric pair of NILPs (B,R). The validity of this
construction follows by the same argument which we used above. �

(3)With the small exception of possibly truncating the bottommost, leftmost or rightmost edge.
However, even this change would not affect intersections.
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Example 3.3. Let k = 5, and consider the following pair of families of NILPs, (B,R)
shown in (blue, red) in 75

(i−5,j−5) ∪74
(i−4,j−4), with r − i = s− j = 2. (Double edges

shown in plum are used to represent one edge of each color because of limitations of
our drawing package.)

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦

We create bounce paths and twigs as follows.

× × × ×

◦EE
��

◦DD ◦ ◦ ◦

•EE • • • •
��
ZZ •
��
YY

•EE • • •
��
ZZ •

��

•DD
��

• YY

• YY • •
��
ZZ •
��

• ZZ •
��
ZZ •
��

•EE

• YY •
��
• • • • •EE

• YY × ×DD ×DD ×DD •EE

◦ ◦ ◦ ◦ ◦

Note that the leftmost bounce path is vertical, i.e., it ends at the top, so its colors
remain the same. The rightmost (horizontal) bounce path traverses the poset as fol-
lows: NE, NE, NE, NW, NW, SW, NW, SW, SE, NE, SE, SW, NW, SW, NW, NW,
SW, SW, NW, SW, SE. We interchange the colors along the twigs and the rightmost
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bounce path, which is horizontal.

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦

We then fill in the original edges (with their original colors) and swap × and ◦ at the
bottom.

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• ◦ ◦ ◦ ◦ •

× × × × ×
Finally, we shorten the vertical bounce path by one edge, replacing × 7→ • with • 7→ ◦
so that the new starting point of the blue path is at the same level as the other paths
in B′.

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×
The result is a new pair of NILPs (B′,R′). In this example, the lower endpoints of

B′ are now skewed left, representing a monomial in ϕ5(i− 4, j − 5), while those of R′
are skewed right, representing a monomial in ϕ4(i− 5, j − 4). In other examples, the
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skewing will be opposite, giving a pair (B′,R′) corresponding to a pair of monomials
counted by ϕ5(i− 5, j − 4)ϕ4(i− 4, j − 5).

The next lemma allows us to handle cases where shifting the point (i, j) by (−k,−k)
lands outside of the poset P . In such cases we shift the point back inside P so that
the lattice paths are well defined, shifting the indices of the A-variables accordingly.

Lemma 3.4. For i, j, k such that (i, j) ∈ [0, r]× [0, s] and ([k − i]+ + [k − j]+) 6 k 6
(r + s+ 1), we have the Plücker-like relation:

µ([k−j]+,[k−i]+)ϕk−M00(i− k +M00, j − k +M00)

· µ([k−j−1]+,[k−i−1]+)ϕk−1−M11(i− k + 1 +M11, j − k + 1 +M11)

= µ([k−j]+,[k−i−1]+)ϕk−M10(i− k + 1 +M10, j − k +M10)

· µ([k−j−1]+,[k−i]+)ϕk−1−M01(i− k +M01, j − k + 1 +M01)

+ µ([k−j−1]+,[k−i]+)ϕk−M01(i− k +M01, j − k + 1 +M01)

· µ([k−j]+,[k−i−1]+)ϕk−1−M10(i− k + 1 +M10, j − k +M10),

where M00 = [k− i]+ + [k− j]+, M11 = [k− i− 1]+ + [k− j − 1]+, M01 = [k− i]+ +
[k − j − 1]+, and M10 = [k − i− 1]+ + [k − j]+.

This result includes Lemma 3.2 as a special case since 1 6 k 6 min{i, j} implies
that [k − i]+ = [k − j]+ = 0 and therefore ([k − i]+ + [k − j]+) 6 k 6 (r + s+ 1) im-
mediately holds. We use Lemma 3.4 to complete the proof of case (a) of Theorem 2.7.
Part (b) is handled by a separate argument.

Proof. We prove this more general case by extending the domain where Lemma 3.2
holds and then specializing to the case we need. In particular, we extend the rectan-
gular poset [0, r] × [0, s] by embedding it inside {−r − s,−r − s + 1, . . . , r − 1, r} ×
{−r−s,−r−s+1, . . . , s−1, s}. Inside of this larger rectangular poset, build the order
filter with base (i− k, j − k) noting that each or both of these coordinates could now
be negative (and therefore would have been outside the original [0, r]× [0, s] poset).

