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Abstract

Let A := {a < |x| < 1 + a} ⊂ RN and p � 2. We consider the Neumann problem

ε2�u − u + up = 0 in A, ∂νu = 0 on ∂A.

Let λ = 1/ε2. When λ is large, we prove the existence of a smooth curve {(λ,u(λ))} consisting of radially symmetric and radially
decreasing solutions concentrating on {|x| = a}. Moreover, checking the transversality condition, we show that this curve has
infinitely many symmetry breaking bifurcation points from which continua consisting of nonradially symmetric solutions emanate.
If N = 2, then the closure of each bifurcating continuum is locally homeomorphic to a disk. When the domain is a rectangle
(0,1) × (0, a) ⊂ R2, we show that a curve consisting of one-dimensional solutions concentrating on {0} × [0, a] has infinitely
many symmetry breaking bifurcation points. Extending this solution with even reflection, we obtain a new entire solution.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

In this paper we are concerned with the Neumann problem

ε2�u − u + up = 0 in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω, (1.1)

where Ω ⊂ RN is a bounded domain, p � 2 and ε > 0 is small. Let a > 0. We consider the case Ω = A or R, where

A := {
x ∈ RN ; a < |x| < a + 1

}
and R := {

(x, y) ∈ R2; 0 < x < 1, 0 < y < a
}
.

Note that a scaling argument shows that (1.1) with Ω = A (resp. Ω = R) is equivalent to (1.1) for an arbitrary annulus
(resp. rectangle) and that

1 < p <
N + 2

N − 2
(1.2)
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is not assumed. Singularly perturbed elliptic equations arise in physical and biological models. In particular, the
Neumann problem (1.1) on a bounded domain appears in the stationary problems of the Keller–Segel model for
chemotaxis aggregation [12] and the shadow system of the Gierer–Meinhardt model for biological pattern forma-
tions [8]. For these two decades the problem (1.1) has considerable attention and solutions with various shapes have
been found. See [30,31] for single-peak solutions, [10] for multi-peak solutions and [1,2] for solutions concentrating
on a sphere of inhomogeneous equations. A boundary concentrating solution is one of the solutions of (1.1). For an
arbitrary planar smooth bounded domain this solution was established by Malchiodi and Montenegro [17]. The aim of
this paper is to study the solution structure of (1.1) from a viewpoint of the bifurcation theory when Ω = A or R. Since
we mainly consider the solution concentrating not on a point but on a boundary, we do not need (1.2). In the proofs
of the main results below we prove the monotonicity of a certain eigenvalue and obtain the asymptotic expansion. In
order to prove these properties we need that f ∈ C2([0,∞)). Thus the assumption p � 2 is needed.

It is convenient for our aim to consider the equation of the form

�u + λf (u) = 0 in Ω, ∂νu = 0 on ∂Ω, u > 0 in Ω. (NΩ )

Throughout the present article we define f (u) := −u+up and λ := 1
ε2 . Then (NΩ ) is equivalent to (1.1). When Ω = A

(resp. Ω = R), we show that (NΩ ) has a smooth curve {(λ,u(λ))} of radially symmetric (resp. one-dimensional)
solutions. We say that (λ∗, u(λ∗)) is a symmetry breaking bifurcation point if there is a sequence {(λ̃j , ũj )}j�0 con-
sisting of nonradially symmetric (resp. non-one-dimensional) solutions and converging to (λ∗, u(λ∗)), i.e., (λ̃j , ũj ) →
(λ∗, u(λ∗)) as j → ∞. The first main result is

Theorem A. Let p � 2. (NA) has a smooth curve CA := {(λ,u(λ))}λ>λ0 consisting of radially symmetric and radi-
ally decreasing solutions concentrating on {|x| = a}. CA has infinitely many symmetry breaking bifurcation points
{(λk, u(λk))}k>k0 , where λk → ∞ as k → ∞. When N = 2, for each k > k0, the closure of the bifurcating solutions
near (λk, u(λk)) is locally homeomorphic to a disk.

The precise statements of Theorem A are in Lemma 4.1, Theorems 4.6 and 4.12 and Corollary 4.13.
The second main result is about (NR).

Theorem B. Let p � 2. (NR) has a smooth curve CR := {(λ,u(λ))}λ>λ0 consisting of one-dimensional solutions con-
centrating on {0} × [0, a]. The continuum including CR bifurcates from the branch of constant solutions {(λ,1)}λ>0.
CR has infinitely many symmetry breaking bifurcation points {(λk, u(λk))}k>k0 , where λk → ∞ as k → ∞. The clo-
sure of the bifurcating solutions near (λk, u(λk)) is locally homeomorphic to a curve.

In particular, if a > 0 is small, then every symmetry breaking bifurcation point on the continuum including CR can
be obtained. See Theorem 3.5 and Corollary 3.6 for the precise statement. Extending this solution with even reflection,
we obtain a new entire solution (Corollary 3.7).

Let us explain technical details. Let B0, B1 be two Banach spaces. We consider the abstract functional equation

E(λ,u) = 0, (1.3)

where E : R × B0 → B1 is a nonlinear smooth mapping. We assume that {(λ,0)}λ∈R are solutions of (1.3). We call
{(λ,0)} the trivial branch. When the linearized eigenvalue problem

Eu(λ∗,0)[φ] = μφ (1.4)

has a simple zero eigenvalue, the Crandall–Rabinowitz bifurcation theorem [4] (Proposition 2.1 in the present paper)
guarantees that a curve consisting of nontrivial solutions emanates from (λ∗,0) provided that

Eλu(λ∗,0)[φ∗] /∈ RanEu(λ∗,0), (1.5)

where φ∗ is an eigenfunction associated to the simple zero eigenvalue. This condition is called the transversality
condition (or the nondegeneracy condition). See (b) in Proposition 2.1. In the proofs of Theorems A and B we consider
the case where the trivial branch {(λ, v(λ))} consists of nonconstant solutions. Specifically, we consider the equation
Ẽ(λ,u) = 0 in the case where Ẽ(λ,u) = 0 has a smooth curve of nonconstant solutions {(λ, v(λ))}. Let E(λ,u) :=
Ẽ(λ,u + v(λ)). If Eu(λ∗,0) has a simple zero eigenvalue, then (1.5) becomes

Ẽλu

(
λ∗, v(λ∗)

)[φ∗] + Ẽuu

(
λ∗, v(λ∗)

) [
vλ(λ∗),φ∗

]
/∈ Ran Ẽu

(
λ∗, v(λ∗)

)
. (1.6)
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It is well known that (1.6) is equivalent to

dμ

dλ

∣∣∣∣
λ=λ∗

�= 0, (1.7)

where μ is a unique near-zero eigenvalue of the eigenvalue problem

Eu(λ,0)[φ] = μφ (1.8)

provided that λ is near λ∗. When Eu is defined in a Hilbert space with the inner product 〈·,·〉 and Eu is self-adjoint, we
briefly show this equivalence. We can show that the eigenpair (μ,φ) is continuously differentiable in λ. Differentiating
Eu(λ,0)[φ] = μφ in λ, we have

Eλu(λ,0)[φ] + Eu(λ,0)[φλ] = μλφ + μφλ. (1.9)

Calculating 〈(1.9),φ〉 − 〈(1.8),φλ〉 and evaluating it at λ = λ∗, we have〈
Eλu(λ∗,0)[φ∗], φ∗

〉 = μλ(λ∗)〈φ∗, φ∗〉. (1.10)

Since Eλu(λ∗,0)[φ∗] = Ẽλu(λ∗, v(λ∗))[φ∗] + Ẽuu(λ∗, v(λ∗))[vλ(λ∗),φ∗], by (1.10) we have

dμ

dλ

∣∣∣∣
λ=λ∗

= 〈Ẽλu(λ∗, v(λ∗))[φ∗] + Ẽuu(λ∗, v(λ∗))[vλ(λ∗),φ∗], φ∗〉
〈φ∗, φ∗〉 , (1.11)

which indicates the equivalence between (1.6) and (1.7).
When the trivial solution v(λ) depends on λ, i.e., vλ �≡ 0, it is hard to check (1.7), because it is almost impossible

to obtain exact expressions of vλ and φ∗ and it is difficult to determine the sign of the RHS of (1.11). Shi [24]
studied the same bifurcation problem as (NR) for a general nonlinear term f . However, he assumed the transversality
condition in [24, Proposition 4.2]. (There are several exceptional cases where the transversality condition can be
checked. Lin [13] considered the Dirichlet problem of the Liouville–Gel’fand equation �u + λeu = 0 on an annulus.
He showed that there is a radial branch having infinitely many symmetry breaking bifurcation points, checking the
transversality condition. In this problem the radial solutions and eigenfunctions associated to a zero eigenvalue can be
written explicitly, hence the situation seems rare.) In order to avoid checking the transversality condition, topological
methods using the degree theory have been developed [23,26] and applied to many problems. In [9,14,15,22,27,6]
symmetry breaking bifurcations of Dirichlet problems in annuli were studied with topological methods. If topological
methods are used, then we cannot obtain information on the shape of bifurcating solutions. The shape can be used for
the study of the global property of the bifurcating branch. (However, the global property is beyond the scope of this
article. In [18–20] one can prove the existence of unbounded continua of nonradially symmetric solutions, using the
nodal structure of bifurcating solutions.)

