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Les lois de probabilité
pour les fonctions statistiques

PAR

R. pE MISES
a Istanbul

En poursuivant certaines recherches dont j’avais donné un premier
résultat dans mon Cowurs des Probabilités publié en 1931 (1), je fus
amené A établir deux nouveaux théorémes de limite, qui ne me sem-
blent pas sans intérét. Je signalais les énoncés essentiels de ces théo-
rémes dans une note insérée au premier volume de la Revue de la
Faculté des Sciences a Istanbul (). D’autre part un article du volume
offert en hommage & M. W. Wirtinger (3) s’occupait d’une consé-
quence particuliére découlant des nouveaux théorémes, savoir de la
« loi des grands nombres pour les fonctions statistiques ». Dans ce qui
suit je me propose de donner la démonstration compléte du premier des
théorémes en vue.

Pour se former uneidée de'ce que je vais prouver, on doit se rappeler
le théoréme classique concernant la somme de # variables aléatoires,
théoréme qui, jusqu’'a nos jours, ne cessa de susciter les plus impor-
tantes recherches de nombreux savants. Etant donnée une suite infinie
de lois de probabilité V; (x;), V, (%5), V3 (#;),... soumises & certaines
restrictions trés faibles, on démontre que la distribution (= loi de
probabilité) pour la somme x; + %, + ... , de ces variables tend vers

(1) Vorlesungen aus dem Gebiete der angewandten Mathematik, Bd. I : « Wahrscheinlich,
keitsrechnung. » Wien u. Leipzig, Deuticke 1931, S. 192-197, § 7, 6 « Erginzungssatze zu den
Gesetzen der grossen Zahlen ».

(2) Revue de la Faculté des Sciences de U Université & Istanbul, t. 1, 1935, fasc. I, p. 61-80.
« Deux nouveaux théorémes de limite dans le calcul des probabilités. »

(3) Monatshefte fiir Math. u. Physik, Wirtinger-Festband, Wien 1936, S. 105-128 : Die
Gesetze der grossen Zahl fiir statistische Funktionen.
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R. DE MISES

la fonction de Gauss, si # augmente infiniment. Il va de soi qu’on peut
remplacer dans cet énoncé la somme par la moyenne arithmétique.
Mais nous allons voir que le théoréme s’étend 4 une classe bien plus
générale de fonctions des x;, %5, .. %,,.

La moyenne arithmétique jouit évidemment des- propriétés sui-
vantes : 1° Elle est une fonction symétrique, c’est-a-dire elle ne dépend
pas de ’ordre dans lequel on range les variables ; 2° Elle ne change pas
si I'on remplace le nombre # de variables par un multiple entier m. #
et si dans le nouvel ensemble de variables toute valeur ancienne se
retrouve m-fois. On dira d’une telle fonction qu’elle ne dépend que
de la 7épartition des variables %,, %,, ... #,. Notamment nous entendons
par « répartition de » variables » une fonction S(x) définie par les x,,
%y, ... %n de la fagon suivante. Pour un x réel quelconque nS(x) est
égal au nombre de celles parmi les variables x5, %, ... %, dont la valeur
ne surpasse pas #. 11 est évident que la répartition S(x) est une fonc-
tion non-décroissante, représentée par une ligne-escalier montant de
zéro 3 un sur des marches dont les hauteurs sont des multiples entiers
de 1/n. Toute fonction f des %y, %, ... ¥» qui s’exprime par S(x) remplit
les conditions signalées ci-dessus pour la moyenne arithmétique et elle
sera nommeée une « fonction statistique » f%S(x) } Le théoréme dont la
démonstration fait 1'objet du présent mémoire dit en substance :

Pour toute fonction statistique f{S(x)} — naturellement sous cer-
taines restrictions liant les V,, (x) et f — la distribution (loi de proba-
bilité) tend vers la Gaussienne, si n tend vers Uinfins.

Les conditions précises que les distributions données V, (x)
doivent remplir, seront indiquées aux §§ 3 et 5. Ici je me borne & donner
quelques exemples de fonctions statistiques afin de justifier le nom que
j’ai donné A cette classe de fonctions. Tout d’abord le moment de
m#me ordre est une fonction statistique, car il s’exprime sous forme d’une
intégrale de Stieltjes (%)

(1  ewise)= Zcp (=)

pour ¢ (x) = x=, Pour de telles fonctions statistiques /inéasres I'exten-

(1) Le simple signe f désignera toujours I'intégration de — o0+ o, le signe f Iinté-
’ a
gration de a a =, etc.
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sion du théoréme classique ne présente aucune difficulté. Mais on peut
envisager aussi les moments rapportés a la moyenne arithmétique «
(les écarts)

(2) M, = / (x—o)mdS(x), o= [ xdS(x),

le plus simple cas de fonctions statistiques non-linéaires. D’une fagon
plus générale, on peut s’occuper de fonctions quelconques des moments,
par exemple du coefficient dit de Lexis

3) L=ir—a

ou N désigne un nombre entier positif donné, « la moyenne arithmé-
tique et M, le moment de deuxié¢me ordre suivant la définition (2).
Un autre exemple se présente dans le coefficient de « concentration »
ou de « disparité » introduit par Gins

(4) = / S(r—8)dx

ol l'on suppose toutes les valeurs de x positives. Enfin la notion de
fonction statistique s’étend aussi aux problémes a plusieurs dimensions.
Si nous désignons par «, p resp. M,, les moyennes arithmétiques et les
moments d’ordre t, »

n n n

o =%Exv» g= ;L:Ezyv ; My =$E (y—a)"(yy—P)*%,
v=1

v=1 v=1

le coefficient bien connu de « corrélation »
Mll

C= —2
(5) V Monzo'

est une telle fonction statistique. Mais nous nous bornerons dans ce
qui suit, au cas d’une seule variable.

La démonstration que je vais établir sera basée sur un lemme élé-
mentaire qui se trouve exposé au § 1. Au § 2 je cite quelques formules,
connues en substance, concernant les probabilités dans le probléme
d’épreuves répétées. Le § 3 donne la démonstration compléte du nou-
veau théoréme pour le cas spécial ou toutes les distributions données
V, (x) sont discontinues et limitées. En ce cas la répartition d'un
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nombre quelconque de variables s’exprime par un nombre borné de
« fréquences relatives », de sorte que la notion générale de fonction
statistique n'y entre pas en jeu. Le § 4 est consacré aux définitions et
aux précisions nécessaires fixant cette notion et celle de la premiére et
deuxiéme dérivée ainsi que du développement Taylorien d’une fonc-
tion statistique. Enfin on trouvera au § 5 la démonstration définitive
qui est le but principal de ce mémoire.