Let Φk(i− k, j− k) denote the set of non-intersecting lattice paths (NILPs) in this
order filter. Following Lemma 3.2, we have a combinatorial bijection

Φk(i− k, j − k)× Φk−1(i− k + 1, j − k + 1)
→ Φk(i− k + 1, j − k)× Φk−1(i− k, j − k + 1)⋃

Φk(i− k, j − k + 1)× Φk−1(i− k + 1, j − k)

where the right-hand side is a disjoint union.
We let Φk(a, b)(c,d) be shorthand for the subset of NILPs in the order filter based at

point (a, b) such that the lattice paths from {s1, s2, . . . , sc} to {t1, t2, . . . , tc} (ordered
left-to-right in their respective ranks of {−r − s,−r − s + 1, . . . , r} × {−r − s,−r −
s + 1, . . . , s}) each traverse the leftmost possible route in the order filter and the
lattice paths from {sk−d+1, sk−d+2, . . . , sk} to {tk−d+1, tk−d+2, . . . , tk} traverse the
rightmost routes. We refer to such NILPs as (c,d)-boundary hugging. This notation is
well-defined whenever k > c+ d.

Using this notation, we claim that the above restricts to a bijection

(12) Φk(i− k, j − k)([k−j]+,[k−i]+) × Φk−1(i− k + 1, j − k + 1)([k−j−1]+,[k−i−1]+)

→ Φk(i− k + 1, j − k)([k−j]+,[k−i−1]+) × Φk−1(i− k, j − k + 1)([k−j−1]+,[k−i]+)⋃
Φk(i− k, j − k + 1)([k−j−1]+,[k−i]+) × Φk−1(i− k + 1, j − k)([k−j]+,[k−i−1]+)
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Note that we have assumed that k > [k − i]+ + [k − j]+, so all six of these sets are
well-defined.

To see this, consider Figure 4(a). Consider a pair of NILPs, satisfying the boundary
hugging restriction, associated to

Φk(i− k, j − k)([k−j]+,[k−i]+) × Φk−1(i− k + 1, j − k + 1)([k−j−1]+,[k−i−1]+).

Without loss of generality, assume in our configuration that the horizontal bounce
path starts from the rightmost ◦. We hence swap the colors on the right but leave
them unchanged on the left except for the twigs. (If the horizontal bounce path starts
from the leftmost ◦ instead, we use the mirror image.)

After this swap, we have a configuration that has the form of Figure 4(b). In
particular the pattern of upward steps and downward steps starting from the bottom
of the horizontal bounce path changes the colors of the rightmost boundary hugging
blue and red paths in a predictable way. Furthermore, the horizontal bounce path
cannot reach the leftmost [k − j]+ boundary hugging blue paths since the red steps
are downward steps and cannot intersect the blue steps that are pointed down and
to the left. The resulting configuration after the swap corresponds to a pair of NILPs
associated to the product

Φk(i− k + 1, j − k)([k−j]+,[k−i−1]+) × Φk−1(i− k, j − k + 1)([k−j−1]+,[k−i]+).

Furthermore, because we have used boundary hugging paths as constructed above,
the only elements of these order filters left uncovered by any of these six sets of
NILPs are elements that are in the original [0, r]× [0, s] poset, i.e., with nonnegative
entries for both coordinates. Consequently, the map defined by (12) yields a weight-
preserving-bijection after weighting NILPs L by the products of the Acd’s for points
(c, d) ∈ [0, r] × [0, s] left uncovered by L. We end up associating the lattice paths in
Φk(i− k, j − k)([k−j]+,[k−i]+) to an order filter that has the element (r− [k− j]+, s−
[k − i]+) as its top (rather than (r, s)).

We then obtain Lemma 3.4 as written by translating the bottom and top of
the order filter. Hence, for each εi, εj ∈ {0, 1}, the subset Φk(i − k + εi, j − k +
εj)([k−j−εj ]+,[k−i−εi]+) has

µ([k−j−εj ]+,[k−i−εi]+)ϕk−Mεiεj
(i− k +Mεiεj , j − k +Mεiεj )

as its generating function. �

Example 3.5. We consider the NILPs illustrated in Figure 4(a). In this case,
[k− j]+ = 3 and [k− i]+ = 2 so that we have (3, 2)-boundary hugging blue paths and
(2, 1)-boundary hugging red paths. In this example, the horizontal bounce path starts
from the rightmost ◦ (as opposed to the leftmost ◦). After swapping colors along
the horizontal bounce path, we get the NILPs of Figure 4(b) with (3, 1)-boundary
hugging blue paths, which are left-justified, and (2, 2)-boundary hugging red paths,
which are right-justified.

3.3. Proof of Theorem 2.7(a). We consider the off-boundary case where (i, j)
both covers and is covered by two elements of P . Under this hypothesis, we have the
following identity by the definition of birational rowmotion:

ρk+1
B (i, j) =

(
ρkB(i, j − 1) + ρkB(i− 1, j)

) (
ρk+1
B (i+ 1, j) ‖− ρk+1

B (i, j + 1)
)

ρkB(i, j)
.
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(a)
× × × × × × ×

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

• • • • • • • • •

• • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • •

• × × × × × × × •

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
(b)

× × × × × × ×

◦ ◦ ◦ ◦ ◦ ◦
��
[[ ◦ ◦

• • • • • •
��

• [[ •
��
[[ •

• • • • •
��
[[ •
��
[[ •

��

•CC
��

• ZZ •
��
YY

• • • • •
��

• •CC • •
��

• •EE

• • • •
��

• • [[ •
��
[[ •
��

• •EE

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •DD

• × × × × × × ×

Figure 4. (a) Illustrating a pair of NILPs which are (3, 2)-boundary
hugging and (2, 1)-boundary hugging, respectively. (b) After apply-
ing our bijection, we have (3, 1)-boundary hugging NILPs and (2, 2)-
boundary hugging NILPs.

