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INTRODUCTION

Let f be a positive smooth function defined in the n-dimensional
sphere S and let Xy:S5" — R™! be a parametrization of a smooth,
uniformly convex hypersurface M. In this paper we are concerned with
the motion of the convex hypersurfaces M (¢) satisfying the equation

X _ KO
o Brm”

with X(p,0) = Xo(p). Here for each ¢+ X(-,t) parametrizes M(t),
K(v(p,t)) is the Gauss curvature of M(z) and v(p,t) is the unit outer
normal at X (p,t). Notice that by strict convexity the Gauss curvature
can be regarded as a function of the normal. Recall that a uniformly
convex hypersurface is a hypersurface with positive Gaussian curvature
and hence it is stricly convex.

Our study on (0.1) is motivated by the search for a variational proof
of the classical Minkowski problem in the smooth category. Recall that
for a convex hypersurface the inverse of its Gauss map induces a Borel
measure on the unit sphere called the area measure of the hypersurface.
Naturally one asks when a given Borel measure on S" is the area measure
of some convex hypersurface. This problem was formulated and solved
by Minkowski [13] for polytopes in 1897 by a variational argument. Later
he extended his result to cover all Borel measures which are of the form
1/f do where f is continuous and do is the standard Lebsegue measure
on S" [14]. The regularity of the convex hypersurface realizing the area
measure was not considered by Minkowski. Thus it led to the Minkowski
problem in the smooth category, namely, when is a positive, smooth
function in S” the Gauss curvature of a smooth convex hypersurface?
There are two approaches for this problem. On one hand, the method of
continuity was used by Lewy [12], Miranda [15], Nirenberg [16], and
Cheng and Yau [3]. On the other hand, a regularity theory was developed
for the generalized solution (see Pogorelov [17]).

Let M be a convex hypersurface and V(M) its enclosed volume. We
have

0.1)

1 H(x)

V(M) = — 1sn Koo

do (x),

where H and K are respectively the support function and Gauss
curvature of M. When expressed in the smooth category, Minkowski’s
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original proof is to show that the solution is the convex hypersurface
which minimizes the functional [ H(x)/f(x)do(x) over all convex
hypersurfaces of the same enclosed volume. In view of this we may
consider the functional

H
J(M)=-V(M) + | = do.
S[ f

It is not hard to see that (0.1) is a negative gradient flow for J. By a
careful study of this flow, we shall give another proof of the Minkowski
problem in the smooth category.

THEOREM A. — Let Xo be a smooth uniformly convex hypersurface.
For 0 > 0, consider (0.1) subject to

X(-,0) =0X,. 0.2)

There exists 0* > 0 such that the flow X (-, t) beginning at 6* X, tends to
a smooth uniformly convex hypersurface X* in the sense that

X(,t) —&t—> X,

smoothly as t — 00 where & is uniquely determined by

Xi .
—do(x) =0, =1,...,n+1.
/ e f(x) ® l
Sﬂ
Furthermore, the Gauss curvature of X*, when regarded as a function of
the normal, is equal to € f (x).

THEOREM B. — Let 0* be as in Theorem A. If 6 € (0, 0%), the solution
of (0.1), (0.2) shrinks to a point in finite time. If 0 € (6%, 00), the solution
expands to infinity as t goes to infinity. In the latter case, the hypersurface
X (-,t)/r(t) where r(t) is the inner radius of X (-,t) converges to a unit
sphere uniformly.

As a direct consequence of Theorem A we have

COROLLARY (Minkowski problem). — A positive, smooth function f
in S" is the Gauss curvature of a uniformly convex hypersurface if and
only if it satisfies

Xi
——do(x)=0, i=1,...,n+1.
4@
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Theorems A and B will be proved in the following sections by an
approach similar to that used in [4], namely, by introducing the support
function of X (-, ¢) and reducing (0.1) to a single parabolic equation of
Monge—-Ampere type for its support function. In Section 1 we collect
some facts on the support function of a convex hypersurface. In Section 2
a priori estimates for the support function, in particular upper and lower
bounds for the second derivatives, will be derived. They are used in
Section 3 to establish Theorems A and B.