§ 1. Lemme préliminaire

1. Le lemme que nous allons exposer et qui servira de base
pour tout ce qui suit, exprime en substance : Si, étant données deux
fonctions A et B, la distribution de A tend vers la Gaussienne et si en
méme temps l'espérance mathématique de |A-B| tend vers zéro, la
distribution de B tendra vers la distribution Gaussienne elle aussi.
Afin de préciser et de démontrer cet énoncé il faut introduire les
notions suivantes.

Nous envisageons une suite infinie de collectifs C;, C,, C; ... &
distributions quelconques. Soient «, le nombre de dimensions dans C,,
puis x,, %, ... ¥a, les composantes du caractére distinctif (de la variable
aléatoire) et V,, (¥, %3, ... %«,) la distribution dans C,. En particulier
V., (X;, X, ... Xq,) signifie la probabilité pour que dans C, la valeur
de x, ne surpasse pas X, (v=1, 2, ... &,). Si A,, B, sont de fonctions
quelconques des «, on appelle les intégrales de Stieltjes, étendues a I'es-
pace entier

(6) fAnan=E§An§, /B,,dv,,=E§B,,§

les espérances mathématiques de A, resp. B.. D’autre part on définit
les « distributions » P, et Q, de A, resp. B, moyennant les intégrales

7 AV, = Pp(X), aVy = Qn(X)
A <X) Br<X)
La premiére de ces intégrales, étendue 4 tous les points de « I'espace
caractéristique » pour lesquels la valeur de An ne surpasse pas X,
donne la probabilité de I'inégalité A, < X, etc.
Pour fixer les idées on peut imaginer une série infinie d’urnes
dont chacune est remplie de billets numérotés de 1 & k. L’élément du

— 188 —



LES LOIS DE PROBABILITE POUR LES FONCTIONS STATISTIQUES

collectif C, sera un tirage effectué dans les #» premiéres de ces urnes et
son caractére distinctif 'ensemble des chiffres sortis, donc «, = #.
La distribution V,, & » dimensions se trouve en ce cas d’aprés la régie
de multiplication des probabilités, si ’on suppose données les proba-
bilités des chiffres 1 & k pour chaque urne. Comme exemple de fonc-
tions A,, B, on peut envisager la somme des chiffres tirés ou la somme
de leurs carrés, etc. Pour chacune de telles fonctions existe une dis-
tribution A une seule dimension, définie par (7). Mais notre hypothése
générale comprend aussi le cas o1, par exemple, les billets dans certaines
urnes sont pourvus de plusieurs chiffres, etc.

2. Maintenant nous sommes a méme de formuler notre lemme: Sozent
A, et B, deux fonctions du caractére distinctif (de la variable aléatoire)
de C, dans une suite infinie de collectifs C,, Cy, Cy ..., sotent P, (X)
et Q, (X) leurs distributions (lois de probabilité) respectives, enfin

(8) /IAn—Bnlan=EglAn—Bnl%=En
Vespérance mathématique de lewr différence absolue ; alors les équations
(9) lim B, =0, lim Q,(X)=F(X)

n—> n—»

o F(X) est une fonction a dérivée bornée

9) [F'(X) | <M

entrainent I'équation

(9" lim Py(X) = F(X).
n—

3. En voila la démonstration treés simple. Nous désignons, pour
abréger, l'intégrale de dV,, étendue & un domaine dont les points
satisfont a certaines inégalités, comme par exemple A, <X, par
Prob{A,< X}etc. Or on a

P,(X) =Prob{A, <X}, Qu.(X)=Prob{B, <X}

donc, en soustrayant de chaque terme Prob { A, < X,Bs = X{
(10)  Py(X)—Qu(X) = Prob {A, <X, B,>X|—Prob {A,>X, B, < X}

Si / est un nombre positif quelconque on voit immédiatement que
Prob §A, <X, B,>X{ < Prob{A,—B, <—I} + Prob | X< B, < X 4/}

___.189._.
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car le domaine cité au premier membre est compris dans la somme
des deux domaines cités au second (voir fig. 1). Le dernier terme
est égal a Q, (X + 1) — Q, (X). En vertu de (9’) il s’ensuit donc pour
des n assez grands :

(1) Prob{A,<X,B,>X{ < Prob{|A,—B,| =1} +M +¢,

ol ¢, tend vers zéro, si #» augmente infiniment.
Ici le domaine A,—B, < —1 a été remplacé par le plus grand

oz LS
/

B=X

~
5

-t/

Fig. 1

|A,—B,| = /. La méme inégalité se déduit pour le second terme au
deuxiéme membre de (10) et, étant donné que les probabilités sont des
nombres non-négatifs, la valeur absolue de la différence ne peut sur-
passer la plus grande des deux valeurs a soustraire I'une de l'autre.
Donc on tire de (x0) et (11) :
(12) | Py(X) —Qu(X) | < Prob {| A, —B, |2 I} + Ml + ¢,

D’autre part l'espérance mathématique E, définie par (8) est
supérieure ou égale & l'intégrale de |A,—B,| dV,, si cette intégrale
n’est étendue qu'au domaine |A,—B,| =  :

Eng/IAn~Bn|angl dV,.=lPr0b§lAn—Bnlzl§
|An—Bn| =1 |An—Bn| =1

— 190 —
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En portant cette valeur dans (12) nous recevons

(13) IPu(®) —Qu(X) | S22 2 4,

Pour un ¢ positif quelconque on prend ! = ¢/2M, puis on augmente »
autant que 2 M E, (en vertu de la premiére équation (9)) reste au-des-
sous de €%/2, ce qui donne finalement :

(14) |Pa(X) —Qu(X) | <+ + e

Ainsi le lemme est démontré.

4. Faisons remarquer qu’on pourrait remplacer dans I’énoncé de
notre lemme E,, par I’espérance mathématique d’une puissance positive
quelconque de |A,—B,|. La démonstration reste la méme sauf que

dans I’équation (13) le dénominateur / est a remplacer par la puissance
respective de /.

§ 2. Quelques formules coneernant les épreuves répétées

1. Nous aurons besoin dans ce qui suit de quelques formules se

rapportant au probléme des épreuves répétées. Je vais rappeler
briévement ces formules.