By induction on k, and the fact that we apply birational rowmotion from top to
bottom, we can rewrite this formula as

(
A
B + C

D

) (
B
G ‖−

D
H

)
E
F

=

(
A
B + C

D

) (
BD

DG + BH

)
E
F

=
(
AD +BC

BD

)(
BD

DG + BH

)(
F

E

)
=
DA
E +BC

E

DG
F +BH

F
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where
A = µ([k−j]+,[k−1−i]+)ϕk−1−M10(i− k + 1 +M10, j − k +M10)

B = µ([k−j]+,[k−1−i]+)ϕk−M10(i− k + 1 +M10, j − k +M10)

C = µ([k−1−j]+,[k−i]+)ϕk−1−M01(i− k +M01, j − k + 1 +M01)

D = µ([k−i]+,[k−1−j]+)ϕk−M01(i− k +M01, j − k + 1 +M01)

E = µ([k−1−j]+,[k−1−i]+)ϕk−1−M11(i− k + 1 +M11, j − k + 1 +M11)

F = µ([k−1−j]+,[k−1−i]+)ϕk−M11(i− k + 1 +M11, j − k + 1 +M11)

G = µ([k−j]+,[k−1−i]+)ϕk+1−M10(i− k + 1 +M10, j − k +M10)

H = µ([k−1−j]+,[k−i]+)ϕk+1−M01(i− k +M01, j − k + 1 +M01)

using Mεi,εj = [k − i− εi]+ + [k − j − εj ]+ for εi, εj ∈ {0, 1}.
To prove Theorem 2.7(a), it therefore suffices to prove, using this above shorthand,

that
D
A

E
+B

C

E
= µ([k−j]+,[k−i]+)ϕk−M00(i− k +M00, j − k +M00)

and
D
G

F
+B

H

F
= µ([k−j]+,[k−i]+)ϕk+1−M00(i− k +M00, j − k +M00).

Letting
α = µ([k−j]+,[k−i]+)ϕk−M00(i− k +M00, j − k +M00)

and β = µ([k−j]+,[k−i]+)ϕk+1−M00(i− k +M00, j − k +M00),
we note that these two equations, i.e.,

αE = BC +DA and βF = GD +HB,

both follow from two applications(4) of Lemma 3.4.

Remark 3.6. The proof is analogous in cases where the element (i, j) covers (or is
covered by) only a single element, with some of the terms in the above expression
being replaced with a 1 or a 0.

3.4. Proof of Theorem 2.7(b). Before continuing with the proof in the case when
M > k, we note the following simplified formula in the special case when M = k.

Claim 3.7. Under the hypotheses of Theorem 2.7, if M = k (i.e., i+ j = k) then

ρk+1
B (i, j) = µ(i,j)

(
ϕ0(i, j)
ϕ1(i, j)

)
= µ(i,j)ρ1

B(i, j) = 1
xr−i,s−j

.

Proof. The first two equalities follow from Theorem 2.7(a), while we prove the last
equality as follows. Since the principal order filter

∨
(i,j) is isomorphic to the product

of chains [0, r − i] × [0, r − j], we easily reduce the claim to the case i = j = k = 0,
i.e., it suffices to show the last equality of

ρ1
B(0, 0) = ϕ0(0, 0)

ϕ1(0, 0) =
∏r
p=0

∏s
q=0 Apq∑

L∈S1(0,0)
∏

(i,j)∈71
(0,0)

(i,j)6∈L1

Aij .
= 1
xr,s

.

In this situation, our family of lattice paths reduces to a single lattice path L1, the
numerator can be thought of as

∏
(p,q)∈P Apq, and 71

(0,0) = P as well. By clearing

(4)The second equation follows from substituting k by k + 1, i by i + 1, and j by j + 1.
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denominators and dividing through by the double-product we equivalently need to
show the following:

Claim 3.8. ∑
L∈S1(0,0)

∏
(i,j)∈L1

A−1
ij = xr,s.