In the proofs of Theorems A and B we directly check (1.7) when λ is large (asymptotic transversality). In the
case Ω = A the radially symmetric and radially decreasing solution u(r) is close to a decreasing solution in a finite
interval (Lemma 4.1). Using this closeness, we obtain an apriori estimate of a certain eigenfunction (4.25). The
boundedness of the solution (4.3) and this apriori estimate enable us to use the dominated convergence theorem in
Lemmas 4.15 and 4.16. Then we can calculate the RHS of (1.11) and obtain the asymptotic behavior of a certain
eigenvalue (Lemma 4.9) which indicates (1.7). Using the transversality condition, we can make detailed studies on
not only the shape of solutions but also the shape of bifurcating branches. See Corollary 4.13.

This work was motivated by results on symmetry breaking bifurcations of Srikanth [27] and Gladiali et al. [9].
The transversality property has been first proved by Bartsch et al. [3]. The authors of [9] studied symmetry breaking
bifurcations of (NA) with fixed λ for expanding annuli a → ∞. They showed the monotonicity of a certain eigenvalue,
which is corresponding to ν̂0 in Lemma 4.9. However, the singularly perturbed problem is not considered. In their
problem the term including va tends to 0 as a → ∞, where {(a, v(a))} is a (nonconstant) trivial branch. In our
problem the corresponding term does not tend to 0, hence a detailed analysis is needed. See Lemma 4.16.

This article consists of four sections. In Section 2 we recall known results about a bifurcation theorem and useful
properties of the one-dimensional problem (N(0,1)). In Sections 3 and 4 we prove Theorems B and A, respectively.
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Notations.

• N := {1,2,3, . . .}, N0 := {0,1,2, . . .} and Z := {0,±1,±2, . . .}.
• Lp(Ω) denotes the usual Lebesgue space with the norm ‖ · ‖p .
• Hk(Ω) denotes the usual Sobolev space with the norm ‖ · ‖Hk .
• H 2

N(Ω) denotes the Banach space consisting of the functions u ∈ H 2(Ω) that satisfy the Neumann boundary
condition on ∂Ω .

• B(B0,B1) denotes the Banach space of the bounded linear operators from B0 to B1 equipped with the operator
norm ‖ · ‖B , where B0 and B1 are two Banach spaces.

• 〈f0(x), f1(x)〉 := ∫
f0(x)f1(x) dx.

2. Known results

2.1. Bifurcation from a simple eigenvalue

Let B0, B1 be two Banach spaces. We consider the abstract functional equation (1.3), where E : R × B0 → B1 is
a nonlinear smooth mapping. We assume that E(λ,0) = 0 for λ ∈ R. Crandall and Rabinowitz [4] studied nontrivial
solutions near the trivial branch {(λ,0)} and gave a sufficient condition for bifurcation. The celebrated Crandall–
Rabinowitz bifurcation theorem [4] is the following:

Proposition 2.1. (See [4, Theorems 1 and 1.7].) Let E be as defined above. If the following conditions hold:

(a) There are φ∗ and λ∗ such that dim kerEu(λ∗,0) = codim RanEu(λ∗,0) = 1 and kerEu(λ∗,0) = span〈φ∗〉,
(b) Eλu(λ∗,0)[φ∗] /∈ RanEu(λ∗,0).

Then there are a neighborhood U of (λ∗,0) ∈ R × B0, an interval (−ε0, ε0) and continuous functions
ϕ : (−ε0, ε0) → R, ψ : (−ε0, ε0) → B0 such that ϕ(0) = λ∗, ψ(0) = 0 and

E−1(0) ∩ U = {(
ϕ(τ), τφ∗ + τψ(τ)

); |τ | < ε0
} ∪ {

(t,0); (t,0) ∈ U
}
.

2.2. One-dimensional problem

We consider the problem

ε2uxx + f (u) = 0 in (0,1), ux = 0 at x = 0,1, (2.1)

where f (u) = −u + up and p > 1. Let ũ(ξ) := u(x) and ξ := x
ε

. We also consider the stretched problem

ũξξ + f (ũ) = 0 in (0, dε), ũξ = 0 at ξ = 0, dε, (2.2)

where dε = 1
ε

.

2.2.1. Homoclinic orbit
For p > 1 the system of equations for (ũ, ṽ) (ṽ := ũξ ) in the phase plane{

ũξ = ṽ,

ṽξ = −f (ũ)
(2.3)

has a saddle point at (0,0) and a center (1,0). There is a unique homoclinic solution around the center connecting the
saddle to itself. This homoclinic solution can be written explicitly as

w(ξ) :=
(

p + 1

2

) 1
p−1

(
cosh

(
p − 1

2
ξ

))− 2
p−1

. (2.4)
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2.2.2. Continuum of monotone solutions
From the phase portrait for (ũ, ṽ) it is clear that all the orbits on {ũ > 0} satisfying the Neumann boundary condi-

tions are inside of the homoclinic orbit which is tear-shaped and that every orbit in this region is periodic one. Hence
ũ is a solution of (2.2) if and only if an integral multiple of its half period is equal to the interval length dε . Now we
will find a decreasing solution. Let ũ(ξ) be a decreasing solution that has maximum α and minimum β . Then

0 < β < 1 < α < ᾱ :=
(

p + 1

2

) 1
p−1

. (2.5)

Multiplying (2.2) by ũξ and integrating it, we have

ũ2
ξ = F(ũ) − F(β), F (α) = F(β) and F(ũ) = ũ2 − 2

p + 1
ũp+1. (2.6)

The half period is given by the integral

T (α) :=
α∫

β

dũ√
F(ũ) − F(β)

. (2.7)

Thus ũ is a decreasing solution of (2.2) if and only if T (α) = dε . (2.7) was studied by De Groen and Karadzhov [7].
Among other things, they obtained

Proposition 2.2. There is a small ε0 > 0 such that the problem (2.1) has a smooth curve of decreasing solutions
{u(x; ε)}0<ε<ε0 , which can be described as a graph of ε, satisfying the following: For δ > 0, there exists ε1 > 0 such
that, if 0 < ε < ε1, then∣∣ũ(ξ ; ε) − w(ξ)

∣∣ < δ for ξ ∈ [0, dε], (2.8)

where ũ(ξ ; ε) := u(x; ε) (ξ = x
ε
). Moreover, the first two eigenvalues of the eigenvalue problem

ε2φxx + f ′(u)φ = ηφ in (0,1), φx = 0 at x = 0,1 (2.9)

are

η0(ε) = (p − 1)(p + 3)

4
+ O

(
e− 2

ε
)
,

η1(ε)

{
= − (p−1)(5−p)

4 + O(e− 3−p
ε ) (1 < p < 3),

� −1 + O(e− 2
ε ) (3 � p).

(2.10)

In particular, if ε > 0 is small, then η1(ε) < 0 < η0(ε) and u(x; ε) is nondegenerate.

Let u(x; ε) be the decreasing solution obtained in Proposition 2.2. Let L := ε2∂xx + f ′(u(x; ε)) ∈ B(H 2
N(0,1),

L2(0,1)). In Section 4 we construct a boundary concentrating solution of (NA), perturbing u(x; ε). Hence we need a
property of L.

Proposition 2.3. Let L be as defined above. If ε > 0 is small, then there is C0 > 0 such that, for μ ∈ [−C0,C0],
(L − μ)−1 ∈ B(L2,H 2

N) exists and there is C1 > 0 independent of ε and μ ∈ [−C0,C0] such that
‖(L − μ)−1‖B(L2,H 2

N) < C1.

This proposition immediately follows from (2.10) in Proposition 2.2, because every eigenvalue of L is uniformly
away from 0 when ε > 0 is small.

2.2.3. Limit problem

Proposition 2.2 shows that ũ(ξ)
ε↓0−−→ w(ξ) in the sense of (2.8). In this subsection we recall some known result

of the “limiting” operator L̃ := ∂ξξ + f ′(w) ∈ B(H 2
N(0,∞),L2(0,∞)). The operator L̃ has a continuous spectrum

(−∞,−1] and may have discrete eigenvalues outside (−∞,−1] [11, p. 140]. In our study the first eigenpair is
important.
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Proposition 2.4. The eigenvalue problem

L̃φ̃ = η̃φ̃ in (0,∞), φ̃ξ (0) = 0, φ̃ > 0, φ̃ ∈ L2(0,∞)

has a unique (up to multiples) solution

φ̃ = cw
p+1

2 (c ∈ R), η̃ = (p − 1)(p + 3)

4
.

We set

α0 :=
(

p + 1

2

) p+1
2(p−1)

. (2.11)

Then ‖w p+1
2 ‖∞ = α0.

By direct calculation we see that φ̃1 := w
3−p

2 − 1
2

p+3
p+1w

p+1
2 and η̃1 := (p−1)(5−p)

4 satisfy

L̃φ̃1 = η̃1φ̃1 in (0,∞), ∂ξ φ̃1(0) = 0, φ̃1 ∈ L2(0,∞).