Soit C';, C'5, C'g,... une suite infinie de collectifs dont les caractéres
distinctifs (les variables aléatoires) ne prennent que % valeurs dis-
tinctes et connues d’avance f,, f,,... fv. La probabilité pour que dans C’,
la variable prenne la valeur f, sera donnée par $'y,. Une expérience
effectuée sur les # premiers de ces collectifs formera 1’élément du
collectif composé C,. Dans C, la probabilité d’un résultat tel que

foy foe oo fotn (g, 0gy oo 00y =T1,2,... k)
se trouve égale au produit des p’y, :
(13) Py Plana + - Plnoe

Ce qui nous intéresse c’est la probabilité dans C, de tous les résul-
tats, différents quant a I'ordre des f, et tels que la valeur f, s’y trouve
p, n-fois, la valeur f, s’y trouve p, #n-fois, etc. Cette probabilité est égale
a la somme des expressions (15), étendue & un domaine qui correspond
aux chiffres p;, py,... p;. Nous la désignons par P, (p;, pg,r px
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simplement par P, (o) et ne chercherons que les moments de premier et
de deuxiéme ordre de P, (p), c’est-a-dire les espérances mathématiques
et les dispersions (écarts types) des gy,

2. On connait bien le fait, facile & démontrer, que si I’on passe de
distributions (lois de probabilité) données quelconques a la distri-
bution de la somme des variables envisagées (et supposées indépen-
dantes), I’espérance mathématique et la dispersion de cette somme se
trouvent par I'addition des grandeurs correspondantes primordiales.
Or, si nous remplagons pour le moment dans tous nos collectifs
C'3, C,,... C', 1a valeur f, de la variable aléatoire par 1 et toutes les
autres f, (x= I) par o, zp, sera la somme des chiffres sortis. Appelons x
la variable modifiée ne prenant que les valeurs o et 1 dans C',. La proba-
bilité du résultat x = 1 sera p'y,, celle de x = o sera T — p’y;, de sorte
que I'espérance mathématique se trouve égale a

0(T—2"v) + L =2
et la dispersion ou l’espérance mathématique de (x — p’y;)? égale a
(0—p"v)3 (T —2"v1) + (XT—2"v1) "1 = P'wu(T—2"v1)-

D’aprés ce que nous venons de dire, ’espérance mathématique et
la dispersion de #p, sont les sommes de ces expressions, sommes
étendues de v = 1 A #. Donc, d’une fagon générale :

I

(16) ZPuPn(P) =E, { Px % = ﬁEn %”Px} = % (i’,m T+t .. Zb’nv.)

et d’autre part, en désignant le second membre par p,
n

(x7) Z[Px_En % ox{]%Pa(p) = 7% Enf (”Px—”i’nx)’i = ,%5 ZP'W(I—‘P'W)

v=1
Ici nous avions posé

(18) Pnu = % (P'lx + p’zu ‘l‘ e i"mt)

On en déduit facilement I’identité

n

(19) % Z?,\m(l —p'w) = % Prie(T—Pre) — ;LIT: 2 (B've— Pnn)®
V=1 ve=1i

ce qui nous montre que

(20) E, % (Fx‘—ﬁnu)z % = % ?nn(l — ) = %in
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C’est en substance cette formule dont nous nous servirons pour notre
* démonstration.

8. Si l'on désigne par p le vecteur 4 % dimensions dont les compo-
santes sont p;, ps,... o et également par p, le vecteur aux compo-

santes Py, Pngseee Pux ON A

k
(21) (p— ) = ) on—pd®
x=1
Etant donné que

k
(22) Ytw=z
x=1

on déduit de (20) et (21) immédiatement 1'inégalité
. I

(23) Enflo—pa?} =

Nous reviendrons sur ce résultat au § 4.

4. Jusqu’ici nous avons supposé que les distributions données
des C', fussent discontinues. Mais on peut étendre les résultats au cas
de distributions continues de la maniére suivante.

Soit V’y(x) la probabilité pour que dans C’, la variable aléatoire
ne dépasse pas la valeur x. De I'autre c6té, dans le collectif composé C,
nous désignons par #S(x) le nombre des résultats dont la valeur est
inférieure ou égale a x. Prenons une valeur fixe pour x et remplagons
dans tous les C', les valeurs de la variable aléatoire inférieures ou
égales a x par 1, toutes les autres par 0. En ce cas V',(x) et 1-V'y(x)
sont les probabilités du résultat 1 resp. o dans C'y et #S(x) est la
somme des résultats qui se produisent dans une épreuve effectuée
sur C,. On peut donc appliquer ici la formule (16) en posant S(x)

pour p, et V'y(x) pour py,

(24) B §S()} =2 [V3(®) + V(o) + ... V(@]
Introduisons V,(x) pour le deuxiéme membre :

(23) Val®) = 3 [V40) + V'a() + .. V()]
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nous tirerons de (20) I'inégalité
(26) Ey §[S(3) — Va(®)]2} < o Vi) [1-= V()]

qui est valable pour toute valeur de x.
Soit maintenant {(x) une fonction non-négative de x et telle que
l'intégrale de — o a + o

(27) T= 4 S0 —Vallax

existe. Il s’ensuit de (26) que

(28) En{J §=En§ / $(x) [S(x) —Valx)]dx

g% / $(x) Vo (%) [I— V() 1%

Ce résultat nous servira dans le cas général de notre démons-
tration au § 5.

§ 3. Distributions arithmétiques

1. Avant d’aborder le probléme général il sera utile d’étudier le cas
spécial de distributions discontinues ou arithmétiques. Si les variables
aléatoires ne peuvent prendre qu'une de % valeurs fixées d’avance, la
répartition de » résultats d’une épreuve composée est entierement
déterminée par k fréquences relatives py, py,... pr dont la somme est
l'unité. En ce cas une fonction statistique des résultats est simplement
une fonction de k variables pq, pa,... P

On peut partir d’une suite de collectifs C’;, C’5, C's... & distributions
quelconques pourvu que ces distributions soient définies toutes dans
le méme espace caractéristique. Imaginons par exemple les tirages
effectués dans une suite d’urnes dont chacune est remplie de billets
portant des chiffres réels quelconques. Nous subdivisons I'espace
caractéristique — dans I'exemple I'axe réel — en k& parties L;, L,,... Ly
et désignons par 'y, la probabilité pour que le caractére distinctif
(la variable aléatoire) de C’y tombe dans L, (x =1, 2,.. k;
v =1, 2, 3..). De cette fagon les distributions primordiales des C’,
sont réduites A des distributions discontinues, définies par les p'y,. Le
théoréme que nous allons établir dans le présent paragraphe porte sur
tout systéme de collectifs a distributions arithmétiques.

Nous désignons par C, la composition de C’;, C'y, ... C’, (donc la
suite de tirages effectués dans les # premiéres urnes) et par p,, la
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moyenne arithmétique des p'y,, voir (18). Le résultat d’un tirage
composé, ou un €lément de C,, comprend p,# valeurs tombant dans L,,
puis p, # tombant dans L,,... enfin g, # valeurs qui appartiennent a L,.
Les variables g, varient dans un domaine D défini par
(29) D:ipi=0,p:=20, ...00=20;p1Fps+ ... =1

A c6té du point p,, p,,... p; nous étudions les points dont les coor-
données sont Py, Pus... pm (n = 1, 2, ...). Ils se trouvent dans D pour
toute valeur de #. A partir d’un certain # ces points ne rempliront
qu’une certaine partie D; de D qui, dans des cas spéciaux, pourra se
réduire de plus en plus & un seul point. Pour abréger nous écrirons
aussi p au lieu de g, py,... p; et p, au lieu de p,;, Pug,.-. P quand il
ne s'agit que d’indiquer les variables dont une fonction dépend. La
dérivée d’une fonction f (p) par rapport a p, au point p, (c’est-A-dire
pour p,, = Py, x = I, 2, ... k) sera désignée par f,.

