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ABSTRACT. - It is shown that the empirical eigenvalue distribution of
suitably distributed random unitary matrices satisfies the large deviation
principle as the matrix size goes to infinity. The primary term of the rate
function is the logarithmic energy (or the minus sign of Voiculescu’s free
entropy). Examples of random unitaries are also discussed, one of them
is related to the work of Gross and Witten in quantum physics. @ 2000
Editions scientifiques et medicates Elsevier SAS
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RESUME. - Nous montrons que la distribution empirique des valeurs
propres de matrices unitaires aleatoires (de loi convenable) satisfait
un principe de grandes deviations quand la taille de la matrice tend
vers l’infini. Le terme principal de la fonction de taux est l’énergie
logarithmique (ou, au signe pres, l’entropie libre de Voiculescu). Nous
discutons aussi des exemples d’ operateurs unitaires aleatoires, dont l’un

* This paper has been circulated as Preprint No. 18/1997, Mathematical Institute of the
Hungarian Academy of Sciences.
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est lie au travail de Gross et Witten en physique quantique. © 2000
Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION AND STATEMENT OF RESULT

Let v be a measure on C. The double integral

has been used in potential theory for a long time and it has been called

logarithmic energy there [9]. It is a very remarkable fact that essen-

tially the same quantity appeared in Voiculescu’s work on free proba-
bility theory [11-14] (also [6]). When Voiculescu modeled probability
laws by the eigenvalue distribution of random matrices in his random ma-
trix heuristics, the above logarithmic energy appeared as a renormalized
Boltzmann-Shannon entropy [ 11 ] . One characteristic feature of entropy-
like quantities is that they can serve as a rate function in large devia-
tion theorems. Indeed, the logarithmic energy (alias Voiculescu’s free en-

tropy) is the rate function in a very recent large deviation theorem ob-
tained by Ben Arous and Guionnet [ 1 ], which concerns the empirical
eigenvalue distribution of Gaussian symmetric random matrices as the
matrix size tends to infinity. The subject of the present paper is to ob-
tain a large deviation theorem for the empirical eigenvalue distribution
of random unitary matrices. This work has been motivated very much by
a preliminary version of [ 1 ], we use the method developed in that pa-
per. The final published version of the work of Ben Arous and Guionnet
treats random unitaries, however the full large deviation was not obtained
in [1].

Let us recall the definition of the large deviation principle [3]. Let ( Pn )
be a sequence of measures on a topological space X. The large deviation

principle holds with rate function I in the scale n -2 if
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for every open set G c X and

for every closed set F c X. (If the latter condition holds only for compact
sets F, then the weak large deviation principle is said to hold true.) Here
I : X -~ [0,00] is lower semicontinuous and is called a good rate function
if {x E X : /M ~ c} is compact for every c ~ 0.

Let U(n) denote the group of n x n unitary matrices and let yn be the
Haar probability measure on U(n) . Moreover, let be the space of
all probability Borel measures on the unit circle T c C.

For U E U(n) we write An(U) for the atomic measure

where ~i(!7),~2(~...~(LO are the eigenvalues of U and ()
denotes the Dirac measure at ~ . In this way a mapping An : Z~(~) -~

is determined. Given a measure vn on U(n) , there exists a unique
probability measure Pn on such that

for every Borel set H in M(T). Note that Pn is nothing else but the
distribution of the random measure An (U) when U is considered to be
random and distributed according to vn .
Now let 6(~) be a real continuous function on T and for each n E N

set a probability measure vn on U (n ) as

where Zn is for normalization. Then we have the following large
deviation theorem.

THEOREM. - Let Pn (n E N) be the probability measures defined
above on Then the finite limit B = limn~~ n-2log Zn exists and
(Pn) satisfies the large deviation principle in the scale n -2 with rate
function



74 F. HIAI, D. PETZ / Ann. Inst. Henri Poincare 36 (2000) 71-85

for E J~1 (7r). Furthermore, there exists a unique ~co E .J1~! (~) such that
I = 0.

2. PREPARATION

The space A4 (~’) of all probability measures on ’]f equipped with the
weak* topology is compact and metrizable. Set

for a > 0. Since Fa (~, yy) is bounded and continuous,

is continuous in the weak* topology. Given a real constant B, the
functional I in ( 1.2) is written as

and hence it is lower semicontinuous. Since the logarithmic kernel is
strictly negative definite (see [2]), I is shown to be strictly convex.

If X is compact and A is a base for the topology, then the large
deviation principle is equivalent to the following two conditions

(See [3, Theorem 4.1.11].) We apply this result in the case X = M(T)
and we may choose

where mk denotes the kth moment (k E Z), i.e., = f~ ~ k 
For E M(T) the sets m, s) form a neighborhood base of JL for
the weak* topology of M (T) where m ~ N and s > 0.
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The mapping ~(~) -~ Tn sending a unitary to the n -tuples of its
eigenvalues induces a measure vn on TT" when U(n) is endowed by the
measure vn given as ( 1.1 ). We have

where for (= (~~ , (?, . ~ . , ~~ ~ E ~n the atomic measure

is denoted 

It is known [10, p. 195] that the measure ~~ on Tn induced by yn has
the density I0160i - 03B6j 12 with respect to d0160l ... d0160n where 03B6j = 
and = 2014 d9 j . Hence the density of vn with respect to d0161 1 ... d~n is

To obtain the theorem, we have to prove that

where G runs over neighborhoods of /1.