It is known that if 1 < p < 3, then η̃1 is the second eigenvalue and that if p � 3, then L̃ has only one eigenvalue
above −1. In particular, 0 is not an eigenvalue and L̃ is invertible.

In the proofs of Theorems A and B we use (2.12) below. The validity of the transversality condition follows
from (2.12).

Proposition 2.5. Let w be as defined by (2.4). Then

∞∫
0

(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ = (p − 1)(p + 3)

4

∞∫
0

wp+1 dξ. (2.12)

We briefly prove this equality. We have(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 = −wp+1 + pw2p + p(p − 1)

2
ξwξw

2p−1.

By integration by parts we have

∞∫
0

ξwξw
2p−1 dξ = − 1

2p

∞∫
0

w2p dξ.

Therefore,

LHS of (2.12) =
∫ (

−wp+1 + pw2p − p − 1

4
w2p

)
dξ =

∫ (
−wp+1 + 3p + 1

4
w2p

)
dξ. (2.13)

Since w is the homoclinic orbit, w satisfies w2
ξ − w2 + 2

p+1wp+1 = 0, hence∫ (
w2

ξw
p−1 − wp+1 + 2

p + 1
w2p

)
dξ = 0. (2.14)

Multiplying wξξ − w + wp = 0 by wp

p
and integrating it, we have

0 =
∫ (

1

p
wξξw

p − 1

p
wp+1 + 1

p
w2p

)
dξ =

∫ (
−w2

ξw
p−1 − 1

p
wp+1 + 1

p
w2p

)
dξ. (2.15)

Adding (2.14) and (2.15), we have∫ [
−

(
1 + 1

)
wp+1 +

(
1 + 2

)
w2p

]
dξ = 0,
p p p + 1
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which indicates∫ (
−wp+1 + 3p + 1

4
w2p

)
dξ = (p − 1)(p + 3)

4

∫
wp+1 dξ. (2.16)

Substituting (2.16) into (2.13), we obtain (2.12).

Remark 2.6. We can prove (2.12) by direct calculation. The integral
∫ ∞

0 wq dξ can be written in terms of the Gamma
function �(·),

∞∫
0

wq dξ =
(

p + 1

2

) q
p−1 1

p − 1

√
π�(

q
p−1 )

�(
q

p−1 + 1
2 )

.

We have∫ (
−wp+1 + 3p + 1

4
w2p

)
dξ

=
(

p + 1

2

) p+1
p−1

√
π

p − 1

(
(3p + 1)(p + 1)

8

�(
2p

p−1 )

�(
2p

p−1 + 1
2 )

− �(
p+1
p−1 )

�(
p+1
p−1 + 1

2 )

)
. (2.17)

It follows from a property of the Gamma function that

�

(
2p

p − 1

)
= p + 1

p − 1
�

(
p + 1

p − 1

)
, �

(
2p

p − 1
+ 1

2

)
=

(
p + 1

p − 1
+ 1

2

)
�

(
p + 1

p − 1
+ 1

2

)
.

Using these equalities, we have

RHS of (2.17) = (p − 1)(p + 3)

4

(
p + 1

2

) p+1
p−1 1

p − 1

√
π�(

p+1
p−1 )

�(
p+1
p−1 + 1

2 )
= (p − 1)(p + 3)

4

∫
wp+1 dξ.

Thus (2.12) follows from this equality and (2.13).

In Sections 3 and 4 we need a solution of

L̃φ = −f (w) in (0,∞), φξ (0) = 0, φ ∈ L2(0,∞). (2.18)

Proposition 2.7. There is a unique solution φ(ξ) := 1
2ξwξ (ξ) of (2.18).

A direct calculation shows that 1
2ξwξ is a solution of (2.18). Since L̃ is invertible, the uniqueness follows from this

invertibility.

2.3. Apriori estimate

We use the following apriori estimate in order to use the dominated convergence theorem.

Proposition 2.8. Let Ω be a bounded domain. Let φ be a C2 function satisfying the equation

ε2(a(x)φxx + b(x)φx

) − c(x)φ = 0 in Ω,

where the coefficients a(x) and b(x) are bounded and c(x) � c0 > 0 for all x ∈ Ω . Then there is a constant C0 > 0
depending only on a(x), b(x), c0 such that∣∣φ(x)

∣∣ � 2
(
sup

∣∣φ(x)
∣∣) exp

(
−C0δ(x)

ε

)
,

where δ(x) is the distance from x to ∂Ω .
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See [21, p. 840] for details of this proposition.
Using this proposition, we have

Lemma 2.9. Let u(x) be a decreasing solution of (2.1). Then there are C0 > 0, C1 > 0 such that∣∣u(x)
∣∣ � 2‖u‖∞eC0C1e− C0x

ε for x ∈ (C1ε,1). (2.19)

Proof. By (2.8) we see that there are a small δ0 > 0 and C1 > 0 such that for ε > 0, |u(x)| < δ0 (C1ε < x < 1).
Because −1 + up−1 � −1 + δ

p−1
0 < 0, Proposition 2.8 is applicable. We extends u(x) with even reflection at x = 1.

We define Ω = (C1ε,2 − C1ε). Then we see that δ(x) = x − C1ε (C1ε � x � 1), where δ(x) is a function defined in
Proposition 2.8. Since u is a solution on Ω , we apply Proposition 2.8 and obtain∣∣u(x)

∣∣ � 2‖u‖∞ exp

(
−C0(x − C1ε)

ε

)
= RHS of (2.19). �

3. Ω = R

3.1. Preliminaries

We consider (NR). An immediate extension of a solution of the one-dimensional problem (2.1) is a solution of
(NR). We identify the decreasing solution on [0,1] with the solution of (NR) and denote them by the same u. By
Proposition 2.2 we obtain a smooth curve of solutions of (NR), CR := {(λ,u(λ))}λ>λ0 , concentrating on {0} × [0, a]
which can be described as a smooth graph of λ. First we obtain degenerate solutions on CR . Here a degenerate solution
is a solution having a zero eigenvalue. Let L := � + λf ′(u) ∈ B(H 2

N(R),L2(R)). The linearized eigenvalue problem
is

LΦ = μΦ in R, ∂νΦ = 0 on ∂R. (3.1)

Now u is a solution of

uxx + λf (u) = 0 in (0,1), ux = 0 at x = 0,1. (3.2)

Let L̂ := ∂xx +λf ′(u) ∈ B(H 2
N(0,1),L2(0,1)) and let ∂yy ∈ B(H 2

N(0, a),L2(0, a)). Let {η̂j (λ)}j�0 denote the eigen-
values of L̂ . In this section we mainly study the first eigenvalue of L̂. Multiplying (2.9) by λ, we obtain the relation

η̂j (λ) = ληj

(
1√
λ

)
. (3.3)

In particular,

η̂0(λ) = (p − 1)(p + 3)

4
λ + O

(
λe−2

√
λ
)
,

η̂1(λ)

{
= − (p−1)(5−p)

4 λ + O(λe−(3−p)
√

λ) (1 < p < 3),

� −λ + O(λe−2
√

λ) (3 � p).
(3.4)

Let ζk := (πk)2

a2 (k ∈ N0). Let σ(·) denote the spectrum of a linear operator. Then it is clear that σ(∂yy) = {−ζk}k�0.

The next proposition shows that every eigenvalue of L can be described by eigenvalues of L̂ and ∂yy .

Proposition 3.1. The following holds:

σ(L) = σ(L̂) + σ(∂yy).

Moreover, each eigenfunction of (3.1) can be written as

Φj,k(x, y) := φj (x) cos

(
kπy

a

)
(j, k ∈ N0), (3.5)

where φj (x) is an eigenfunction of L̂.
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Using this proposition, we obtain a degenerate solution on CR which is a candidate of a bifurcation point.

Lemma 3.2. Let ε > 0 be small. (3.1) has a zero eigenvalue if and only if there exists k � 1 such that η̂0(λ) − ζk = 0.

Proof. Because of Proposition 3.1, each eigenvalue can be written η̂j −ζk (j, k ∈ N0). When ε > 0 is small, η̂1(λ) < 0
(3.4). Since ζk � 0 (k � 0), η̂j − ζk = 0 if and only if j = 0. �

From Lemma 3.2 it is important to study the behavior of η̂0(λ) as λ → ∞. In the next lemma we show that
η̂0(λ) ∈ C1. In general it is difficult to determine the sign of dη̂0(λ)

dλ
. However, the following lemma, which is the main

technical result of this section, shows that this sign is positive when λ is large.

Lemma 3.3. Let p � 2. η̂0(λ) is continuously differentiable in λ and the following holds:

dη̂0(λ)

dλ
= (p − 1)(p + 3)

4
+ o(1) (λ → ∞). (3.6)

We postpone the proof of Lemma 3.3. We prove this lemma in Section 3.2 below.

Remark 3.4. (3.6) follows from a formal differentiation of η̂0(λ) in (3.4).