2. Notre théoréeme de limite s’exprime, pour le cas de distributions
arithmétiques, dans ces termes :

Soit f (p) ume fonction des fréquences relatives jouissant des propriétés
sutvantes

10 f (o) est borné dans le domaine D défini par (29) ;

2° f (p) admet des dérivées continues et bornées de premier et deuxiéme
ordre, en chaque point de D, @ partir d'un certain n ;

30 Il existe deux indices o, B différents Uun de I autre et un nombre
positif v tels quw’d partiv d’un certain n :

(30) P'ra>0 P> [ fa—1fa1 >n
Sous ces conditions la distribution des probabilités pour f(e) tend

vers la distribution de Gauss, si n augmente infiniment. En d’autres
termes : La probabilité P, (X) de I'inégalité

(31) ‘ H, [f(e) —/(pn)] =X
satisfait, uniformément powr toutes les valeurs de X I'équation
(22) fim P,(X) = O(X) = / e

n—» @ \/ T

ouw H, est défini par

k 2
(33) sz =_2 Efzxpvn (Efxp'vx)
x=1
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3. Quant 4 la démonstration faisons remarquer d’abord que la
fonction f (p) admet, pour des # assez grands, en vertu des hypothéses
1° et 2° 'emploi de la formule de Taylor de deuxiéme ordre au point

P = Prux ©

k
(34) _—f pn = E _‘ﬁm{)fx +R
1...%
(53) =2 (ool
A

Ici les f,a (p') sont, d’aprés 'hypothése 10, des fonctions bornées, point
sur lequel nous reviendrons ci-dessous.
En nous reportant au lemme établi au § 1 nous posons

k

66 Aa=HIE)— /), Ba=Hn Y ox—buhe

x=1

de sorte que A, —B, devient égal 4 H, R. Evidemment A, et B,
sont des fonctions dépendant du résultat d’une épreuve qu’on effectue
sur les # collectifs C’;, C',,... C',. Nous chercherons & démontrer :
1° Que la distribution Q, (X) de B, tend vers la Gaussienne ® (X);
2° Que 'espérance mathématique de la valeur absolue de la diffé-
rence A, — B, = H, R tend vers zéro, » augmentant 4 l'infini.
Ensuite le lemme de § 1 fournira immédiatement le résultat en
vue, savoir que P, (X) tend vers la distribution de Gauss.

4 Pour prouver la premiére de ces deux propositions fixons le
caractére distinctif dans les collectifs C’;, C'5,... C’, de la fagon sui-
vante. A toute valeur de la variable aléatoire tombant dans L, nous
attachons le nombre f,, a toute valeur tombant dans L, le nombre f,, etc.
Les f1, for-. [ (premiéres dérivées de f au point p,, = p,,) ne dépendent
que de %, ce sont donc des constantes dans I'étude de C,, collectif
composé des C’y, C'y, ... C',.

Dans le collectif C', existe maintenant une distribution discontinue
ol la probabilité 'y, correspond a la valeur £, de la variable aléatoire.
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La moyenne 4, et la dispersion 7%, (écart type) de cette distribution
sont données par

k k k k
(37) “V=foi>'w; 72V=Z(fx"““v)2i"vx=2fzx "ye— .foi"vu
x=1 x=1 x=1

®=1

Si I'on effectue une expérience sur les # collectifs C’y, C'5, ... C/,,
la somme x des variables aléatoires (la somme de différentes valeurs f£,)
est égale a

k
(38) x=n Y oube
x=1

D’aprés des regles bien connues l'espérance mathématique et la dis-
persion de cette somme sont, dans C,, égales aux sommes des a,
resp. des 7%,. En tenant compte de (18) et (33) nous trouvons

n’ n k k
(39) Zav:E Efx?'vu:-”xfxpmi 272\,=21n_1—:n.

v=1 v=1x=1 x=1 v=1

De I’autre c6té on sait que la distribution d’une somme de # varia-
bles indépendantes s’approche, sous certaines conditions, de la fonction
de Gauss. Citons comme conditions suffisantes 1’existence d’une borne
supérieure des moments absolus d’ordre trois et I’existence d'une borne
inférieure, différente de zéro, des dispersions (}). Ces deux conditions
sont remplies dans notre cas de distributions arithmétiques. Car, en
vertu de la deuxiéme hypothése les f, sont bornés d’ou on déduit
pour f,, < M:

k
(40) E'fxlsﬁ’\m<M3
=1
tandis qu’en vertu de la troisiéme hypothése on trouve
% = plvalfa—av)® + p'vB(fB—“v)z

o aa(E) (]

Donc la somme x, définie en (38) aura pour n infini une distribution
Gaussienne dont la moyenne et la dispersion sont données par (39).

(1) Naturellement on pourrait atténuer ces conditions et, par conséquent, notre hypothése 3.
Mais cette extension n’est pas de grande importance.
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Mais notre fonction B, introduite dans (36) est une fonction linéaire
de % :

k n
(42) B, = %—” [x—anxm] = %’ [x——z av]
. x=1

v=1

11 s’ensuit que la distribution Q,(X) de B, sera une Gaussienne dont
la moyenne s’annule et dont la dispersion est (H,, : #)2 — fois celle de x,

I
donc d’aprés (39) égale & e Ainsi nous avons démontré que

(43) lim Qu(X) =—\7I: / e,
n—»o T

5. Quant 2 la deuxiéme des propositions du n° 3 nous écrivons le
reste de la formule de Taylor (35) sous la forme

(44) R =2 (p—p(p)

Ici p et p, désignent, comme ci-dessus, les vecteurs dont les compo-
santes sont les p,, resp. les p,y et f* (¢’) la deuxiéme dérivée de f prise
sur la « droite » qui méne du point $, au point p. D’aprés notre hypo-
thése 2° les dérivées de second ordre sont bornées, donc on peut sup-
poser |f” (¢')] < N ce qui donne

(45) R|<ZN(p— p)?

La formule (23) déduite au § 2 nous donne une borne supérieure pour
I'espérance mathématique du deuxiéme membre. Vu que, d’apres (34)
et (36) la différence A, — B, est égale & H,R, il résulte de (23)

I H,N
(46)  En{lAn—Bul} =HE. {R{ < SHNE.{(e—p)*{ = 77

Mais la deuxiéme des .équations (39) et l'inégalité (41) nous montrent
que

n2 H, I
’ —_— = 2 3 —_— pe——
w frmeMom, Bl
. ve=1
donc
(48) lim E,}]A;—Ba|} < lim -1;1 %:o
n—»x n—»o
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Ainsi les deux conditions du lemme sont remplies et notre théoréme
est démontré.