Proof. For the base case s = 0, we get that P is a chain of length r and the only
lattice path consists of every element of P . In this case Ai0 = xi,0

xi−1,0
for i ∈ [r], with

A00 = x00, so the single summand is the telescoping product
x0,0

1 · x1,0

x0,0
· x2,0

x1,0
· · · · xr,0

xr−1,0
= xr,0

as required. Symmetrically, the claim also holds for r = 0 and any s. Now suppose
that rs > 0 and that the claim holds for every rectangular poset whose dimensions are
strictly smaller than [0, r] × [0, s]. Set L(p, q) := {lattice paths from (0, 0) to (p, q)}.
Any lattice path from (0, 0) to (r, s) must go through either (r − 1, s) or (r, s − 1).
Thus, ∑

L∈S1(0,0)

∏
(i,j)∈L1

A−1
ij = A−1

r,s

∑
L∈L(r−1,s)

∏
(i,j)∈L

A−1
ij +A−1

r,s

∑
L∈L(r,s−1)

∏
(i,j)∈L

A−1
ij

= A−1
r,s(xr−1,s + xr,s−1)

= xr,s,

using the induction hypothesis and the definition of Ai,j . This finishes the proofs of
both Claim 3.8 and Claim 3.7. �

We next consider the case when M = k + 1 (i.e., i + j = k − 1). We start with

the degenerate case ρ2
B(0, 0) = ρ2

B(1,0) ‖− ρ2
B(0,1)

ρ1
B

(0,0) =
1

xr−1,s
‖− 1
xr,s−1

1
xrs

=
1

xr−1,s+xr,s−1
1
xrs

=
1
Ars

. Note here that we used Claim 3.7 to simplify the calculations. Continuing by
induction(5),

ρk+1
B (i, j) =

(
ρkB(i, j − 1) + ρkB(i− 1, j)

) (
ρk+1
B (i+ 1, j) ‖− ρk+1

B (i, j + 1)
)

ρkB(i, j)
.

Using Claim 3.7 and the inductive hypothesis, the right-hand side simplifies to(
1

ρ
k−1−(i+j−1)
B

(r−i,s−j+1)
+ 1

ρ
k−1−(i+j−1)
B

(r−i+1,s−j)

)
(1/xr−i−1,s−j ‖− 1/xr−i,s−j−1)

1/xr−i,s−j

=
(

1
ρ1
B(r − i, s− j + 1) + 1

ρ1
B(r − i+ 1, s− j)

)
1

Ar−i,s−j
.

Using Equation (10), we can expand this out further as (assuming i+ j = k − 1)

ρk+1
B (i, j) =

 ∑
paths L

from (r−i,s−j+1)

1∏
(p,q)∈LApq

+
∑

paths L
from (r−i+1,s−j)

1∏
(p,q)∈LApq

 1
Ar−i,s−j

.

(5)As above, if (i, j) only covers one element, we have a single summand rather than two inside
the left parenthesis.
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Any lattice path connecting (r− i, s− j) to (r, s) either goes through (r− i, s− j+ 1)
or through (r− i+ 1, s− j). Combining these into a single sum over lattice paths, we
get

ρk+1
B (i, j) =

∑
paths L from (r−i,s−j)

1∏
(p,q)∈LApq

= ϕ1(r − i, s− j)
ϕ0(r − i, s− j) = 1

ρ1
B(r − i, s− j) ,

agreeing with Theorem 2.7(b) when k = i+ j + 1.
Lastly, when M > k + 1, we use Theorem 2.7(b) inductively to obtain

ρk+1
B (i, j)

=
(
ρkB(i, j − 1) + ρkB(i− 1, j)

) (
ρk+1
B (i+ 1, j) ‖− ρk+1

B (i, j + 1)
)

ρkB(i, j)

=

(
1

ρk−i−j
B

(r−i,s−j+1)
+ 1

ρk−i−j
B

(r−i+1,s−j)

)(
1

ρk−1−i−j
B

(r−i−1,s−j)
‖− 1
ρk−1−i−j
B

(r−i,s−j−1)

)
1

ρk−1−i−j
B

(r−i,s−j)

=
((

ρK+1
B (I, J + 1) ‖− ρK+1

B (I + 1, J)
) (
ρKB (I − 1, J) + ρKB (I, J − 1)

)
ρKB (I, J)

)−1

= 1
ρK+1
B (I, J)

,

where K = k − 1− i− j, I = r − i, J = s− j. This finishes the proof. �

3.5. Proof of file homomesy. In this section we use our main theorem to prove
the file-homomesy result, Theorem 2.16. The proof is a mixture of straighforward
cancellations directly from our formula and some subtle recombinations of terms,
leading to a double-counting argument to show two products are equal. We start with
an illustrative example that shows the initial cancellations.

Example 3.9. Let (r, s) = (4, 3), and d = 2, with corresponding file F =
{(4, 2), (3, 1), (2, 0)}. The following table displays the values (in terms of the ϕ-
polynomials) taken on by each element of the file across a ρB-period.