Assuming Lemma 3.3, we obtain

Theorem 3.5. Let p � 2. On the continuum CR = {(λ,u(λ))}λ>λ0 there are infinitely many symmetry breaking bi-
furcation points {(λk, u(λk))}k>k0 , where λk → ∞ as k → ∞. Specifically, the closure of the non-one-dimensional
solutions near (λk, u(λk)) is a curve, namely,

there are continuous functions λ(τ) : (−ε0, ε0) → R and

Ψ (τ) : (−ε0, ε0) → L2 such that λ(0) = λk, Ψ (0) = 0 and the curve can be written as{(
λ(τ), u

(
λ(τ)

) + τΦ0,k + τΨ (τ)
); λ(0) = λk, |τ | is small

}
.

Here Φ0,k is the eigenfunction defined by (3.5). (3.7)

Proof. Because of Lemma 3.3(i), there is a large λ̃(> λ0) such that dη̂0(λ)
dλ

> C0 > 0 for λ > λ̃. Because of this mono-
tonicity of η̂0 and Lemma 3.2, there are infinitely many degenerate solutions on CR . We show that these degenerate
solutions are symmetry breaking bifurcation points. Suppose that (3.1) has a zero eigenvalue at λk > λ̃. By Lemma 3.2
we can assume that η̂0(λk)−ζk = 0. From the expression of each eigenfunction (3.5) it is clear that the zero eigenvalue
is simple. There is a simple near-zero eigenvalue, which is η̂0(λ) − ζk , if λ is close to λk . The transversality condition
(1.7) holds, since

d(η̂0(λ) − ζk)

dλ

∣∣∣∣
λ=λk

= dη̂0(λ)

dλ

∣∣∣∣
λ=λk

> 0.

It is clear that λk → ∞ as k → ∞. Let E(λ,v) := �(v+u(λ))+λf (v+u(λ)) be the mapping from H 2
N(R) to L2(R).

We can apply the Crandall–Rabinowitz bifurcation theorem (Proposition 2.1) to E(λ,v) = 0 and obtain (3.7). �
Let us consider the curve of decreasing solutions of (3.2). By a phase plane analysis we see that this continuum is

a curve and it emanates from the branch of constant solutions {(λ,1)}. This curve may have a turning point. However
another continuum does not bifurcate from the curve. It connects to the curve obtained in Proposition 2.2 and it can be
described as a graph of λ provided that λ is large. If a > 0 is small, then ζ1 is large, hence η̂j (λ)−ζ1 (j = 0,1, . . . , j0)

does not become 0 on a bounded portion of the curve. Therefore all the bifurcation points are on an unbounded portion
which can be described by Proposition 2.2. Thus we have

Corollary 3.6. Let a > 0 be small. Then every bifurcation point on the curve including CR is on CR . Moreover, for
each k > 1, there is a unique symmetry breaking bifurcation point (λk, u(λk)) ∈ CR and at each bifurcation point
(λk, u(λk)), (3.7) holds.
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Let a > 0 be small. Extending the bifurcating solution from (λ1, u(λ1)) with even reflection, we obtain an entire
solution.

Corollary 3.7. Let a > 0 be small and p � 2. Then (NR2 ) has a positive entire solution u(x, y) such that u is periodic
in x (resp. y) with period 2 (resp. 2a) and u concentrates on {x = 2n; n ∈ Z}.

By (3.4) we obtain the Morse index of the concentrating solution on CR .

Corollary 3.8. Let {(λ,u(λ))}λ>λ0 := CR and let M(u(λ)) denote the Morse index of u(λ). Then

lim
λ→∞

M(u(λ))2

λ
= (p − 1)(p + 3)a2

4π2
.

In particular, M(u(λ)) diverges as λ → ∞.

Let D ∈ RN−1 be a bounded domain and let Ω := D × (0,1). By �D we denote the Neumann Laplacian on D.
(NΩ ) has a branch CΩ consisting of one-dimensional solutions. If �D has infinitely many simple eigenvalues, then
by the same way we can show that CΩ has infinitely many symmetry breaking bifurcation points. For example, we let
D := (0,R2) × (0,R3) × · · · × (0,RN), where R−2

2 ,R−2
3 , . . . ,R−2

N are independent over Q. Then every eigenvalue
of �D is simple. Moreover, extending this solution with even reflection, we obtain an entire solution on RN that
concentrates on {x1 = 2n; n ∈ Z} and that is periodic in xj (j ∈ {2,3, . . . ,N}) with period 2Rj , respectively when
one of R2, . . . ,RN is small.

Remark 3.9. In our study the monotonicity of the eigenvalue η̂0(λ) plays a crucial rule. However, it seems that this
monotonicity can be obtained in few cases. Wakasa [28] obtained this monotonicity for the decreasing solution of
(3.2) for f (u) = u − u3. Moreover, Wakasa and Yotsutani [29] obtained an exact expression of all eigenvalues of all
solutions to (3.2) for f (u) = sinu.

3.2. Proof of Lemma 3.3

We need two lemmas to prove Lemma 3.3.

Lemma 3.10. Let φ (‖φ‖∞ = α0, φ > 0) be the first eigenfunction of L̂. Then

1

ε

1∫
0

φ2 dx →
∞∫

0

wp+1(ξ) dξ (ε ↓ 0). (3.8)

Proof. First we see that φ is also a first eigenfunction of (2.9). Because of (2.8) in Proposition 2.2, for an arbitrary
small ε > 0, there are C0 > 0 and a small δ0 > 0 independent of ε such that 0 < u(x) < δ0 (C0ε � x � 1). Since
η0(ε) → (p−1)(p+3)

4 (ε ↓ 0) and f ′ < 0 in (0, δ0), there is δ1 > 0 independent of ε such that f ′(u(x)) − η0 < −δ1

(C0ε � x � 1). Since φ satisfies ε2φxx + (f ′(u) − η0)φ = 0 and 0 < φ � α0, we can apply Proposition 2.8 to φ on
(C0ε,1]. Then

0 < φ(x) �
{

α0 (0 � x � C0ε),

C1e
−C2

x
ε (C0ε � x � 1).

Let φ̃(ξ) := φ(x) (ξ = x
ε
). There is C3 > 0 such that

0 < φ̃(ξ) < C3e
−C2ξ (0 � ξ � dε) and C3e

−C2ξ ∈ L2(0,∞). (3.9)

Let ũ(ξ) := u(x). Since φ̃ satisfies

φ̃ξξ + f ′(ũ(ξ)
)
φ̃ = η0φ̃ in (0, dε), φ̃ξ = 0 at x = 0, dε, φ̃ > 0, ‖φ̃‖∞ = α0,
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there is C4 > 0 such that

dε∫
0

φ̃2
ξ dξ =

dε∫
0

(
f ′(ũ) − η0

)
φ̃2 dξ � C4

dε∫
0

φ̃2 dξ.

Combining the above inequality and (3.9), we see that there is C5 > 0 independent of ε such that ‖φ̃‖H 1(0,dε)
< C5.

Since for any bounded interval I , H 1(I ) ⊂ Cγ (I) (0 < γ < 1/2) is a continuous inclusion, there is C6 > 0 indepen-
dent of ε such that ‖φ̃‖Cγ (I) < C6. By the Ascoli–Arzelá’s theorem we have that as ε ↓ 0, φ̃ → φ̃∗ in C0

loc[0,∞),
where φ̃∗ is an eigenfunction of

∂ξξ φ̃∗ + f ′(w)φ̃∗ = η∗φ̃∗ in (0,∞), ∂ξ φ̃∗(0) = 0, φ̃∗ > 0, ‖φ̃∗‖∞ = α0. (3.10)

Here η∗ = (p−1)(p+3)
4 , because of (2.10). By Proposition 2.4 we have that φ̃∗(ξ) ≡ w

p+2
2 (ξ). Thus

φ̃(ξ)
ε↓0−−→ w

p+1
2 (ξ) pointwisely in [0,∞). (3.11)

Here we need not choose a subsequence in using Ascoli–Arzelá’s theorem, because φ̃∗ is uniquely determined
by (3.10). Because of (3.9) and (3.11), the dominated convergence theorem tells us that

1

ε

1∫
0

φ2 dx =
dε∫

0

φ̃2(ξ) dξ →
∞∫

0

wp+1(ξ) dξ (ε ↓ 0). �

Since CR = {(λ,u(λ))}λ>λ0 is a smooth curve, u(λ) is differentiable for λ > λ0. Let uλ(λ) := du(λ)
dλ

. Differentiating
(3.2) in λ, we have Luλ = −f (u). Since L is invertible, uλ = L−1[−f (u)]. In general it is difficult to estimate the
term including uλ. However, using Proposition 2.7, we can integrate that term for a small ε > 0 in the following
lemma:

Lemma 3.11. Let φ (‖φ‖∞ = α0, φ > 0) be the first eigenfunction of L̂. Then

1

ε

1∫
0

(
f ′(u) + f ′′(u)λuλ

)
φ2 dx →

∞∫
0

(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ (ε ↓ 0). (3.12)

Proof. Let φ̃(ξ) := φ(x), ũ(ξ) := u(x), ũλ(ξ) := uλ(x) (ξ = x
ε

). In the proof of Lemma 3.10 we already see that
(3.11) holds. It follows from Proposition 2.2 that there is C0 > 0 independent of ε such that

0 < ũ(ξ) < C0 and ũ
ε↓0−−→ w(ξ) pointwisely in [0,∞). (3.13)

Therefore there is C1 > 0 independent of ε such that∣∣f ′(ũ)
∣∣ < C1 and

∣∣f ′′(ũ)
∣∣ < C1. (3.14)

Moreover,

f ′(ũ(ξ)
) ε↓0−−→ f ′(w(ξ)

)
pointwisely in [0,∞),

f ′′(ũ(ξ)
) ε↓0−−→ f ′′(w(ξ)

)
pointwisely in [0,∞). (3.15)

We will show that λuλ is bounded and that

λũλ(ξ)
ε↓0−−→ 1

2
ξwξ (ξ) pointwisely in [0,∞). (3.16)

Differentiating (3.2) in λ, we easily see that λuλ satisfies(
ε2∂xx + f ′(u)

)[λuλ] = −f (u) in (0,1), ∂x(λuλ) = 0 at x = 0,1.
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Since L−1 exists and ‖L−1‖B(L2,H 2
N) < C2 (Proposition 2.3),

‖λuλ‖∞ � C3‖λuλ‖H 2 � C3
∥∥L−1[f (u)

]∥∥
H 2 � C3

∥∥L−1
∥∥

B
∥∥f (u)

∥∥
2 � C2C3

∥∥f (u)
∥∥

2.