6. Ajoutons une remarque. Souvent on s’intéresse non autant a la
distribution compléte d’une fonction telle que f (p), mais a sa moyenne
b, et sa dispersion s, seulement. Plusieurs auteurs ont indiqué comme
valeurs approchées, valables pour des # assez grands :

n k k 2
(49) by~ f(pn) ; SanN;tIE [ s ve— (Efx?'\m) ]
v=1}] x=1 ®=1

Mais je n’ai jamais trouvé une déduction correcte de ces formules.
Notre démonstration précédente prouve que — sous les conditions
1° 4 3° pour les f et les V,, — les seconds membres de (49) sont la
moyenne et la dispersion de la distribution-limite de f (p).

D’autre part on peut arriver, sans tenir compte de la condition 3°,a
établir directement les formules (49) de la fagon suivante. La pre-
miére expression (39) nous montre que l'espérance mathématique de
2 (py — Pux) fx S'annule. Etant donné que 'espérance mathématique

du deuxieéme membre de (45) tend vers zéro comme ;z d’aprés (23), la
formule (34) fournit :
(50) B {10 =160 +0 (3)

Il s’ensuit que
sta = B [/ — Eal112} = §/e) 1687} +0 (55)

Le carré du deuxiéme membre de (34) se compose de trois termes dont
le premier, le carré de X (py, — P,x) fx, admet comme espérance mathé-
matique exactement le second membre de la deuxiéme équation (49).
Le troisiéme terme est le carré de R, expression soumise a l'inéga-
lité (45). Mais on peut déduire d’une fagon analogue, bien que plus

A

compliquée a celle qui fut employée au § 2 que
I
(51) En%(P—i’n)‘l% é,ﬁ

: < s I
ce qui montre que l'espérance mathématique de R? est d’ordre —.
"
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Enfin, en appréciant le terme mixte 2 R X (p,,—9,,) f,. d’aprés l'iné-
galité de Schwarz on obtient

52) s%=$é ﬁm 'W~(im>'m)a [s+0() |+o(Z).
=1

=1f x=1

Cette équation prouve que le second membre de la deuxiéme for-
mule (49) donne une approximation pour s?, sous la condition que sa

I
valeur dépasse sensiblement —. Dans le cas ol notre hypothése 3° est
2

4
vérifiée cette valeur est au-dessus de %3 : 2 #. Mais si la somme sur v
est convergente, la formule peut tomber en défaut.

§ 4. Les fonetions statistiques

1. Une « distribution » V(x), on le sait bien, est définie comme
fonction monotone, non-décroissante et prenant les valeurs o resp. 1
pour x = F o

(53) Vo) =0, V()=

Nous ajoutons la condition que V(x) soit continue du co6té droit,
C’est-d-dire qu'en chaque point V(x) soit la limite des valeurs
V(x + &), si € tend vers zéro par valeurs positives. Dans un collectif a
une seule dimension la probabilité pour que le caractére distinctif (la
variable aléatoire) ne surpasse pas x est toujours donnée par une telle
distribution V(x).

D’autre part nous envisageons un ensemble de # nombres réels
quelconques, par exemple les résultats de » expériences effectuées
sur 7 collectifs quelconques. J’appelle « 7épartition » de ces » nombres
une fonction S(x) définie par le fait que #nS(x) est égale au nombre
de celles parmi les valeurs #;, %s,... %, qui ne surpassent pas x. Evidem-
ment S(x) est représentée par une ligne-escalier dont les marches sont
des multiples entiers de 1/n. Pour toute valeur de # la répartition de »
chiffres réels est un cas particulier d'une distribution.

Nous aurons affaire dans ce qui suit a certains ensembles J de
distributions. Nous supposerons toujours qu'un tel ensemble com-
prenne des répartitions a valeur quelconque de # et au surplus cer-
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taines distributions d’autre nature. Soient V(x) et V;(x) deux dis-
tributions appartenant & J. Si I'on fait varier ¢ entre o et 1, les dis-
tributions

(54) Vi) +4V(x) —Vi(x)], o=i=1

constituent le « segment de droite » de V,(») & V(x). Un ensemble qui
comprend tous les segments déterminés par deux de ses éléments
s’appellera un ensemble « convexe ». Un tel ensemble convexe J pourra
étre défini par exemple par toutes les distributions V(x) pour lesquelles,
dans un certain point ¥ = x;, la valeur V(x,) est comprise entre deux
valeurs données a et b, positives et inférieures A I'unité. Ou bien un
ensemble convexe est constitué par les distributions V(x) pour les-
quelles le produit V(x — V) s’annule pour || infini comme une cer-
taine puissance négative de |x|, etc. '

2. Soit J un ensemble de distributions suivant les explications
données et attachons & chaque fonction V(x) de J une certaine
valeur f : je dirai que f est une fonction statistique, définie sur J, et
j’écrirai f{V(x)}.

En effet, toutes les fonctions dont on s’occupe dans la statistique
générale, les moyennes, écarts quadratiques ou moments d’ordre
quelconque, les coefficients de corrélation, le quotient de Lexis, etc.,
sont de telles fonctions statistiques. Si, dans I’expression de f { V() }
on substitue pour V(x) une répartition S(x), on peut regarder f
comme une fonction des # variables %, %,, ... %,, fonction jouissant des
deux propriétés suivantes : 1) Elle est symétrique, c’est-a-dire la valeur
de f ne change pas si I'on remplace x,, par %) et simultanément x)
par %, ; 2) la valeur de f ne change pas, si I'on passe de # & un multiple
entier 2n, 3u,... et que toute valeur #,, #,,... %, se retrouve 2 fois,
3 fois,... parmi les nouvelles variables.

Si 'on n’admet comme « variable indépendante » de f que des
fonctions V(x) et S(x) qui restent constantes partout sauf certains
points connus au préalable ¥ = a,, a,,... @, f s'exprime comme fonc-
tion de % variables ordinaires, a savoir comme fonction des fréquences
relatives p;, p,... px dansle cas de S, ou comme fonction des probabilités
ponctuelles p,, P,,... P, au cas de V. Ainsi on revient au probléme traité
dans le paragraphe précédent ol il ne s’agissait que de distributions
arithmétiques et de répartitions & points de saut fixes.

— 20I —
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3. L’exemple le plus simple d’une fonction statistique est la moyenne
arithmétique définie par I'intégrale de Stieltjes / % d V(x). Comme cas

plus général examinons la fonction statistique Zinéaire, donnée sous
forme d’une intégrale.