(4, 2) (3, 1) (2, 0)

k = 0 ϕ0(4, 2)
ϕ1(4, 2)

ϕ0(3, 1)
ϕ1(3, 1)

ϕ0(2, 0)
ϕ1(2, 0)

k = 1 ϕ1(3, 1)
ϕ2(3, 1)

ϕ1(2, 0)
ϕ2(2, 0) µ(1,0)

[
ϕ0(2, 0)
ϕ1(2, 0)

]
k = 2 ϕ2(2, 0)

ϕ3(2, 0) µ(1,0)
[
ϕ1(2, 0)
ϕ2(2, 0)

]
µ(2,0)

[
ϕ0(2, 0)
ϕ1(2, 0)

]
= 1
x23

k = 3 µ(1,0)
[
ϕ2(2, 0)
ϕ3(2, 0)

]
µ(2,0)

[
ϕ1(2, 0)
ϕ2(2, 0)

]
ϕ1(2, 3)
ϕ0(2, 3)

k = 4 µ(2,0)
[
ϕ2(2, 0)
ϕ3(2, 0)

]
µ(3,1)

[
ϕ0(3, 1)
ϕ1(3, 1)

]
= 1
x12

ϕ2(1, 2)
ϕ1(1, 2)

k = 5 µ(3,1)
[
ϕ1(3, 1)
ϕ2(3, 1)

]
ϕ1(1, 2)
ϕ0(1, 2)

ϕ3(0, 1)
ϕ2(0, 1)

k = 6 µ(4,2)
[
ϕ0(4, 2)
ϕ1(4, 2)

]
= 1
x01

ϕ2(0, 1)
ϕ1(0, 1) µ(0,1)

[
ϕ3(0, 1)
ϕ2(0, 1)

]
k = 7 ϕ1(0, 1)

ϕ0(0, 1) µ(0,1)
[
ϕ2(0, 1)
ϕ1(0, 1)

]
µ(1,2)

[
ϕ2(1, 2)
ϕ1(1, 2)

]
k = 8 µ(0,1)

[
ϕ1(0, 1)
ϕ0(0, 1)

]
= x42 µ(1,2)

[
ϕ1(1, 2)
ϕ0(1, 2)

]
= x31 µ(2,3)

[
ϕ1(2, 3)
ϕ0(2, 3)

]
= x20
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We color code entries in red, blue, and green to pair numerators of one entry which
agree with denominators of another entry, hence cancelling in the product of all values.
The remaining entries either are equal to 1 or cancel each other out, as handled below.

For convenience we record them here, listing them down columns from left-to-right:[
ϕ0(4, 2)ϕ1(4, 2)−1ϕ2(3, 1)−1ϕ3(2, 0)−1µ(1,0)ϕ3(2, 0)−1µ(2,0)ϕ3(2, 0)−1

µ(3,1)ϕ2(3, 1)−1µ(4,2)ϕ0(4, 2)µ(4,2)ϕ1(4, 2)−1ϕ0(0, 1)−1µ(0,1)ϕ0(0, 1)−1
]

·
[
ϕ0(3, 1)µ(3,1)ϕ0(3, 1)ϕ0(1, 2)−1µ(1,2)ϕ0(1, 2)−1

]
·
[
ϕ0(2, 0)µ(1,0)ϕ0(2, 0)µ(2,0)ϕ0(2, 0)ϕ1(2, 3)ϕ0(2, 3)−1ϕ2(1, 2)ϕ3(0, 1)µ(0,1)ϕ3(0, 1)

µ(1,2)ϕ2(1, 2)µ(2,3)ϕ1(2, 3)µ(2,3)ϕ0(2, 3)−1
]
.

Proof of Theorem 2.16. Continuing with the assumption that r > s, we start with
the case d < s 6 r and consider iterations of birational rowmotion applied to the file
{(r− c, d− c)}dc=0, i.e., to {(r, d), (r− 1, d− 1), . . . , (r− d, 0)}. From Theorem 2.7(a),
we obtain the following values for ρk+1

B (r − c, d− c):

ϕk(r − c− k, d− c− k)
ϕk+1(r − c− k, d− c− k) for 0 6 k 6 d− c,

µ(k+c−d,0)
[
ϕd−c(r − d, 0)
ϕd−c+1(r − d, 0)

]
for d− c 6 k 6 r − c,

µ(k+c−d,k+c−r)
[
ϕd+r−k−2c(k + c− d, k + c− r)
ϕd+r−k−2c+1(k + c− d, k + c− r)

]
for r − c 6 k 6 r + d− 2c.

And we continue using Theorem 2.7(b) to obtain further values for ρk+1
B (r− c, d− c):

ϕk+2c−r−d(r + d+ 1− k − c, r + s+ 1− k − c)
ϕk+2c−r−d−1(r + d+ 1− k − c, r + s+ 1− k − c)

for r + d+ 1− 2c 6 k 6 r + d+ 1− c,

µ(0,k+c−r−d−1)
[
ϕc+1(0, s− d)
ϕc(0, s− d)

]
for r + d+ 1− c 6 k 6 r + s+ 1− c,

µ(k+c−r−s−1,k+c−r−d−1)
[
ϕr+s+2−k(k + c− r − s− 1, k + c− r − d− 1)
ϕr+s+1−k(k + c− r − s− 1, k + c− r − d− 1)

]
for r + s+ 1− c 6 k 6 r + s+ 1.