It is clear that ‖f (u)‖2 is bounded uniformly in ε, hence

‖λuλ‖∞ and ‖λũλ‖∞ are bounded uniformly in ε. (3.17)

It follows from Proposition 2.9 that there are C4 > 0, C5 > 0 such that

0 < ũ(ξ) < C4e
−C5ξ (0 � ξ � ∞) and ũ(ξ)

ε↓0−−→ w(ξ) pointwisely in [0,∞). (3.18)

Now λũλ(ξ) satisfies(
∂ξξ + f ′(u)

)[λũλ] = −f (ũ) in (0, dε), ∂ξ (λũλ) = 0 at ξ = 0, dε.

Multiplying the equation by λũλ and integrating it, we have

dε∫
0

({
∂ξ (λũλ)

}2 + (λũλ)
2)dξ =

dε∫
0

(
f (ũ)λũλ + pũp−1(λũλ)

2)dξ.

Since ‖λũλ‖∞ is bounded, by (3.18) we see that f (ũ)λũλ + pũp−1(λũλ)
2 is dominated by some integrable function

independent of ε. The dominated convergence theorem tells us that there is C6 > 0 independent of ε such that∣∣∣∣∣
dε∫

0

(
f (ũ)λũλ + pũp−1(λũλ)

2)dξ

∣∣∣∣∣ < C6.

Using the continuous inclusion H 1(I ) ⊂ Cγ (I) (0 < γ < 1/2), we see that for an arbitrary interval I ⊂ [0,∞), there

is C7 > 0 independent of ε such that ‖λuλ‖Cγ (I) < C7. By Ascoli–Arzelá’s theorem we have that λũλ
ε↓0−−→ u∗ in

C0
loc[0,∞), where u∗ satisfies(

∂ξξ + f ′(w)
)[u∗] = −f (w) in (0,∞), ∂ξu∗(0) = 0.

By Proposition 2.7 we see that u∗(ξ) = 1
2ξwξ . By (3.9), (3.11), (3.13), (3.14) and (3.17) we see that |(f ′(ũ) +

f ′′(ũ)λũλ)φ̃
2| is dominated by some integrable function independent of ε. Using the dominated convergence theorem

with (3.11), (3.15) and (3.16), we have

1

ε

1∫
0

(
f ′(u) + f ′′(u)λuλ

)
φ2 dx

=
dε∫

0

(
f ′(ũ) + f ′′(ũ)λũλ

)
φ̃2 dξ →

∞∫
0

(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ (ε ↓ 0).

The limits of ũ and λũλ are uniquely determined, respectively. We need not choose a subsequence. �
Proof of Lemma 3.3. Let φ0 = φ0(λ) (‖φ0‖2 = 1) be an eigenfunction associated to η̂0(λ). First we show that η̂0(λ)

and φ0(λ) are continuously differentiable in λ. We define a mapping G :H 2
N × R × R → L2 × R by

G(φ, η̂, λ) :=
(

L̂φ − η̂φ

〈φ,φ〉 − 1

)
.

Differentiating G in (φ, η̂), we have

D(φ,η̂)G(φ0, η̂0, λ0) =
(

L̂ − η̂0 −φ0
2〈φ , ·〉 0

)
.

0
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For arbitrary (Ψ, τ) ∈ L2 × R, we consider(
L̂ − η̂0 −φ0
2〈φ0, ·〉 0

)(
ψ

ρ

)
=

(
Ψ

τ

)
.

Then we can easily check that (ψ,ρ) = ((L̂− η̂0)
−1[Ψ −〈Ψ,φ0〉φ0]+ τφ0/2,−〈Ψ,φ0〉) is the unique solution, using

the fact that η̂0 is a simple eigenvalue. Hence D(φ,η̂)G(φ0, η̂0, λ0) is invertible. By the implicit function theorem we
see that η̂0 and φ0 are continuously differentiable in λ.

Second, we prove (3.6). Hereafter by (η,φ) we denote the first eigenpair of L̂. Differentiating φxx +λf ′(u)φ = ηφ

in λ, we have

φxxλ + f ′(u)φ + λf ′′(u)uλφ + λf ′(u)φλ = ηλφ + ηφλ. (3.19)

Multiplying (3.19) by φ and integrating it over [0,1], we have∫ (
φφxxλ + f ′(u)φ2 + λf ′′(u)uλφ

2 + λf ′(u)φφλ

)
dx =

∫ (
ηλφ

2 + ηφφλ

)
dx.

By integration by parts we have∫ (
φxxφλ + f ′(u)φ2 + λf ′′(u)uλφ

2 + λf ′(u)φφλ

)
dx =

∫ (
ηλφ

2 + ηφφλ

)
dx. (3.20)

Multiplying φxx + λf ′(u)φ = ηφ by φλ and integrating it, we have∫ (
φxxφλ + λf ′(u)φφλ

)
dx =

∫
ηφφλ dx. (3.21)

Subtracting (3.21) from (3.20) and dividing it by ε, we have

ηλ

ε

∫
φ2 dx = 1

ε

∫ (
f ′(u) + f ′′(u)λuλ

)
φ2 dx. (3.22)

Because of Lemma 3.10, we have

1

ε

1∫
0

φ2 dx =
∞∫

0

wp+1 dξ + o(1) (ε ↓ 0). (3.23)

By Lemma 3.11 we have

1

ε

1∫
0

(
f ′(u) + f ′′(u)λuλ

)
φ2 dx =

∞∫
0

(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ + o(1) (ε ↓ 0). (3.24)

Combining (3.24) and Proposition 2.5, we have

1

ε

1∫
0

(
f ′(u) + f ′′(u)λuλ

)
φ2 dx = (p − 1)(p + 3)

4

∞∫
0

wp+1 dξ + o(1) (ε ↓ 0). (3.25)

Substituting (3.23) and (3.25) into (3.22), we have

ηλ

( ∞∫
0

wp+1 dξ + o(1)

)
= (p − 1)(p + 3)

4

∞∫
0

wp+1 dξ + o(1) (ε ↓ 0). (3.26)

For any sequence {λn} (λn → ∞), (3.26) holds, because we need not choose a subsequence in the proofs of Lem-
mas 3.10 and 3.11. Thus (3.6) holds. The proof is complete. �

The proof of Theorem 3.5 completes. �
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4. Ω = A

In Section 4 we consider (NA). By G : R × H 2
N(a, a + 1) → L2(a, a + 1) we define

G(ε,u) := ε2
(

urr + N − 1

r
ur

)
+ f (u).

Then a radially symmetric solution to (NA) is given by a solution to

G(ε,u) = 0. (4.1)

Let U(r; ε) denote the decreasing solution to

ε2Urr − U + Up = 0 in (a, a + 1), Ur = 0 at r = a, a + 1, U > 0, Ur < 0 in (a, a + 1). (4.2)

Since the interval length is 1, (4.2) is equivalent to (2.1). The existence of U(r; ε) is studied in Proposition 2.3 when
ε > 0 is small. In Section 4.1 we will find a solution to (4.1) near U(r; ε), using the contraction mapping theorem
with properties studied in Section 2.2.

4.1. Construction of CA

Lemma 4.1. Let p � 2. There is ε0 > 0 such that (4.1) has a family of solutions {z(r; ε)}0<ε<ε0 consisting of solutions
concentrating at r = a. Specifically, when 0 < ε < ε0, z(r; ε) satisfies (4.1) and∥∥z(·, ε) − U(·, ε)∥∥

H 2 < ε. (4.3)

Proof. Let ε > 0 be small. Let G be as defined above. We will find a unique decreasing solution in a neighborhood
of U(r; ε). Specifically, we solve the equations G(ε,U + v) = 0, i.e.,

ε2
{
∂rr (U + v) + N − 1

r
∂r (U + v)

}
− (U + v) + (U + v)p = 0.