Motion of convex hypersurfaces driven by functions of Gauss curva-
ture of the form

0X . K)
— =P, K)v
ot

has been studied by several authors including Andrews [1], Chou [4],
Chow [7], Frey [8], Gerhardt [10] and Urbas [18]. When @ = —K°,
o > 0, it was proved in [7] that M(z) exists and shrinks to a point in
finite time. Moreover, it becomes asymptotically round when o is equal
to 1/n. In [1] it was shown that M (¢) becomes an asymptotic ellipsoid
when o is equal to 1/(n + 2). Expanding flows rather than contracting
ones were studied in [10] and [18]. For a class of curvature functions
including @ = K~'/" it was proved that M(¢) expands to infinity like
a sphere in infinite time. In all these results @ is independent of v. For
anisotropic flows very little is known. We mention the works Andrew [2],
Chou and Zhu [6], and Gage and Li [9].

1. THE SUPPORT FUNCTION

In this section we collect some basic facts concerning a convex
hypersurface and its support function. Details can be found in Cheng and
Yau [3] and Pogorelov [17].

Let M be a closed convex hypersurface in R"*!. Its support function
H is defined on S” by

H(x) =sup{x - p: p e M},

where x - p is the inner product in R"*!. We extend H to a homogenuous
function of degree 1 in R"*!. So H is convex and satisfies

sup [VH| < sup |H], (1.1)
sn Ne
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since it is the supremum of linear functions. If M is strictly convex, that
is, for each x in S" there is a unique point p on M whose unit outer
normal is x, H is differentiable at x and

oH

pi:a_x,-’

Thus the map x > p(x) gives a parametrization of M by its normal. In
fact, it is nothing but the inverse of the Gauss map.

Geometric quantities of M can now be expressed through H. Let
el, ..., e, be an orthonormal frame fields on $”. By a direct computation
one sees that the principal radii of curvature at p(x) are precisely the
eigenvalues of the matrix (VgVoH + H8up) o p=1,...n» Where V,, is the
covariant differentiation with respect to e,. In particular, the Gauss
curvature at p(x) is given by

K(x) =1/det(Vg Vo H + H8,p). (1.2)

When H is viewed as a homogeneous function over R"*!, the principal
radii of curvature of M are also equal to the non-zero eigenvalues of the
Hessian matrix (82 H /0x;0X;); j=1,..n+1-

Now we can reduce the problem (0.1), (0.2) to an initial value problem
for the support function. In fact, let H(x,t) be the support function of
M (t). By definition we have

0X oH
X - E(p(x), 1) = —g(x, 1.

From (0.1) and (0.2) it follows that H satisfies

dH
5 =logdet(VsVoH + Hbup) f. (1.3)
H(x,0) =0Hy(x), (1.4)

where H is the support function for M. Conversely, if X (-, t) is a family
of convex hypersurfaces determined by a solution of (1.3) and (1.4), it is
not hard to see that X (-, t) does solve (0.1) and (0.2). See, for instance,
[4] for details. Notice from (1.3) H(x,?) must determine a uniformly
convex hypersurface.

Eq. (1.3) has a variational structure. Consider the enclosed volume of
a uniformly convex hypersurface M,
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V(M) = 1 H(x)
n—+ lsn K()

1
n+1

do(x)

/ H det(VgV, H + Hé,p) do.
Sn

Regarding Vas a functional on support functions, we find that the first
variation of V' is

SV(H)h = /hdet(VﬂVaH + Héqg) do,
Sn

where A is any smooth function. Let’s consider the functional J defined
on all uniformly convex hypersurfaces

H
J(H)=-V(H)+ | —do,
S[ f

where f is positive. When H is a solution of (1.3),

1] oH
at

d
Z;J(H(’ Z)) = —/ [det(VﬂVaH + H(Saﬂ) - ?

S"
1
=—/?(eH’ —1)H,do
S'l

<0. (1.5)

Hence (1.3) is a negative gradient flow for J. (1.5) will be used in
the proof of Theorem A. This variational approach to the problem of
prescribed Gauss curvature was first adopted in Chou [5].

To obtain apriori estimates for the higher derivatives for H it is
convenient to express Eq. (1.3) locally in the Euclidean space. Thus let
u(y, t) be the restriction of H(x,?) to the hypersurface x,.; = —1, i.e.,
u(y,t) = H(y, —1,t). Then u is convex in R" and we have

det Vu( = 2=
y,t) = (1 + |y| ) det(Vg Vo H + Héqp)(x, 1)

and

ou oH
—_— =4/1 2 ,
” (v, )=/ 1+ 1|yl o7 (x,7)
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for x = (y, —1)/+/1 + |y|?. Extend f to be a homogenuous function of
degree 0 in R**!, We get

a
a—;‘=,/1+|y|210gdetV2u+g(y), y €R", (1.6)

where

2
e =1+ 1P ["; log(1+ yI?) +log £ (y, —1)} .