Multiplying together these values over all elements in this file and for 0 6 k 6 r+s+1,
many of these numerators and denominators cancel as we saw in Example 3.9. In
particular, generically, the numerator of ρk+1

B (r−c, d−c) cancels with the denominator
of ρkB(r − c− 1, d− c− 1). After these cancellations, we are left with the product of
the following contributions:
(13)(
d−1∏
c=0

ϕ0(r − c, d− c)
)(

d−1∏
c=0

µ(r−c,d−c) [ϕ0(r − c, d− c)]
)(

r−d∏
k=0

µ(k,0) [ϕ0(r − d, 0)]
)
,

(14)(
d∏
c=1

ϕ0(c, s−d+c)
)−1( d∏

c=1
µ(c,s−d+c) [ϕ0(c, s−d+c))]

)−1s−d∏
j=0

µ(0,j) [ϕ0(0, s−d)]

−1

,
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(15)
(

d∏
k=0

ϕk+1(r − k, d− k)
)−1( r∏

k=d+1
µ(k−d,0) [ϕd+1(r − d, 0)]

)−1

(16)
(

r+d∏
k=r+1

µ(k−d,k−r) [ϕr+d+1−k(k − d, k − r)]
)−1

,

(17)(
r+1∏

k=r+1−d
ϕk+d−r(r+1−k, r+s+1−k−d)

)(
r+s+1−d∏
k=r+2

µ(0,k−r−1) [ϕd+1(0, s−d)]
)

(18) ×
(

r+s+1∏
k=r+s+2−d

µ(k+d−r−s−1,k−r−1) [ϕr+s+2−k(k + d− r − s− 1, k − r − 1)]
)
.

Example 3.10. Rearranging the leftover terms at the end of Example 3.9 to match
Equations (13)–(18) results in:

ϕ0(4, 2)ϕ0(3, 1) · µ(4,2)ϕ0(4, 2)µ(3,1)ϕ0(3, 1) · ϕ0(2, 0)µ(1,0)ϕ0(2, 0)µ(2,0)ϕ0(2, 0)(13)

ϕ0(1, 2)−1ϕ0(2, 3)−1 · µ(1,2)ϕ0(1, 2)−1µ(2,3)ϕ0(2, 3)−1 · ϕ0(0, 1)−1µ(0,1)ϕ0(0, 1)−1
(14)

ϕ1(4, 2)−1ϕ2(3, 1)−1ϕ3(2, 0)−1 · µ(1,0)ϕ3(2, 0)−1µ(2,0)ϕ3(2, 0)−1(15)–(16)

·µ(3,1)ϕ2(3, 1)−1µ(4,2)ϕ1(4, 2)−1

ϕ1(2, 3)ϕ2(1, 2)ϕ3(0, 1) · µ(0,1)ϕ3(0, 1) · µ(1,2)ϕ2(1, 2)µ(2,3)ϕ1(2, 3).(17)–(18)

Here the first line (13) comes from the numerators for the k = 0 case, as c =
0, 1, . . . , d− 1, followed by the case where k = d+ r − 2c using the same range for c.
The third continued product of (13) corresponds to the c = d case while k ranges over
d− c = 0, 1, . . . , r− d = r− c. This captures all numerators of the form µ(∗,∗)ϕ0(∗, ∗).

The second line (14) starts with two products corresponding to the denominators
in the k = d + r + 1 − 2c and the k = r + s + 1 cases, as c = 1, 2, . . . , d. The third
continued product of (14) corresponds to the denominator in the c = 0 case as k
ranges from r + d+ 1− c = r + d+ 1, r + d+ 2, . . . , r + s+ 1 = r + s+ 1− c (letting
j = k − r − d− 1). This captures all denominators of the form µ(∗,∗)ϕ0(∗, ∗).

The third and fourth lines (15)–(16) come from the c = 0 case as k = 0, 1, . . . , r+d,
capturing all denominators of the form µ(∗,∗)ϕ`(∗, ∗), for ` > 0, leftover after the
cancellation. The fifth and sixth lines (17)–(18) come from the c = d case as k =
r+ 1− d, r+ 2− d, . . . , r+ s+ 1, capturing all numerators of the form µ(∗,∗)ϕ`(∗, ∗),
for ` > 0, leftover after the cancellation.

We will show that the product over these six lines of contributions collapse to
the value of 1. We begin with Equations (15)–(16): its value is identically equal to 1
because of the families of NILPs that are involved in these products. In particular,
the lattice path formula for ϕk+1(r − k, d− k) involves the points

{s1, s2, . . . , sk+1} = {(r, d− k), (r − 1, d− k + 1), . . . , (r − k, d)}

and
{t1, t2, . . . , tk+1} = {(r, s− k), (r − 1, s− k + 1), . . . , (r − k, s)}.