55) 1vei= f waves

ol {(x) est une fonction continue quelconque. Si nous prenons pour
V(x) la répartition S(x) des nombres %;, %,,... ¥, on a

(56) Fism =5 ¥4

v=1

Siy est borné, f est défini pour toute distribution V(x), au cas contraire
I’ensemble J ol f existe est limité par une certaine condition a remplir
par les V(x) dans l'infini. Toujours nous supposerons absolument
convergentes les intégrales généralisées que nous rencontrons dans les
définitions de fonctions statistiques.

Comme exemple d’une fonction statistique non-linéaire signalons
les moments ou écarts d’ordre m :

(5) M, — f G—aravi),  a= [ xaviy)

D’une facon plus générale, toute fonction ressortant d’une combinai-
son d’intégrales de Stieltjes comme (55) est une fonction statistique,
par exemple le quotient dit de Lexis (N constant)

(58) L= Z%M—’_a)

Mais il y a encore d’autres cas qui ne se raménent pas a cette forme,
par exemple une intégrale double

(59) ivwi= [ [ vesaveavs)

Evidemment, on peut étendre la définition des fonctions statis-
tiques aux cas de collectifs 4 plusieurs dimensions. On montrera dans
cet ordre d’idées que le coefficient bien connu de corrélation et de
méme beaucoup d’autres coefficients caractéristiques d’une distri-
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bution sont des fonctions statistiques. Mais je me bornerai dans le
présent mémoire au cas d’une seule dimension.

4. Du point de vue de I'analyse les fonctions statistiques sont des
« fonctions de ligne », notion qui, pour la premiére fois, fut étudiée de
plus prés par M. Vito Volterra. Toutefois le fait que dans nos cas la
« variable indépendante » est restreinte & un ensemble de distributions,
comporte certaines modifications. Nous suivons, en substance, M. Vol-
terra en introduisant la notion de dérivée d’'une fonction statistique de
la fagon suivante.

Soit f | V(x) % définie sur un ensemble convexe J et soit V,(x) une
distribution déterminée appartenant & J. Nous dirons que f [V(x)!
est dérivable au « point » V,(x), si les deux conditions sont remplies :

1° La fonction de ¢ qui s’exprime par
(60) HVi@) + 4V —V1)()§
est dérivable par rapport a ¢ pour ¢ = o, quelle que soit la distribution
V(x) de J;

20 Cette dérivée qui dépendra de V(x) et V,(x) s’exprime par
une intégrale de Stieltjes

60 HVA®) + UV —V3)() o= / Vi@t —V)0)

ou f' dépend de V,(x) et d’une variable y, mais pas de V(x).

Ces conditions remplies nous appelons f'{V(x), v{ la dérivée de
la fonction statistique « au point » V(x). On voit bien que (59) com-
porte l'existence d’une sorte de « théoréme de la différentielle totale »
pour les fonctions statistiques dites dérivables.

La dérivée d’une fonction /inéaire, donnée sous la forme (55) ne
dépend pas de V,(x) et est égale & §(y) :

6 5 / YL, + 67— V)8 o = / o)AV — V1))

Si f est fonction de plusieurs intégrales de Stieltjes
63) f=F(@A,B,C,...); A=/oc(x)dV(x), B=/B(x)dV(x),...
la dérivée se trouve sous la forme

64 FVE.Y} = ok ay) + 22 B) + - -
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Pour l’écart d’ordre m, défini par (57), la dérivée est

(65) IVt = y—a)"—mMu_y
La fonction non-linéaire (59) admet la dérivée
(66) Fiviyl= / [W(xy) + (y,#)]aV (%)

Faisons observer enfin qu'une constante additive (expression ne
dépendant pas de y) ajoutée a4 f n’a aucune importance, vu que

/ d(V —V,) s’annule toujours.

5. Nous aurons besoin dans ce qui suit, aussi de la deuxiéme dérivée
d’une fonction statistique f{V(x)}. Elle sera désignée par f"{V(),
¥, 2} et définie par

©7) LV + YV — V)@ o

=//f”%V(x)’y,z»%d(V—Vl)(y)-d(V—Vl)(z)

Pour une fonction linéaire, exprimée par une intégrale de Stieltjes
sous la forme (55) la deuxiéme dérivée s’annule. Si f dépend de plu-
sieurs expressions linéaires, voir (63), on trouve

»RF RRS)
(68) iV R)y.2) = Sps )l + 2 57 «0)BE + - .
Le moment ou I'écart de m*me ordre, défini par (57) admet comme
deuxi¢me dérivée
(69) 1 {V@).y.2 | = —2maly —a)" =t 4 mim—1)Myu 29z

En particulier pour m = 2 la seconde dérivée de I'écart quadratique

A

est égale a
(70) P iV(n)p.zt=—2yz

Ici nous avons supprimé le terme 4az, puisqu'une expression ne
dépendant que d’une seule des deux variables y et z est sans impor-

tance dans /7, vu que l'intégrale / d(V—V,)(x) s’annule. Aussi est-il

permis d’échanger les variables y, z dans chaque terme de f* { V(x), v z}
sans que (67) ne soit altéré.
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Pour la fonction définie par l'intégrale double (59) la deuxiéme
dérivée se trouve indépendante de V(x) et égale a

(71) FivE) et =240 )

6. Enfin nous allons étudier la formule de Taylor pour une
fonction statistique, en nous bornant 4 I'ordre deux. Dans le cas ordi-
naire d’une fonction d'une seule variable F(¢f) la formule dont il
s’agit est

(72) F(r)—F(0) =F/(0) + 3F(¥), o=H=r1

Etant données une distribution fixe V,(¥) et une distribution varia-
ble V(x) nous prenons pour F(z) la fonction indiquée par (60)

F(t) =1 Vi(x) + ((V—V3)(%) }

Le premier membre de (72) et le premier terme du second membre
de (72) deviennent égaux a

(73) FAVi—#$vil  resp. / F Vi)t d(V—Vi)()

Quant au dernier terme de (72) nous posons

) VW MV—VIE=Vile), =t
ce qui donne
(735) Vi (#) + €V — V) (x) = Va(x) + #/(V—Vy)(x)

La deuxiéme dérivée par rapport 4 ¢ au point ¢ = S est la deuxiéme
dérivée par rapport a ¢’ au point # = o, divisée par (I — )2 :

(70 F(8) = gy g Vs H VW b
Vu que
) V— Vo= (1— SV —V)

on arrive a
8 F(9)= / / P Va0 i} AV —V)B) d(V— Vi) (2

On peut exprimer ce résultat comme suit : Si la fonction statis-
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tique f|{V(x)| est deux fois dérivable sur tout le « segment » menant
de V(%) d V(x), une formule « Taylorienne » subsiste :

09 AVE—vei= [ rivestay—vio)
+2 [ 1 v vV 4 — V@

o0ty V(%) est définie par (74) pour une valewr de 3 entre o et 1.