2. A PRIORI ESTIMATION

First of all we note that the uniqueness of solution to (1.3), (1.4)
follows from the following comparison principle which is a direct
consequence of the maximum principle.

LEMMA 2.1. - Fori = 1,2, let f; be two positive C*-functions on S"
and H; C*'-solutions of

oH
i log det(VgVy + Héup) fi-

Suppose that Hy(x,0) < Hy(x,0) and fi(x) < fo(x) on S". Then H, <
H, forall t > 0 and Hy < H, unless Hy = H,.

In the following we shall always assume H € C*?(S" x [0, T]) is a
solution of (1.3), (1.4). Let R(¢) and r(¢) be the outer and inner radii of
the hypersurface X (-, t) determined by H (x, t) respectively. We set

Ro=sup{R(t): t €[0,T]}

and
ro =inf{r(¢): t € [0, T]}.

We shall estimate the principal radii of curvatures of X (-, ) from both
side in terms of ry L Ry, and initial data.

LEMMA 2.2.— Let r and R be the inner and outer radii of a uniformly
convex hypersurface X respectively. Then there exists a dimensional
constant C such that

R2
— < Csup{R(x,§): x,£ €S"},
r
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where R(x, &) is the principal radius of curvature of X at the point with
normal x and along the direction &.

Proof. — For any given t > 0, let
h =inf{H(x) + H(—x): x € $"}.

Then X is pinched between two parallel hyperplanes with distance A.
Suppose the infimum is attained at x = (1,0, ..., 0). By convexity we
can choose a direction perpendicular to the x;-axis, say, the x,-axis such
that

1
HO,1,0,...,00+ H(©,-1,0,...,0) > ER'
Let F be the projection of X on the plane x3 =--- =x,,; =0. Then F is

a convex set and its diameter is larger than %R. By a proper choice of the
origin we may assume F is contained in {—h < x; < h} and {0, :I:%R}
belongs to F. By projection we see that the supremum of the principal
radii of curvatures of the boundary of F cannot exceed that of X.

Let E be the ellipse given by

R S
b2 " (R/16)

where b is chosen so that £ C F and 0E N 0F is non-empty. Then
h/4 < b < h/2 provided R > r. For any (x;,x;) € 0E N dF, since
(O,:I:%R) € F, we have |x|| > b/2. Hence |x;| < ﬁR/32. Simple
computation shows that the principal radius of curvature of the boundary
of F at (X, X,) is larger than R?/83b. Hence by noticing b < r we obtain

R? R?
— < C— < CsupR(x,8). O
r b x,é'

LEMMA 2.3. - Suppose that a(t),b(t) € C'([0, T]) and a(t) < b(t)
for all t. Then there exists h(t) € C®([0, T1) such that

(1) a@®) —2M < h(t) <b(@t) +2M,

(2) sup{{rt=hll. 1 v <0, T1}) < 2max{sup, b'(t), sup,(—a’())},

Ity —na|

where M = sup,(b(t) — a(t)).

Proof. — We define h(t) step by step. Let to = 0, and hy = (a(0) +
b(0))/2.For j > 1, let
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1 :sup{r € (tjﬁl,T)Z a(t) >hj_1 — M, b(t) <hj_1 + M,
vt € (tj—la T)}’

1
hj= E(a(tj) +b(t)),
and
h;—hj_
h(t)=hj_i + tj——j—l(t —t;_y) forte(tj_1,1)).
j -

Then h(¢) is the desired function. O
Now we give an upper estimate for the principal radii of curvature.

LEMMA 2.4. - For any y € (1,2] there exists a constant C,, which
may depend on initial data, such that

sup{ H¢ (x, t): & tangential to S"} < C, (14 D”),

where D = sup{d(t): t € [0, T1} and d(t) is the diameter of X (-, 1).