Hence ϕk+1(r − k, d− k), as k = 0, 1, . . . , d, corresponds to a single (k + 1)-family of
NILPs covering all elements of the rank-selected poset 7k+1

(r−k,d−k) with no elements in
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the complement. Replacing k with the value d or (r+d−k), respectively, yields anal-
ogous NILPs and we also obtain µ(k−d,0)[ϕd+1(r − d, 0)] = µ(k−d,k−r)[ϕr+d+1−k(k −
d, k − r)] = 1 for k = d+ 1, d+ 2, . . . , r and k = r + 1, r + 2, . . . , d+ r, respectively.

Analogously, Equations (17)–(18) are identically equal to 1 by the same argument,
but after applying the antipodal map sending (r− k, d− k) to (k, s− d+ k) and then
replacing k with (r + 1− k).

To finish the proof, it suffices to verify that Equations (13) and (14) cancel each
other out. Key to this is the simple form of ϕ0 as shown in (5).

We first note that
∏d−1
c=0 ϕ0(r − c, d− c) simplifies to the product

∏
(i,j)∈

∨
(r−d+1,1)

A
min(i−r+d,j)
i,j .

(See the entries highlighted in blueish tones on the top of the left-hand side of Exam-
ple 3.11.)

Similarly, after applying the antipodal map and letting
∧

(i,j) := {(a, b) ∈
P : (a, b) 6 (i, j)} denote the principal order ideal based at (i, j), we obtain(∏d−1

c=0 µ
(r−c,d−c) [ϕ0(r − c, d− c)]

)
=
∏

(i,j)∈
∧

(d−1,s−1)
A

min(d−i,s−j)
i,j (highlighted in

greenish tones on the bottom of the left-hand side of Example 3.11.).
Lastly,

(∏r−d
k=0 µ

(k,0) [ϕ0(r − d, 0)]
)

=
∏r
i=0
∏s
j=0 A

min(i+1,r+1−i,d+1)
i,j (as high-

lighted in redish tones on the left-hand side of Example 3.11).
Multiplying these three contributions together, Equation (13) equals


∏

(i,j)∈∨
(r−d+1,1)

A
min(i−r+d,j)
i,j




∏
(i,j)∈∧

(d−1,s−1)

A
min(d−i,s−j)
i,j


 r∏
i=0

s∏
j=0

A
min(i+1,r+1−i,d+1)
i,j



=
r∏
i=0

s∏
j=0

A
min(r+1−i+j,s+1+i−j,d+1)
i,j

where these exponents depend only on the file of the associated element, and behave
palindromically about the center of the poset.

By a similar analysis, Equation (14) equals
(∏r

i=0
∏s
j=0 A

min(r+1−i+j,s+1+i−j,d+1)
i,j

)−1
,

noting that the product is built up by negatively sloping contributions, instead of
positively sloping ones, in this case (as highlighted by the color-coding on the
right-hand side of Example 3.11).

The argument above finishes the proof of Corollary 2.16 in the first case where the
top element of the file is (r, d) and d < s 6 r. The second case, again with d < s 6 r
but where the top element of the file is instead (d, s), follows from the first case by
the symmetry that replaces (i, j) with (j, i).

Finally, the third case, again with the top element of the file (d, s) but where
s 6 d 6 r, follows analogously by using a different pattern for the values obtained by

Algebraic Combinatorics, Vol. 2 #2 (2019) 300



Paths to Understanding ρB

iterating birational rowmotion:

ϕk(d− c− k, s− c− k)
ϕk+1(d− c− k, s− c− k) for 0 6 k 6 s− c,

µ(k+c−s,0)
[
ϕs−c(d− s, 0)
ϕs−c+1(d− s, 0)

]
for s− c 6 k 6 d− c,

µ(k+c−s,k+c−d)
[
ϕs+d−k−2c(k + c− s, k + c− d)
ϕs+d−k−2c+1(k + c− s, k + c− d)

]
for d− c 6 k 6 d+ s− 2c.

ϕk−d−s+2c(r + s+ 1− c− k, d+ s+ 1− c− k)
ϕk−d−s+2c−1(r + s+ 1− c− k, d+ s+ 1− c− k)

for d+ s+ 1− 2c 6 k 6 d+ s+ 1− c,

µ(k−s−1+c−d,0)
[
ϕc+1(r − d, 0)
ϕc(r − d, 0)

]
for d+ s+ 1− c 6 k 6 r + s+ 1− c,

µ(k+c−s−1−d,k+c−r−s−1)
[
ϕr+s+2−k(k + c− s− 1− d, k + c− r − s− 1)
ϕr+s+1−k(k + c− s− 1− d, k + c− r − s− 1)

]
for r + s+ 1− c 6 k 6 r + s+ 1.