Cette formule en combinaison avec le lemme déduit au § I nous
fournira le moyen de démontrer notre théoréme général. Ajoutons qu’il
peut arriver que le premier terme du deuxiéme membre de (779)
devient identiquement nul. C’est le cas p. e. pour la fonction

(80) w{V(x)}= / A®)[V (%) — Vy(x)]2dx

que j’ai introduite il y a quelque temps comme un « critére » dans la
statistique mathématique (%).!

§ 5. Le théoréme général

1. Il s’agit du méme probléme qui était exposé au § 3, seulement
seront admises maintenant les distributions continues. On donne une
suite infinie de collectifs C’;, C’5, C'5... chacun a une seule dimen-
sion. Les distributions correspondantes sont V'y(x), V'y(¥), V'3(%)...
Une expérience effectuée sur les # premiers de ces collectifs fournit
n nombres réels x;, %,,... %, dont la répartition sera désignée par
S,(%). Si f}V(x)} est une fonction statistique, I'expérience envisagée
fait ressortir une certaine valeur f|S,(x) |. D’apres les régles élémen-
taires du calcul des probabilités la valeur de f§{S,(x)} est soumise &
une distribution (loi de probabilité) P, (X) qui est entiérement définie
par V,'(x), V'3(%),... V';(x). Notamment, H, et K, étant deux cons-
tantes, P, (X) signifiera la probabilité pour que la valeur de
H,[f} S.(x) t — K,], déduite de 'expérience sur les » premiers collec-
tifs, ne surpasse pas X. Nous nous proposons de démontrer que, sous
certaines conditions, P, (X) tend vers la distribution de Gauss pour #
infini.

(1) Voir le livre cité au début, p. 316.
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Le théoréme classique de Laplace-Tchebychef arréte le méme fait
pour le cas o1 f se réduit a4 la moyenne arithmétique / xdS,(x). On

voit immédiatement que le théoréme s’étend sans difficulté & une fonc-
tion statistique /inéasre quelconque. Or, ce qui nous intéresse c’est
surtout le cas de fonctions non-linéaires.

Il peut arriver que les répartitions qui se produisent au cours d’une
expérience sont soumises 4 une certaine restriction, parexemplequeleurs
points de saut ne se trouvent que dans la partie positive de '’axe des
%, etc. En tout cas il y aura un certain ensemble de répartitions admis-
sibles pour toute valeur de #. D’autre part les distributions données
V'y(x) donnent lieu & une autre suite de distributions, les moyennes
arithmétiques définies par

6D Val) =2 [Va®) +Va®) + ... V@], n=1z,...

Nous supposerons dans ce qui suit, que f | V(x) | soit définie dans un
ensemble convexe J qui comprend toutes les répartitions admissibles
et tous les V,(x), au moins a partir d'un certain #.

2. Maintenant je vais donner 1’énoncé précis de notre premier
théoréme de limite.

Soit £{V(x){ une fonction statistique satisfaisant aux conditions
suivantes :

10 £{ V(x) | est deux fois dérivable dans un ensemble convexe | qui
comprend toutes les répartitions S, (xX) qui peuvent se présenter au cours des
expériences, et toutes les distributions moyennes V,(x) définies par (81),
au moins @ partir d'un certain n ;

2° La premiére dérivée £'|V,(x), z| remplit des conditions suffi-
santes pour la validité du théoréme classique sur Uapplication de la loi
de Gauss. Par exemple, si pour v =1, 2, 3,...

(82) ¢v=/f'%Vn(x),2§dV'v(z)» 7”y=/[/'%Vn(x),zi—av]’dV’v(z)
Cv=flf’{Vn(x),zg-a\,‘z"'edV’v(z)

2

il suffit que s,2 =72+ 7,2 4 ... 7,2 divisé par » 2+¢ (¢ > 0) tende
vers l'infini et que les C, soient bornés ;
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3° Pour la seconde dérivée £ | V(x),y, z | il existe une fonction posi-
tive  (x) telle que pour T,(x) = V,(x) — S,(x), quelle que soit la
(83)

distribution V(x) de J, l'inégalité
/ / 7 $V@),9.2} dTa)dTa) | < / G (%) T2, (x)dx

entraine la velation

84) tim = f @) Va()r— Vala)lir=o.

n—>ow N

Sous ces conditions la distribution des probabilités de f|S,(x) |
tend vers la distribution de Gauss pour n infini. En d’autres termes :
St P,(X) signifie la probabilité de I'inégalité

(85) H, [/ §Sa(0) }—F{Vam) }] =X
on a, uniformément pour toutes les valeurs de X :
I X —u
(86) lim Po(X) =—— du = (X
Jim P00 =—= ®)

ot H, est déterminé par
I s2

[ S ivastavis)— ( S rivwstae) |

3. La démonstration se fonde sur la formule de Taylor que nous
avons déduite au paragraphe précédent. Si l'on porte dans (79)
S.(x) a la place de V() et V,(x) a la place de V,(x), on obtient, en
multipliant par H,

(88) H, [/ {Su(@){ —1{Va(x) {] = H, / 1 {Val@).9} aT(y)
+ Hn / f” :y: dTn(y)dTn(Z)

Ici T, est la différence S, —V,, et V(x) au dernier terme signifie
une distribution située sur le « segment » de S, 4 V,,.

Ecrivons A, pour le premier membre, B, pour le premier terme du
deuxiéme, il vient :

69) Av=H[/{S)]—/{Va@]], B.—H, / 1 Va9 1)
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(90) A— n=§H,. / / 13V (#%),9,2} ATu(y)dTo(2)

L’emploi de (79) est permis en vertu de la premiere hypothese
sur f|V(x){.

Selon le lemme établi au § 1 il suffira maintenant de démontrer :

1° que la distribution Q,(X) de B, tend vers la Gaussienne ® (X) ;

2° Que l’espérance mathématique de la valeur absolue de la diffé-
rence |A, —B,| tend vers zéro, si » augmente infiniment.

On en déduira, en vertu du lemme cité, que la distribution P, (X)
de A, tend vers la Gaussienne, elle aussi, et ainsi notre théoréme géné-
ral sera prouvé.