Then we have(
ε2vrr − v + pUp−1v

) + {
(U + v)p − Up − pUp−1v

} + ε2 N − 1

r
∂r (U + v) = 0. (4.4)

Let L := ε2∂rr − 1 + pUp−1 ∈ B(H 2
N(a, a + 1),L2(a, a + 1)). By Proposition 2.3 we see that L has the inverse and

that ‖L−1‖B(L2,H 2
N ) is uniformly bounded for ε > 0 small. Thus we set

F (ε, v) := −L−1
[
(U + v)p − Up − pUp−1v + ε2 N − 1

r
∂r (U + v)

]
.

Solving (4.4) is equivalent to finding the solutions of v = F (ε, v). We will solve this equation with the contraction
mapping theorem. We let

Bε := {
v ∈ H 2

N(a, a + 1); vr = 0 at a, a + 1, ‖v‖H 2 � ε
}
. (4.5)

Note that for v ∈ Bε , ‖v‖∞ � C0ε, because of the continuous inclusion H 2(a, a + 1) ↪→ L∞(a, a + 1).
First, we show that if ε > 0 is small, then

F (ε, ·) :Bε → Bε. (4.6)

Since ‖v‖∞ < C0ε and p � 2, for |v| small,∣∣(U + v)p − Up − pUp−1v
∣∣ � C1|v|2.

Using this inequality, we have that if v ∈ Bε , then∥∥L−1[(U + v)p − Up − pUp−1v
]∥∥

H 2 �
∥∥L−1

∥∥
B
∥∥(U + v)p − Up − pUp−1v

∥∥
2

� C2
∥∥(U + v)p − Up − pUp−1v

∥∥∞
� C3‖v‖2∞
� C4‖v‖2

2 . (4.7)

H
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Since U
ε↓0−−→ 0 pointwisely on (a, a + 1] (Proposition 2.2) and ‖v‖∞ � C0ε, the dominated convergence theorem

says

a+1∫
a

(
Up+1 − U2)dr = o(1) (ε ↓ 0).

Since ε2
∫

U2
r dr = ∫

(Up+1 − U2) dr = o(1),∥∥∥∥ε2 N − 1

r
Ur

∥∥∥∥
2
� C5ε‖εUr‖2 = o(ε) (ε ↓ 0). (4.8)

Using (4.5), (4.7) and (4.8), we have that, for v ∈ Bε ,∥∥F (ε, v)
∥∥

H 2 �
∥∥−L−1[(U + v)p − Up − pUp−1v

]∥∥
H 2 +

∥∥∥∥−L−1
[
ε2 N − 1

r
∂r (U + v)

]∥∥∥∥
H 2

� C4‖v‖2
H 2 + ∥∥L−1

∥∥
B

∥∥∥∥ε2 N − 1

r
∂r (U + v)

∥∥∥∥
2

� C4‖v‖2
H 2 + C5

∥∥∥∥ε2 N − 1

r
Ur

∥∥∥∥
2
+ C5

∥∥∥∥ε2 N − 1

r
vr

∥∥∥∥
2

� C4ε
2 + o(ε) + C6ε

2‖v‖H 2

�
(
C4ε + o(1) + C6ε

2)ε.
Thus if ε > 0 is small, then (4.6) holds.

Second, we show that there is K ∈ (−1,1) such that for v0, v1 ∈ Bε ,∥∥F (ε, v0) − F (ε, v1)
∥∥

H 2 � K‖v0 − v1‖H 2 . (4.9)

For v0, v1 ∈ Bε ,∥∥{
(U + v0)

p − Up − pUp−1v0
} − {

(U + v1)
p − Up − pUp−1v1

}∥∥∞
�

∥∥p(U + v1)
p−1(v0 − v1) + o(v0 − v1) − pUp−1(v0 − v1)

∥∥∞
�

∥∥p
{
(U + v1)

p−1 − Up−1} + o(1)
∥∥∞‖v0 − v1‖∞. (4.10)

Since p � 2,∥∥p
{
(U + v1)

p−1 − Up−1} + o(1)
∥∥∞ → 0 (ε ↓ 0). (4.11)

Using (4.10) and (4.11), we have∥∥F (ε, v0) − F (ε, v1)
∥∥

H 2

�
∥∥−L−1

∥∥
B
∥∥{

(U + v0)
p − Up − pUp−1v0

} − {
(U + v1)

p − Up − pUp−1v1
}∥∥

2

+ ∥∥L−1
∥∥

B

∥∥∥∥ε2 N − 1

r
∂r (U + v0) − ε2 N − 1

r
∂r (U + v1)

∥∥∥∥
2

� C7
∥∥{

(U + v0)
p − Up − pUp−1v0

} − {
(U + v1)

p − Up − pUp−1v1
}∥∥∞ + C7

∥∥∥∥ε2 N − 1

r
∂r (v0 − v1)

∥∥∥∥
2

� o(1)‖v0 − v1‖∞ + C8ε
2‖v0 − v1‖H 2

� o(1)‖v0 − v1‖H 2 .

Thus if ε > 0 is small, (4.9) holds for v0, v1 ∈ Bε . By (4.6) and (4.9) we see that F is a contraction mapping on Bε .
The contraction mapping theorem tells us that there is ε0 > 0 such that if 0 < ε < ε0, then F has a unique fixed
point in Bε . By v(r; ε) we denote this solution of F (ε;U + v) = 0. We define z(r; ε) := U(r; ε) + v(r; ε). Then
{z(r; ε)}0<ε<ε0 is a desired family of solutions concentrating at r = a. Since v ∈ Bε , (4.3) holds. �
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Let zε be a concentrating solution of (4.2) obtained in Lemma 4.1. By L ∈ B(H 2
N(a, a+1),L2(a, a+1)) we define

L := ε2
(

∂rr + N − 1

r
∂r

)
+ f ′(zε). (4.12)

In the next lemma we show that zε is nondegenerate in the space of radial functions, studying eigenvalues of L.

Lemma 4.2. There is C0 > 0 such that the eigenvalue problem

Lφ = κφ in (a, a + 1), φr = 0 at r = a, a + 1

does not have an eigenvalue in [−C0,C0].

Proof. Let C0 > 0 be small and let κ ∈ [−C0,C0]. Let L := ε2∂rr − 1 + pUp−1. We set

A := ε2 N − 1

r
∂r − p

(
zp−1
ε − Up−1).

The spectrum of the operator L = L + A ∈ B(H 2
N,L2) consists only of eigenvalues. We prove the lemma by contra-

diction. Let φ ∈ H 2
N (‖φ‖H 2 = 1) be an eigenfunction. Since (L+A−κ)φ = 0, we have φ = (L−κ)−1[−Aφ]. Since

‖(L − κ)−1‖B is bounded (Proposition 2.3), we have

‖φ‖H 2 = ∥∥(L − κ)−1[−Aφ]∥∥
H 2 �

∥∥(L − κ)−1
∥∥

B(L2,H 2
N)

‖Aφ‖2 → 0 (ε ↓ 0).

This convergence is uniform in κ ∈ [−C0,C0]. We obtain a contradiction. �
By u(r;λ) we define

u(r;λ) := zε(r)

(
λ = 1

ε2

)
. (4.13)

Then there is a large λ0 > 0 such that {u(r;λ)}λ>λ0 are concentrating solutions to (4.1).
Let L be defined in (4.12). By L̂ ∈ B(H 2

N,L2) we define L̂ := λL, i.e.,

L̂ := ∂rr + N − 1

r
∂r + λf ′(u).

Then κ is an eigenvalue of L if and only if κ

ε2 is an eigenvalue of L̂. Therefore L̂ does not have an eigenvalue in

[−C0
ε2 ,

C0
ε2 ], because of Lemma 4.2. u(r;λ) is nondegenerate. Since u is unique in Bε which is defined by (4.5), there

is λ0 > 0 such that {(λ,u(r;λ))}λ>λ0 is a smooth curve. We have

Corollary 4.3. Let p � 2. There is a large λ0 > 0 such that {(λ,u(r;λ))}λ>λ0 is a smooth curve.

Lemma 4.4. Let u(r;λ) be a concentrating solution obtained in Lemma 4.1. Then u(r;λ) is decreasing in r .

Proof. First we show that ur �= 0 on {u = 1}. If ur = 0 at some r ∈ (a, a + 1), then u ≡ 1 on [a, a + 1], because of
the uniqueness of the solution to the ODE. It is a contradiction.

We see that if u has a critical point on {u > 1} (resp. {u < 1}), then that point is a local maximum (resp. minimum)
point of u, because ε2urr = u−up < 0 (resp. > 0). Therefore the critical points are only on the boundary r = a, a +1.
If there is a critical point at an interior point, then since u satisfies the Neumann boundary condition, {u > 1} or {u < 1}
has at least two connected components, which contradicts to (4.3). �

Let z be a solution obtained in Lemma 4.1 and let u be as defined by (4.13). Let L be as defined in (4.12). By
{κj (ε)}j�0 we denote the eigenvalues of L.

We show that the Morse index of z is one in the space of radial functions.