Proof. — Applying Lemma 2.3 to the functions —H(—e;,t) and
H(e;,t) where +e; are the intersection points of S" with the x;-axis,
i=1,...,n+1, weobtain p;(t) so that

—H(—e;,t) =2D < pi(t) < H(ei, 1) +2D

and
(1) — pi(t
[ty — 1o

< ZSup{H,(x, t): (x,1) e S" x [0, T]}. 2.1
Henceforth

n+1

’H(x, 1) — Zpi(t)xi <2D for(x,t)eS" x[0,T], 2.2)

i=l1

and by (1.1)

n+1

S |Hix,0) — pi|* <4D2. 2.3)

i=1
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Let

v n+1 v/2
P(x,1) = Hge (x, 1) + [1 +Z |Hi(x, 1) — Pi(f)|2
i=1

where y € (1, 2]. Suppose that the supremum
sup{®(x,1): (x,1) € §" x [0, T], & tangential to S”, |&| = 1}

is attained at the south pole x = (0,...,0,—1) att =7 > 0 and in the
direction £ = e;. For any x on the south hemisphere, let

_ _ 2 MiX .”,_xlxn+1 .
s (” Y meg

Let u be the restriction of H on x,,; = —1. Using the homogenity of H
we obtain, after a direct computation,

n+1

> (H; — p)2(x,1)

i=1
2

=3 "(ui(y, 1) — pi)* +

i=l1

U, 1) + pupr — Y yii (v, 1)
i=1

and

A+yi+--+yD*
L4y 4+ y2
where y = —(x1, ..., x,)/Xn41 in R". Thus the function
(At yi+--+yD¥?
L+y3+- + 2

: 2 V/2
+ [1 +Z(”i —-p)’+ lu + Pny1 — Zyiui‘ ]

attains its maximum at (y, t) = (0, f). Without loss of generality we may
further assume that the Hessian of u at (0, 7) is diagonal. Hence at (0, )
we have, for each k,

Hfg(x,t) =M11(}’»t)

k]

oy, 1) =uy;

0< o =uy+y[(wi — pi)(uis — piy)
+ (u + pn+1)(ut + pn+1,t)] Q(V_Z)/z,
O=@=uik+ vy — pHuyp Q¥ =272,
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and

0> ork = i1 + Tettnr + ¥ (U + (i — piini
— A+ pusDui) Q¥ +y (v — D — p)uz QY2

where Q =1+ S (u; — pi)*> + ( + i)t =3ifk>1land 7y =1,
and p;; = dp; /dt. On the other hand, differentiating Eq. (1.6) gives

ii
ukt=E W' Uik + 8k
i

- o 5
Upkr = zu”uiikk — Zu”u“uijk + logdet V-u + gk,
i ij

where {u'/} is the inverse matrix of {u;;}. Hence at (0, f) we have
0> }: u* o — 1
k

kk kk
?Zu Ukkil — Ui + Ui
k

(v —2) (i — pi)*
’ y{;ukk [1 1 + 3w — pi)*+ (u+ Pn+1)2]

+ (u; — pi) (Z W uig — un) —n(u+ ppy1)
k

— U+ Pnt1) Us + Prgr,) + (i — pi) Pi } Q=272

> uput* —logdet Viu — g1y + v [(¥ — Duw — (ui — pi)gi
- n(u + pn+1) - (u + pn—H)(ut + pn+1,t)
+ (i — p)pis] QTP
To proceed further let’s assume u;; > 1. By (2.2) we have |u + pp41| <

2D and |u; — p;| < 2D. From the inequality above we therefore obtain,
in view of (2.1),

Ui + ukk

SCA+1u)QF2+ C(1+ |u+ pusal) (1 + ] + | Patie])

< C[l + Dlog (up + u**) + Dsgp H,(x, t)}.
<T
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From Eq. (1.3),

sup H;(x,1) < C +log [sup{Hg”g(x, t); x € §", & tangential to S"}].
1T t<T

It follows

uge +u* < C (14 Dlog(ug + u*)).

Hence u;; < C(1 + D] log2 D). This completes the proof of the lemma.
O

By combining Lemmas 2.2 and 2.4 we deduce the following important
corollary.

LEMMA 2.5. - For any given y € (1,2], there exists § = 3(y) > 0
such that

SR%(t)
14 sup, o, RY (1)’

Next we give a positive lower bound for the principal radii of the
curvature. In view of Lemma 2.4 and Eq. (1.3) it suffices to give a lower
bound on H,.

r(t) 2

LEMMA 2.6. — There exists a constant C depending only on n, ry, Ry,
f, and initial data such that

inf{ H,(x,): (x,t) € " x [0, T]} > —C.