4. Quant a la premiére de ces deux propositions, introduisons
dans (89) T,x) = S,(¥) — V,(x), en tenant compte de (81) et de la

définition d’une intégrale comme / $dS, (%), voir (55), (56). Ainsi on

obtient

0 B=tNrvesi—T Y 1 vmstaro

v=1 v=1

Ici, pour un # fixe, les %, %,..., %, signifient les résultats immédiats
de n épreuves effectuées sur les #» premiers des collectifs donnés
C’y, C'y,... C',. Imaginons qu’on change le caractére distinctif de C’,
de sorte que la valeur x soit remplacée par f'{V,(x), %,{. En ce cas
la premiere somme dans (91) est une somme de # variables aléatoires
indépendantes, et chaque terme de la deuxi¢me somme est égal 4 la
valeur moyenne d’une de ces variables. Si nous écrivons, pour abréger,
fy pour f' { V,(x), ,{, en nous servant en méme temps de la notation a,
introduite par la premiére des équations (82), nous arrivons a ’expres-
sion simple

(62) B,=22 ¥ (h—a)

v=1

H
Abstraction faite du facteur constant — nous voyons ici une somme
n

de #n variables aléatoires dont les valeurs moyennes s’annulent. La
deuxiéme hypothése sur les fonctions f{ V(%) | garantit que la distri-
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bution de cette somme tend vers une distribution de Gauss. D’aprés
la deuxiéme des équations (82) la dispersion de la v¥®*¢ de nos varia-
bles aléatoires est égale a 7%, donc la dispersion de leur somme égale
as,?=rn2-+ 7?4 ..7.2 enfin la dispersion de '’expression compléte
B, égale a

H,\ 2
(93) (——) (12 1%+ .. ) =

n

H2,s2, I

n2 2

en vertu de (87). Ainsi il est démontré : S Q,(X) signifie la probabilité
pour que B, ne surpasse pas X, on a

(94) lim Q,(X) =®(X) = :/I: f X,
T

n—» ®

5. Examinons maintenant la différence A, — B, définie par (o).
D’aprés la troisitme hypothése sur les fonctions f{V(x)| admises,
voir 'équation (83), on a

(95) |Ay—B, = 22 / $8)[Sax) — V)2,

Il s’agit de trouver l'espérance mathématique du deuxiéme membre.
Pour y arriver il ne faut qu’utiliser les formules établies au § 2.
Les équations (27) et (28) nous donnent immédiatement :

H,
(96) |Ap—B,| é?l
donc

o Edla Bt sTEO =2 [mvien—viee

Mais le facteur H, : 2n s’exprime a l'aide de (87) :

H, I
8 Ha B}
(98) 2n Sn\/ 2 .
D’aprés I'équation (84) de I’hypothése 3° il s’ensuit donc que
(99) lim E,§|As—Bal}=0
n—w

Or, les deux conditions (9), (9') du lemme du § 1 étant remplies,
on est arrivé au résultat définitif : Si P,(X) signifie la probabilité
pour que la valeur de A,, définie par (89) ne surpasse pas X, on a

I X —u?
100 lim P,(X) =0(X) =—= e du
(x00) Tim Py =
Ainsi le théoréme général est établi.

— 2I0 —



LES LOIS DE PROBABILITE POUR LES FONCTIONS STATISTIQUES

6. Nous ajoutons quelques remarques sur les fonctions f % V(x) % qui
satisfont & nos hypothéses. Tout d’abord, il n’y a aucune question pour

les fonctions linéaires / «(x)dV (x). Leur deuxiéme dérivée s’annule,

la premiére est égale & «(x), indépendante de V(). Les seules condi-
tions a remplir sont, quant aux «(x), les conditions nécessaires pour
que le théoréme classique subsiste pour les variables aléatoires a(x)
soumises aux lois de distribution V’,(x).
Quant aux fonctions non-linéaires le type qui se présente le plus
- souvent est celui qui était signalé dans (63), (64) et (68) c’est-a-dire
une fonction F de plusieurs intégrales de Stieltjes A, B, C,..

63) f=F(A,B,C,...);A=/a(x) _/g

Ici on pourra supposer que les dérivées de premier et de second ordre
de F par rapport aux A, B, C,... soient bornées, si V(x) est restreinte
aux distributions V,(x) & partir d'un certain #. D’aprés (64) la pre-
miére dérivée de f{ V(x)| se compose de termes comme
oF oF
5a%0) 3R B0). ...
Notre hypothése 20 sera donc remplie, si chacune des fonctions a(x),
B(x),... satisfait aux conditions du théoréme classique, au sens indiqué
ci-dessus.
Pour examiner la troisitme hypothése constatons d’abord que,
selon (68), la seconde dérivée de f se compose de termes comme
22F I2F
5A: %0, SoEe0)B@E, ...
Etant donné que les 22F [oA? etc. restent bornés, le premier membre
de (83) dépendra d’expressions comme

(To1) / f (¥)dTn(2) = / ou(x)@L(x) . / B(x)dTy(x).

Supposons les «(x), B(x),... dérivables et telles que les premiéres
dérivées a'(x), B'(%),... possédent la majorante P, (%)

(102) lo(2) | <d(x), 1B'(x) [ <u(#), ...

On trouve en intégrant par parties

/ () AT (x) = — / o ()T () d

— 2II —
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et, en appliquant l'inégalité de Schwarz pour un ¢(x) > o

/oc() (1) dx =/°‘ ") 4 fq,x)'r dx

Il s’ensuit en vertu de (101) et (102) que

/ / (y)B(2) T n(y)dTn(2) / b , / () T2

Donc pour que notre hypothése 3° soit remplie, il suffit que I'intégrale

(xos) %ﬁ dx

(103

(104)

soit convergenté pour une fonction §(x) pour laquelle (84) subsiste.

Si par exemple f§V(x)§ est une fonction de la moyenne et de la
dispersion (comme le coefficient de Lexis) on a «(x) = x, B(x) = (x-a)2
ol a est restreint 3 un intervalle fini. Il existe donc une constante ¢ > 1
de sorte que Y;(x) = ¢ 4 2|x| surpasse |a'(x)] et |p'(¥)|. L’intégrale
(T05) sera convergente, si ¢ augmente dans linfini comme |x|3 +¢
pour un ¢ > 0. Donc, si les distributions données V',(x) remplissent
la condition que le produit |x|*+ ¢ V'y(x) pour x = — oo et le pro-
duit [x]| 4+ ¢ [1— V',(x)] pour ¥ = oo restent au-dessous d’un nombre
indépendant de v, les intégrales (84) seront convergentes uniformément
par rapport a # et, par conséquent, I’hypothese 3° sera vérifiée. D’une
fagon plus générale, si f dépend de moments jusqu’a l'ordre m, il
suffit que les V’y(x) resp. les 1 — V’,(x) s’annulent dans l'infini au
moins comme |x|-2"2¢, D’ailleurs la seconde hypothése demande,

en substance, que les intégrales comme / o2 + €4V, etc., convergent,

donc que les V', resp. 1 — V’, s'annulent dans l'infini au moins
comme |x|-2"-1-¢ pour un ¢ positif.

D’autre part pour la fonction 2, mentionnée dans (80), on voit que
notre hypothése 2° n’est aucunement remplie si I'on prend V,(x) 4 la
place de V(). Ici la premiére dérivée f'{ V,(x), y{ est identiquement
nulle, comme il était dit a1a fin du § 4, donc tous les 7%, s’annulent, etc.
M. N. Smirnoff (1) vient de publier un résultat trés intéressant concer-
nant la distribution-limite de w2

(1) C. R. Paris, t. CCII, 1936, P. 449.
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