Lemma 4.5. Let ε > 0 be small. Let κ0(ε), κ1(ε) denote the first and second eigenvalues of L, respectively. If ε > 0 is
small, then κ1(ε) < 0 < κ0(ε).
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Proof. Let Lδ := ε2∂rr − 1 + pUp−1 + δ{ε2 N−1
r

∂r + p(zp−1 − Up−1)} (0 � δ � 1). Note that L0 = L(= ε2∂rr −
1 + pUp−1) and L1 = L. We consider the eigenvalue problem

Lδφ = ζφ in (a, a + 1), φr = 0 at r = a, a + 1. (4.14)

First we show that

each eigenvalue continuously depends on δ. (4.15)

By φ(r; δ, ζ ) we denote the solution of

Lδφ = ζφ in (a, a + 1), φ(a) = 1, φr (a) = 0.

In particular, φrζ (a; δ, ζ ) = 0. It is clear that ζ is an eigenvalue if and only if φr(a + 1; δ, ζ ) = 0. We show by
contradiction that ∂ζ φr(a +1; δ, ζ ) �= 0. Suppose that ∂ζ φr(a +1; δ, ζ ) = 0. Differentiating the equation in ζ , we have
φ = Lδφ − ζφζ . Since ∂ζ φr(a; δ, ζ ) = ∂ζ φr(a + 1; δ, ζ ) = 0 and

∫
Lδ[φ0]φ1r

δ(N−1) dr = ∫
ψ0 Lδ[φ1]rδ(N−1) dr for

φ0, φ1 ∈ H 2
N , we have

(0 �=)

a+1∫
a

φ2rδ(N−1) dr =
a+1∫
a

(Lδ − ζ )[φζ ]φrδ(N−1) dr

=
a+1∫
a

φζ (Lδ − ζ )[φ]rδ(N−1) dx = 0,

which is a contradiction. Hence ∂ζ φr(a + 1; δ, ζ ) �= 0. The implicit function theorem tells us that ζ = ζ(δ) continu-
ously depends on δ. Since φr(a + 1; δ, ζ(δ)) = 0, we have proven (4.15).

Second, we show that

0 is not an eigenvalue of (4.14) for every δ ∈ [0,1]. (4.16)

Let Aδ := −δ{ε2 N−1
r

∂r +p(zp−1 −Up−1)}. We can show by the same argument used in the proof of Lemma 4.2 that
L + Aδ does not have an eigenvalue near zero. Thus Lδ is invertible for every δ ∈ [0,1]. Therefore (4.16) holds.

Third, we prove the conclusion of the lemma. Let ζ0(δ), ζ1(δ) denote the first and second eigenvalues of (4.14),
respectively. Note that every eigenvalue is simple, because of the one-dimensional problem. Since L0 = L, we see
by Proposition 2.3 that ζ1(0) = η1(ε) < 0 < η0(ε) = ζ0(0). Because of (4.15) and (4.16), ζ1(δ) < 0 < ζ0(δ) for every
δ ∈ [0,1]. �

Combining Corollary 4.3 and Lemmas 4.4 and 4.5, we obtain

Theorem 4.6. There is a large λ0 > 0 such that (NA) has a smooth curve CA := {(λ,u(λ))}λ>λ0 consisting of radially
symmetric and radially decreasing solutions concentrating on the boundary {|x| = a}. Moreover, in the space of radial
functions each solution u is nondegenerate and it has the Morse index 1.

4.2. Symmetry breaking bifurcation

Let CA be a smooth curve obtained in Theorem 4.6 and let (λ,u(λ)) ∈ CA. We consider the eigenvalue problem

�Φ + λf ′(u)Φ = μΦ in A, ∂νΦ = 0 on ∂A. (4.17)

We find a degenerate solution on CA. In order to study the zero eigenvalue, we introduce the operator L ∈
B(H 2

N(A),L2(A)), L := r2(� + λf ′(u)), i.e.,

L := r2
(

∂rr + N − 1

r
∂r + �SN−1

r2
+ λf ′(u)

)
,

and L̃ ∈ B(H 2
N(a, a + 1),L2(a, a + 1)), L̃ := λr2 L, i.e.,

L̃ := r2
(

∂rr + N − 1
∂r + λf ′(u)

)
.

r
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Here �SN−1 denotes the Laplace–Beltrami operator on the unit sphere SN−1. We study the eigenvalues of L. The
eigenvalues of L can be described by the eigenvalues of L̃ and �SN−1 .

Proposition 4.7. The following holds:

σ(L) = σ(L̃) + σ(�SN−1).

This proposition was observed by [9]. See also [16].
Let {ρk}k�0 denote the eigenvalues of −�SN−1 . It is well known that ρk = k(k + N − 2).
Let {ν̃j }j�0 denote the eigenvalues of L̃. Then we have

Proposition 4.8. (4.17) has a zero eigenvalue if and only if there exists k � 1 such that

ν̃0 − ρk = 0. (4.18)

Moreover, the solution Φ can be written as

Φ(x) = φ̃0
(|x|)Hk

(
x

|x|
)

,

where φ̃0 is the first positive eigenfunction of L̃ and Hk(θ) (θ ∈ SN−1) is the eigenfunction of �SN−1 associated to
the eigenvalue −ρk .

Proof. We easily see that (4.17) has a zero eigenvalue if and only if L has a zero eigenvalue. It follows from Propo-
sition 4.7 that L has a zero eigenvalue if and only if ν̃j − ρk = 0 for some j � 0.

When ε > 0 is small, the second eigenvalue of L̂ is negative (Lemma 4.5), since L̂ = λL. Comparing second
eigenfunctions of L̃ and L̂ with Sturm’s comparison theorem, we see that the second eigenvalue of L̃ is negative,
hence, for every j � 1, ν̃j < 0. Since ρk > 0, (4.18) holds. We omit the proof of the rest of the statements. �

The next lemma is the main technical lemma of this article.

Lemma 4.9. Let ν̃0(λ) be the first eigenvalue of L̃. Then ν̃0(λ) ∈ C1 and

dν̃0(λ)

dλ
= a2 (p − 1)(p + 3)

4
+ o(1) (λ → ∞). (4.19)

We postpone the proof of Lemma 4.9.
Because of (4.19), ν̃0(λ) diverges as λ → +∞. By (4.18) we see that eigenvalues pass 0 infinitely many times as

λ → +∞. If we assume that Lemma 4.9 holds, then we can show that the transversality condition holds, using the
Sturm’s comparison theorem.

Lemma 4.10. There is a large λ0 > 0 such that the following holds: If there is λ∗ > λ0 such that ν̃0(λ∗) − ρk = 0 for
some k � 0, then when λ is near λ∗, the eigenvalue problem(

L̂ − ρk

r2

)
φ = μ̂φ in (a, a + 1), φr = 0 at r = a, a + 1

has a simple near-zero eigenvalue, μ̂(λ), such that μ̂(λ) ∈ C1 and μ̂(λ∗) = 0. Moreover,

dμ̂

dλ

∣∣∣∣
λ=λ∗

> 0. (4.20)

Proof. By φ̂(r;λ) (
∫ a+1
a

φ̂2rN−1 dr = 1, φ̂(a;λ) > 0) we denote the eigenfunction associated to μ̂(λ). When λ = λ∗,
both L̂ − ρk

r2 and L̃ − ρk have a simple zero eigenvalue, hence μ̂(λ∗) = 0. By the same argument as in the proof of

Lemma 3.3 we easily see that μ̂(λ) and φ̂(r;λ) are continuously differentiable in λ. Thus if λ is close to λ∗, then
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φ̂(r;λ) is positive and μ̂(λ) is a simple near-zero eigenvalue. Next, we consider the first eigenvalue μ̃0(λ) of the
problem

(L̃ − ρk)φ = μ̃φ in (a, a + 1), φr = 0 at r = a, a + 1. (4.21)

It is clear that μ̃0(λ∗) = 0. Since λ is near λ∗, (4.21) has a simple near-zero eigenvalue which is μ̃0(λ) = ν̃0(λ) − ρk .
By a standard argument using Sturm’s comparison theorem we have, for λ > λ∗,

μ̃0(λ)

(a + 1)2
� μ̂(λ) � μ̃0(λ)

a2
.

Therefore, for λ > λ∗,

1

(a + 1)2

ν̃0(λ) − ρk

λ − λ∗
� μ̂(λ)

λ − λ∗
� 1

a2

ν̃0(λ) − ρk

λ − λ∗
.

Since μ̂(λ) and ν̃0(λ) are of class C1, taking the limit λ ↓ 0 yields

1

(a + 1)2

dν̃0

dλ
� dμ̂

dλ

∣∣∣∣
λ=λ∗

� 1

a2

dν̃0

dλ
. (4.22)

We obtain (4.20). �
Remark 4.11. Let (λ∗, u(λ∗)) ∈ CA be a degenerate solution. If zero is a simple eigenvalue, then there is a near-zero
eigenvalue, μ̂(λ), when λ is near λ∗. By (4.22) and (4.19) we obtain the bound(

a

a + 1

)2
(p − 1)(p + 3)

4
+ o(1) � dμ̂

dλ

∣∣∣∣
λ=λ∗

� (p − 1)(p + 3)

4
+ o(1).

Smoller and Wasserman [25] showed that for arbitrary k � 0 the eigenspace of −�SN−1 associated to ρk has a
unique (up to multiples) eigenfunction that is O(N − 1) invariant. Thus each zero eigenvalue of (4.17) is simple in
the space of O(N − 1) invariant functions. Using this simplicity, Lemma 4.10 and the same argument as in the proof
of Theorem 3.5, we obtain

Theorem 4.12. Let p � 2. On the continuum CA = {(λ,u(λ))}λ>λ0 there are infinitely many symmetry breaking
bifurcation points {(λk, u(λk)}λ>λ0 from which continua consisting of nonradially symmetric solutions emanate.