Proof. — Let
q(t) = |EIIWSZJCH()c,t)dU(Jc)

be the Steiner point of X (-,7). Then there exists a positive § which
depends only on n, ry, and Ry so that H(x,t) — q(t) - x > 25. Let us
consider consider the function

H,(x,1)

) = D —x g0 =5

Suppose the (negative) infimum of ¥ attains at x = (0,...,0, —1) and
t > 0. Let u be the restriction of H to x,,; = —1 as before. Then

ut(yv t)
u(y, 1) —q@) - (v, =1 =8/ 1+ [yl?

Yy, 1) =
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attains its negative minimum at (0, 7). Hence

O 2 ][[t — utt _ ut (“t +dqn+1/dt3 ’
U+ G (t) =8  (U+gn1(®) —9)
0=y = Utk _ u (g — qi (1)) -
U+ gni1(t) =8  (U+gny1(t) —9)
and
Utkk UrUik
0< Y = -
T (0 =3 Wt g () — 07

Su;
(u + Gny1 (1) — 8)%
On the other hand, we differentiate (1.3) to get

Uy = ”ijuijt-
Rotate the axes so that {u'/} is diagonal at (0, 7). Then
0< Y WY — ¥
8“ Zukk —nu; +u; (u; + dQn+l/dt)
(u+qn1 — 8)2

Since u; is negative at (0, ), it follows from Lemma 2.4 that
dq
kk n+1
-1
Zu 8<+|u,|+l i )
C ( + |ut| + RO)

(1 + logZukk + R0>
C57%(1 + Ry)*. Hence
=>—C — ClogZukk

> — C( +log(1 4+ Rp) — logro)

and the lemma follows. O

\

<C

//\ | S > S

We therefore conclude 3 u*

Finally by comparing (1.3), (1.4) with the problem

dp
2 —logp"M, 0) =
a7~ logp p(0)

745
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where M = max{f(x): x € $"} and py is sufficiently large, we see that
H(x,t) is always bounded in any finite time interval. Furthermore, its
gradient is also bounded by (1.1). It follows from the regularity property
of fully nonlinear parabolic equations [11] that a C*t*2+2/2_gstimate
holds for H, provided Hy, € C**(§"), 0 < o < 1. By a continuity
argument we arrive at

THEOREM 2.1. — The problem (1.3), (1.4) with Hy € C***(S") admits
a unique C**2+%/2 solytion in a maximal interval [0, T*), T* < oo.
Moreover, lim;y7+ R(t) =0 if T* is finite.

Notice that the last assertion follows from Lemma 2.5.

3. PROOFS OF THEOREMS A AND B

We first prove Theorem A. Let m = inf f and M =sup f on §". It
is readily seen that if the initial hypersurface X, is a sphere of raduis
po > m~ /" the solution X (-, ¢) to the equation

X K

— =—log—v, X(,0)= Xy,

ot m

remains to be spheres and the flow expands to infinity as ¢t — co. On the
other hand, if X is a sphere of radius less than M~!/", the solution to

X - K

—=-log—v, X(,0=X
P» g 3rY (.00 =Xo

is a family of spheres which shrinks to a point in finite time. Henceforth

by the comparison principle the solution X (x, ¢) of (1.3), (1.4) will shrink

to a point if @ is smalll enough, and will expand to infinity if 8 > 0 is

large. We put

6, = sup{6 > 0: X (-, t) shrinks to a point in finite time }

and
6* =inf{6 > 0: X (-, 1) expands to infinity as 1 — 00}.

By the results in Section 2, it is easy to see that X (-, ) continuously
depends on 6. Hence by the comparison principle 6, < 6*.

By Lemma 2.5 we know that for any 6 € [6,,6*] the inner radii of
X (-,t) have a uniform positive lower bound and the outer radii are
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unformly bound from above. Hence (1.3) is uniformly parabolic and we
have C4t*2+2/2_pound on the solution in S* x [0, 00).

In the following we fix 0 € [6,, 6*]. Let £ € R"*! be the point uniquely
determined by

/ Exf( [do() =0, i=l,.n+l 3.1)

Write X (x,1) = X (x, 1) +& - 1. So X is X translated in £/|¢| with speed
|E]. X satisfies

9X lo K +§&
e _log =y
ot g f
and the corresponding support function H = H + & - xt satisfies
H, =logdet(VgVy H + Hdyp) + log fe&*.

The enclosed volumes of X and X are equal to
V() = — /ﬁdt(vvﬁ+ﬁa )
=— C o o
n+1 p P

and is uniformly bounded. On the other hand, by (3.1)

[ai=] e

is also uniformly bounded for all 7. Hence the functional J (t) =
J (H (-,#)) is uniformly bounded. Moreover, from (1.5) it is non-
increasing. By the C*+t*2+/2_regularity of H we also have that

[J'nl<c

and

|J'(t+7) — T'(2)|

Te/2 < C.