3. PROOF OF THEOREM

Our aim is to show that conditions (2.3) hold true.

LEMMA 1.-
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Proof. - We get

implying (3 .1 ). D 

’ ~ ~

LEMMA 2. - For every p E 

where G runs over a neighborhood base of 

Proof. - For any neighborhood G of p E M (1r) put

As in the proof of Lemma 3.1 we get
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Therefore

Thanks to the weak* continuity of ~’ r-+ y) dp’(y) we

get

Letting a - +00 yields inequality (3.2). D

A measure ~, on 1f may be identified with the distribution

so that we write dp (9) for f.~ f 
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LEMMA 3. - For any ~,c E .M(~) and 0  r  I define

where P,. (o ) = ( 1 - r2 ) / ( 1 - 2r cos03B8 + r2 ), the Poisson kernel. Then
-~ in the weak* topology as r -~ 1 and

Proof. - The first assertion is well known [8, p. 13]. A basic fact on
harmonic extension and Poisson integral (see [8]) is used in the following
computations. For any ~ E T, since 03B6 r-+ is integrable on TT,
we get

and hence
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which tends to 111 as r ~ 1 and the lemma is
shown. D

LEMMA 4. - For every  E M(1r),

and

where G runs over a neighborhood base of ~.c.

Proof. - Thanks to Lemma 3.3 we may assume that has a continuous
density f > 0 on 1r so that ~, = 2~ dB. Let ð > 0 be taken so that

8 ~ f (x) ~ 8-1 for x E T. The following proof is a modification of that
of [12, Proposition 4.5].

For each n E N choose a partition

such that

Then it is immediate that

Define
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For any neighborhood G of p, it is clear that

for all n large enough. Therefore for large n we have

thanks to (3.5).
Now let h : [0,1] ~ [0, 27r] be the inverse function of 03B8 E [0, 27r] r-+

~ ~ d~. Since ~ = /~((7 - ~)/~) and = we get

and

Therefore
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and

as desired. D

End of proof of Theorem. - By (3.1 ) and (3.3) we have

Since the functional ~c F(x, y) dJ1-(x) is lower semicontinu-
ous and takes the finite infimum on the compact space (1r), the finite
limit B = limn~~ n-2 log Zn exists and ( 1.2) gives a proper rate func-
tion I. Recall that proof was reduced above to verification of (2.3) and
these two conditions were proven as (3.2) and (3.4). Also the uniqueness
of M (1r) satisfying I (/10) = 0 follows from the strict convexity of
l. D

4. DISCUSSIONS

First we give two examples of our large deviatioin result for unitary
random matrices.

( 1 ) For a E C,  1, let Q(0161) = (0161 E 1r). Then the
probability measure vn on U (n) is given by

Hence

If Pn is the empirical eigenvalue distribution of the associated unitary
random matrix, then our theorem says that ( Pn ) satisfies the large
deviation principle with rate function
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for  E and the Poisson kernel measure p03B1 = ( 1 - -

unique minimizer of I. We have

and also

It does not seem easy to directly compute the above asymptotic limit
of integrals. In particular when a = 0 (hence Q = 0), the eigenvalue
distribution of a unitary random matrix distributed according to the Haar
measure on U(n) (called a standard unitary random matrix) converges to
the Haar measure on 1.

(2) Let À > 0 and set another function 6(~) = -f Re ~ (Ç E 1r). Then
vn on U(n) is

and vn on Tn is

By our theorem the associated sequence of empirical eigenvalue distrib-
utions satisfies the large deviation principle with rate function
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for where

In [3], Gross and Witten calculated the above value of B and showed that
a unique minimizer px of I is given by .

Incidentally, we have

and

More details about the minimization of the rate function in the two

examples are found also in [6].
The next comment is about the relation of this work to Voiculescu’s

entropy of noncommutative variables. Our result may be considered from
the viewpoint of free entropy for unitary random variables. Let (M , r)
be a W*-probability space consisting of a von Neumann algebra M and
a faithful normal tracial state r, [14]. Let U be a unitary element in M
and E M (1r) be the distribution of U with respect to 1:. For n, m ~ N
and 8 > 0 we define

where in denotes the normalized trace on n x n matrices. In case of

Q = 0, since s)) = m, 8» by (2.2), equality (2.1)
means that
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The above right-hand side can serve as the definition of the free entropy
of U.

Any operator X can be written in the form A + iB with selfadjoint
A and B. Voiculescu’s entropy of the non-selfadjoint X would be the
entropy of the pair (A, B), i.e., B) in his notation. For a normal

operator (particularly a unitary) X, A commutes with B and this entropy
is always -oo [13]. Roughly speaking, our entropy (4.1 ) for unitary
random variables takes finite values because we condition Voiculescu’s

entropy with respect to the conditions AB = BA and A 2 + B2 = I .
Furthermore, we can naturally extend the free entropy of unitaries to

the case of multi-unitaries ( U1, ... , UN ) as Voiculescu’s free entropy
X (X 1, ... , X N ) in the selfadjoint case was introduced in [12]. The free

entropy of multi-unitaries is not directly related to probability theory,
hence it is not discussed here, see [7]. We confine ourselves to pointing
out that the unitary (or conditioned) version of multiple free entropy has

properties similar to those in [ 12] .
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