We restrict the functional space. Let

Gh := O(h) × O(N − h), 1 � h �
[
N

2

]
.

Here [N
2 ] is the largest integer that is not greater than N

2 . In [26] it was shown that if k is even then the eigenspace
associated to ρk in the space of Gh invariant functions is one-dimensional. Moreover, the Gh1 invariant function and
the Gh2 invariant function are distinct if h1 �= h2 and if two functions are nonradially symmetric. Thus a continuum
obtained in Theorem 4.12 has [N

2 ] distinct solutions provided that k is even.
It seems difficult to obtain all the nonradially symmetric solutions even locally. However, if N = 2, we can obtain

more information of the continuum.

Corollary 4.13. Let p � 2 and N = 2. Let (λk, u(λk)) be a symmetry breaking bifurcation point obtained in Theo-
rem 4.12. The closure of the nonradially symmetric solution near (λk, u(λk)) is locally homeomorphic to a disk and
it can be described as

Ck :=
⋃

θ∈R/2πZ

{(
λ,Rθ (u)

); (λ,u) ∈ Ck,e

}
, (4.23)

where Rθ(u) is a counter-clockwise rotation of u by θ and Ck,e is a curve of nonradially symmetric solutions in the
space of even functions with respect to x.
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This is an immediate consequence of an abstract result [5]. However, we give an alternative proof, because results
of [5] needs definitions and notations of Lie groups and manifolds.

Proof. We work on the space X := {u ∈ L2; 〈u, φ̃0(|x|) sin(k x
|x| )〉 = 0}. Then every eigenvalue of −�S1 does not

vanish and it becomes simple. Hence we can construct a curve Ck,e , using Proposition 2.1. We can easily see that
each solution in Ck,e is even in x, because Ck,e is the same curve obtained in the space of even functions with respect
to x. The set Ck is in the solution set. We show that all nonradially symmetric solutions near (λk, u(λk)) are in Ck .
Suppose the contrary, there is a sequence of nonradially symmetric solutions {(λ̃j , ũj )}j�0 /∈ Ck such that (λ̃j , ũj ) →
(λk, u(λk)) (j → ∞). Then for each j > 0 there is θj such that Rθj

(ũj ) ∈ X. The local uniqueness of Ck,e indicates

that (λ̃j , ũj ) ∈ Ck,e if j is large. This contradicts that (λ̃j , ũj ) /∈ Ck . It is clear from the shape of u that Ck is locally
homeomorphic to a disk. �
Remark 4.14. When N = 2, we easily see that the bifurcating solution u(r, θ) near the bifurcation point (λk, u(λk))

is periodic in θ with period 2π
k

.

4.3. Proof of Lemma 4.9

We need two lemmas to prove Lemma 4.9.

Lemma 4.15. Let φ (‖φ‖∞ = α0, φ > 0) be the first eigenfunction of L̃. Then

1

ε

a+1∫
a

φ2rN−3 dr → aN−3

∞∫
0

wp+1 dξ (ε ↓ 0). (4.24)

Proof. The proof is almost the same as one of Lemma 3.10. We briefly prove (4.24). φ is also a first eigenfunction of
r2 L, i.e.,

r2 Lφ = κφ in (a, a + 1), φr = 0 at r = a, a + 1, φ > 0.

Because of (4.3) and the positivity of κ (Lemma 4.5), there is δ1 > 0 such that f ′(u(r)) − κ

r2 < δ1 (a + C0ε � r �
a + 1). Applying Proposition 2.8, we have

0 < φ �
{

α0 (a � r � a + C0ε),

C1e
−C2

r−a
ε (a + C0ε � r � a + 1).

Let φ̃(ξ) := φ(r) (ξ := r−a
ε

). Then there is C3 > 0 such that

0 < φ̃(ξ) < C3e
−C2ξ (0 � ξ � dε) and C3e

−C2ξ ∈ L2(0,∞). (4.25)

Let ũ(ξ) := u(r). Since φ̃(ξ) satisfies

φ̃ξξ + ε
N − 1

a + εξ
φ̃ξ + f ′(ũ)φ̃ = κ

(a + εξ)2
φ̃ in (0, dε), φ̃r = 0 at ξ = 0, dε, φ̃ > 0, ‖φ̃‖∞ = α0.

Multiplying the equation by φ̃ · (a + εξ)N−1 and integrating it, we have

aN−1

dε∫
0

φ̃2
ξ dξ <

dε∫
0

φ̃2
ξ (a + εξ)N−1 dξ

=
dε∫

0

(
f ′(ũ) − κ

(a + εξ)2

)
φ̃2(a + εξ)N−1 dξ � C4

dε∫
0

φ̃2 dξ.

Since ‖φ̃‖L2(0,dε)
� ‖C3e

−C2ξ‖L2(0,∞) < ∞, by the above inequality we have that ‖φ̃‖H 1(0,dε)
< C5. By the same

argument as in the proof of Lemma 3.10 we see that as ε ↓ 0, φ̃ → φ̃∗ in C0
loc[0,∞), where φ̃∗ satisfies

∂ξξ φ̃∗ + f ′(w)φ̃∗ = κ

2
φ̃∗ in (0,∞), ∂ξ φ̃∗(0) = 0, φ̃ > 0, ‖φ̃‖∞ = α0.
a
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The rest of the proof is similar to Lemma 3.10. We omit the details. �
Since CA = {(λ,u(λ))}λ>λ0 is a smooth curve, u(λ) is differentiable for λ > λ0. Let uλ := du(λ)

dλ
.

Lemma 4.16. Let φ (‖φ‖∞ = α0, φ > 0) be the first eigenfunction of L̃. Then

1

ε

a+1∫
a

(
f ′(u) + λf ′′(u)uλ

)
φ2rN−1 dr → aN−1

∞∫
0

(
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ (ε ↓ 0).

Modifying the argument used in the proof of Lemma 3.11, we can show that the above limit is valid. We omit the
proof.

Proof of Lemma 4.9. Let φ0 (
∫ a+1
a

φ2
0rN−1 dr = 1, φ0 > 0) be the eigenfunction associated to ν0. By the same

method used in Lemma 3.3 we can show that φ0 and ν0 are continuously differentiable in λ.
We prove (4.19). Hereafter by (φ, ν) we denote the first eigenpair for ease of notation. Differentiating L̃φ = νφ

in λ, we have

r2
(

φrrλ + N − 1

r
φrλ + f ′(u)φ + λf ′′(u)uλφ + λf ′(u)φλ

)
= νλφ + νφλ,

where we use the fact that u is differentiable in λ. Multiplying both sides by φrN−3 and integrating it over [a, a + 1],
we have∫ (

φrrλφ + N − 1

r
φrλφ + f ′(u)φ2 + λf ′′(u)uλφ

2 + λf ′(u)φλφ

)
rN−1 dr

=
∫ (

νλφ
2 + νφλφ

)
rN−3 dr. (4.26)

Multiplying L̃φ = νφ by φλr
N−3 and integrating it over [a, b], we have∫ (

φrrφλ + N − 1

r
φrφλ + λf ′(u)φφλ

)
rN−1 dr =

∫
νφφλr

N−3 dr.

By integration by parts we have∫ (
φrrλφ + N − 1

r
φrλφ + λf ′(u)φφλ

)
rN−1 dr =

∫
νφφλr

N−3 dr. (4.27)

Subtracting (4.27) from (4.26) and dividing it by ε, we have

νλ

ε

∫
φ2rN−3 dr = 1

ε

∫ (
f ′(u)φ2 + λf ′′(u)uλφ

2)rN−1 dr. (4.28)

Because of Lemma 4.15, it follows from the dominated convergence theorem that

1

ε

a+1∫
a

φ2rN−3 dr = aN−3

∞∫
0

wp+1 dξ + o(1) (ε ↓ 0). (4.29)

Because of Lemma 4.16, we have

1

ε

a+1∫
a

(
f ′(u) + λf ′′(u)uλ

)
φ2rN−1 dr

= aN−1

∞∫ (
f ′(w) + 1

2
f ′′(w)ξwξ

)
wp+1 dξ + o(1) (ε ↓ 0). (4.30)
0
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Using Proposition 2.5, we have

1

ε

a+1∫
a

(
f ′(u)φ2 + λf ′′(u)uλφ

2)rN−1 dr = (p − 1)(p + 3)

4
aN−1

∞∫
0

wp+1 dξ + o(1) (ε ↓ 0). (4.31)

Substituting (4.29) and (4.31) into (4.16), we have

νλ

(
aN−3

∞∫
0

wp+1 dξ + o(1)

)
= (p − 1)(p + 3)

4
aN−1

∞∫
0

wp+1 dξ + o(1) (ε ↓ 0). (4.32)

For any sequence {λn} (λn → 0), (4.32) holds, because we need not choose a subsequence in the proof of Lemmas 4.15
and 4.16. Thus (4.19) holds. The proof is complete. �
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