Therefore, we conclude that lim, _, J'(t) =0.
We claim that H is bounded for all z. In fact, it is sufficient to show
that [x = do is bounded. For, assume H is unbounded. Then we can
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find {t;}, t; — oo, such that X(x, t;)/d(t;), where d(t;) is the distance
from the origin to X (-, t ), converges to a point on §”. Without loss of
generality we take this point to be e, 1. Then the characteristic functions
of Aj={x€S8" x,41 >0,H(x,t;) >0} and B; = {x € §": x,41 <0,
H(x,t;) < 0} converges pointwisely to the upper and lower hemispheres.
We may also assume that H (x,2;)/( fes'xd(tj)) converges uniformly

to some function g which is positive on the upper hemi-sphere S*.
Therefore, we have

xn—f—lH(xvtj) _/

lim | X 4.up.
j—oo ) d(t)) fef* lm{ 0B

Jj—>o0

|Xny1 H (x, tj)|]
d(t)) fein
> / Xns18()

S+
> 0.

Hence | @fg—x—r—’) can be arbitrarily large for large ¢;.
Now we have, by (1.5),
t t
J(0) — J(00) = / |J'(t)| dt > //H,Z do dt.
0 0 $n

On the other hand, by the necessary condition for the Minkowski
problem, we have

L de = [ : 72
0‘/xkda—/xfeé~x(1+Ht+O(H’))

— [ 57 A+ 0()

as H, is uniformly small for large ¢. Therefore,

t 1
d -
l/—(/x gc//Hfdadt
dt
0 0 s

< C(J(0) = J(0)).

H
da) dt
feEs

Hence [ xfjeH; is uniformly bounded for all time. Consequently by the
Blaschke selection theorem for any sequence {z;}, t; — 00, we can
extract a subsequence {t;,} such that {H(x,1 )} converges uniformly to
some H(x) on S". Clearly H is a solution of K = fef~. To show the
convergence is actually uniform let’s consider another limit H'. Since the
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curvature of H' is also given by fe*~, H and H’ differ by a translation.
Let H — H' =1 - x for some [ € R"*!. Since

t ~
d H
/—/x do dt
dt fesx

ast,s > 00.Sol=0and H=H'.

Finally let’s show 6, = 6*. First we observe that by the comparison
principle one must have H, = H*, where H, (respectively H™) is the
solution of K = fe*™* starting from 6, Hy (respectively 6* Hy). However,
consider the equation obtained by differentiating (1.3) and (1.4) in 6:

<CJ@)—J(s))—>0

{ UL — AP (VyVuH' + H'S4p),
H'(0) = Ho(x),

where (A*?) is the inverse of (VgVoH + Héup). By the maximum
principle H'(x, t) > min Hy > 0. Thus
0=H*(-) — Hi(")
= tl_i)rglo(HO*('v t) - HG*(" t))
> (min Hy) (6" — 6,)
> 0.
So 6* = 8,. The proof of Theorem A is finished.

Proof of Theorem B. — It remains to show that the normalized hyper-
surface X (-, t)/r(t) converges to a unit sphere in case 6 > 6*. Let’s de-
note the solution of (1.3), (1.4) by H (-, ¢) and its hypersurface by X (-, t).
Since X is expanding, we may simply assume that it contains the ball
Bg, (0) where R > 1 +m~!/" at t = 0. On the other hand, we fix R, so
large that X (-, 0) is contained in Bg, (0).

For i = 1,2, let X;(-,t) be the solution of (1.3), (1.4) where f is
replaced by m and M respectively and X, (-, 0) = 0 Bg, . Clearly X;(-, )
are spheres whose radii R;(¢) satisfy

C'+0nlog(14+1) < Ri(2)

<
<C1+ (1 +1)log*(1+1)]

for some C > 0. Hence
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Ry (1)
R (1)
<loglog(l+1t)+C

d
—(Ry(t) — Ry (1)) <nlog

C
dt +

and so
R,(t) — Ri(t) < C[l + tlog log(1 + t)].

Consequently lim, o #2G=81 = 0. By the comparision principle X (-, 1)
is pinched between X, (-, ¢) and X, (-, ¢). So X (-, #)/r(¢) must tend to the
unit sphere uniformly.
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