This third case includes the possibility of the middle-most file if r + s = 2d where
the antipodal map sends elements from the top half of the file to the bottom half of
the same file. Either way, the same analysis utilizing cancellations of numerators and
denominators applies. �

Example 3.11. Let (r, s) = (4, 3), and d = 2, with corresponding file F =
{(4, 2), (3, 1), (2, 0)}. The left-hand side of Figure 5 shows the contributions cor-
responding to Equation (13), while the right-hand side shows the contributions
corresponding to the reciprocal of Equation (14). For example, in the left picture,
the 6-element order filter at (3, 1) represents ϕ0(3, 1), while the 6-element inter-
val [(0, 0), (1, 2)] represents µ(3,1)ϕ0(3, 1). Either way, the full product can also be
expressed as a product built up file-by-file as

(A40)1(A41A30)2(A42A31A20 ·A40A32A21A10 ·A33A22A11A00 ·A23A12A01)3(A13A02)2(A03)1.

Figure 5. Illustrating the double-counting argument as in Example 3.11.
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4. Connections to other works and future directions
We have noticed the following connections to our work and some open problems for
further exploration.

We went through a large number of candidate bijections, none of which worked, be-
fore finding the colorful combinatorial bijections (in the proofs of Lemmas 3.2 and 3.4)
at the heart of our proof of the main result. Afterwards we found that such “bounce-
path” bijections are already in the literature, particularly in the work of Fulmek
and Kleber [11], which uses precisely this kind of argument (called therein “chang-
ing trails”) to prove Schur function identities, Dodgson’s condensation, and (unsur-
prisingly) Plücker relations. (This work in turn was preceded by Goulden’s earlier
work [14] using “(w, z)-alternating walks” to bijectively prove quadratic identites for
skew-symmetric Schur functions.) In a later paper [10], Fulmek gives a number of
examples to show the wide applicability of this method. In particular, while a Gessel–
Viennot type argument would allow us to turn ϕk(i, j) into a determinantal expres-
sion, given the specific form of identity (11), we did not see an algebraic way to prove
Lemma 3.2 as a direct application of Dodgson condensation or the Desnanot–Jacobi
identity, instead finding the combinatorial bijection above.

In providing a bijective proof that birational RSK satisfies the octahedron recur-
rence, Farber, Hopkins, and Trungsiriwat, define a similar-looking bijection in their
context of “interlacing networks”. They discuss the relationship between the “chang-
ing trails” of [11] and their “τ -involution” [7, p. 366], pointing out that there are
significant differences as well. It would be interesting to gain a clearer understanding
of the relationship between birational rowmotion and birational RSK.

Galashin and Pylyavskyy have introduced a broad generalization of birational row-
motion, called “R-systems”, which are discrete dynamical systems on labelings of a of
strongly connected directed graph. Given a finite poset P , construct a digraph Γ by
(a) turning each covering relation of xl y of P̂ into a directed edge y → x in Γ, (b)
identifying the elements 0̂ and 1̂ as a single vertex s. (See Remark 2.7 of [12] although
their convention is the opposite of ours.) Since the values of an R-system are defined
projectively, we fix the value at the vertex s to be 1 to recover our Definition 2.1 ap-
plied to the dual of P . It is an interesting question to understand how their formula
in terms of arborescences [12, §2] in the special case of a rectangular poset compares
to the k = 1 case of our formula in Theorem 2.7.

Information about the relationship between birational rowmotion and the Y -
systems of Zamolodchikov periodicity can be found in [24, §4.4], the introduction
of [12], and in [34]. Unpublished work of Glick and Grinberg shows that birational
rowmotion formulae are ratios of T -variables, while Y -variables are ratios of the
birational rowmotion formulae. See [27], [18], or [4] for combinatorial formulas for
the T -variables for the Am × An case, also known as solutions to the octahedron
recurrence.

Goncharov and Shen discuss a detropicalization of the Schützenberger involution
of Gelfand–Tsetlin patterns [13, §9.3]. They express this map Ra,b,c as a ratio of
determinants that transforms by the same recurrence as birational rowmotion on
a rectangle. (See Equations (266) and (269).) Another question for future research
is the relationship between our formula for iterated birational rowmotion and the
role of Ra,b,c in [13]. Related work also appears in work of Frieden [9, §4], which
has analogous formulas for detropicalized promotion. These also can be related to
Gelfand–Tsetlin patterns, written as a ratio of determinants, and interpreted in terms
of planar networks.
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A natural open question is to find similar formulae in terms of NILPs for other sit-
uations where rowmotion or birational rowmotion has nice periodicity. These include
several triangular shapes obtained by cutting [0, r] × [0, x] in half vertically or hori-
zontally, or both [16, §9–11], as well as other types of root and minuscule posets [16,
§13]. Perhaps these would also allow one to prove birational homomesies for these
posets, analogous to Corollary 2.13 and Theorem 2.16.
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