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ABSTRACT. - Asymptotics of oscillatory integrals on the classical
2-dimensional Wiener space, whose phase functional is the stochastic line
integral of a 1-form, is considered. Under the assumption that the exterior
derivative of the 1-form is rotation invariant, an asymptotic expansion is
obtained. This result is extended to the process associated to a general
rotation invariant metric. @ Elsevier, Paris
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RESUME. - Nous etudions le comportement asymptotique d’intégrales
oscillantes sur l’espace de Wiener classique en dimension 2, lorsque la
phase est l’intégrale stochastique d’ une 1-forme. Sous l’hypothèse que la
derivee exterieure de la 1-forme est invariante par rotation, nous obtenons
ce developpement asymptotique. Nous etendons ce resultat a la diffusion
associee a une metrique invariante par rotation. @ Elsevier, Paris
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418 N. UEKI

1. INTRODUCTION

Let (W, P) be the 2-dimensional Wiener space: W = {w E C([0, oo) -
Jae2): w(0) = 0~ and P is the Wiener measure on W. Let b be a C1 dif-
ferential 1-form on R2 satisfying the following rotation invariance condi-
tion :

In this paper we investigate the asymptotic behavior of

and

as ~ - oo, where i = I and o d w (t) is the Stratonovitch stochastic
integral. Under some conditions on the function f in ( 1.1 ) and the
amplitude functional a, we give an asymptotic expansion as

r ~ ,

and a similar expansion for T(~; a). Moreover we extend these results
to the case, where the Wiener process w is replaced by the process
associated to a general rotation invariant metric and the 1-form b may
degenerate finitely at the origin.
The integrals ( 1.2) and ( 1.3) are called stochastic oscillatory integrals.

These integrals appear, for example, in the study of the Schrodinger
operator with a magnetic field and the 2-form d b in ( 1.1 ) corresponds to
the magnetic field (cf. [21]). For these integrals the asymptotic behavior
is estimated from above in more general setting [3,4,12-14,29]. For the
exact leading term, Ikeda-Manabe studied the following two cases: one
is the case where the phase functional is a quadratic functional, and the
other is the above rotation invariant case [9]. For the quadratic case, we
have a general exact formula and many related results are obtained. For
this aspect, see [7,9,14,23,24,26,27] and references therein. However, as
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419ASYMPTOTIC EXPANSION

opposed to finite-dimensional oscillatory integrals, it is difficult to obtain
the asymptotic behavior for more general phase functionals from these
results. On the other hand, the rotation invariant case is the simplest
nonquadratic case for which the asymptotic behavior can be investigated
in detail. In this paper we will extend the results in [9] on the rotation
invariant case. As for the asymptotic expansion, Ben Arous gave for a
function corresponding to (1.3), where w (s ) is replaced by w (s ) / ~ in
more general setting without rotation invariance conditions [ 1 ] .
Under the rotation invariance condition ( 1.1 ), by taking the expectation

in the spherical direction, our problem is reduced to that on Laplace type
asymptotic behavior. For example, /(~; 1 ) is written as

where

o

For more general cases, see Lemmas 2.1 and 3.1 below. By the Feynman-
Kac formula the right hand side is related to the integral kernel of
the heat semigroup of the Schrodinger operator - A ~- ~ 2 F2. Then the
problem on the asymptotic behavior corresponds to a problem on the
semiclassical approximation. We now use the technique of Simon [22]
for the asymptotic expansion of the eigenvalues and eigenfunctions in
the semiclassical limit. For this Laplace type asymptotic behavior, more
general results are obtained for the case where w (s) is replaced by
w (s) /~ . For these results, see [2] and references therein.
The aim of Ikeda-Manabe [9] was to show an infinite dimensional

analogue of the principle of the stationary phase, in the setting of
Wiener functional integrals. In fact, we can formally regard our results
as examples of this principle. For this aspect, see Remark 3.2 (i) below.

For a general rotation invariant metric

in terms of the polar coordinate (~0), r ~ 0, 8 E S 1, we reduce the
problem to that on the radial process and use techniques of the theory of
the 1-dimensional diffusion processes and ordinary differential equations.
Vol. 35, n° 4-1999.



420 N. UEKI

Since the asymptotic behavior of our oscillatory integrals are determined
by the behavior of the metric g(r) and the 1-form b at the boundary
r = 0, we need precise analysis at this boundary. Under the condition
that limr-*o g (r) j rei = 1 for some 03B1 ~ ?, r = 0 is an entrance boundary
point for the radial process if 1, a regular boundary point if a E
( -1, 1 ) , and an exit boundary point if a  -1, in the sense of Feller [5].
Accordingly we pose the Neumann boundary condition at r = 0 for

a ~ 20141 and the Dirichlet boundary condition for a  1. If we moreover
assume that = 1 + o (r 2 ) as r t 0, then the generator is regarded
as a simple perturbation of that for the case g (r) = rC1. Then we use the
explicit representation of the transition density of the Bessel process with
index a + 1 for c~ ~ 20141 and the corresponding representation for the
Dirichlet case with 03B1  1 (see Lemma 5.1 below). When this condition
is not satisfied, the existence of the function such as I (~; a) in (1.3) is
not trivial. However, by a work of Hille [6] (see also Matsumoto [15]) on
the continuity of the transition density at the boundary, we obtain a sharp
result for the case of the Neumann condition with 2014la3, which
corresponds to the limit circle case (see Theorem 6 below).
The organization of this paper is as follows: In Section 2, we treat

a fundamental case for the function /(~;~) in (1.2) with a simple
amplitude functional a. In Section 3, we consider more general amplitude
functionals a for both functions /(~;2) and T(~;~). In this section,
we also give a fundamental remark for our problem (see Remark 3.2
below). In Sections 4 and 5, we consider the case of a general rotation
invariant metric. Section 4 is devoted to the case of Neumann condition
and Section 5 is devoted to the case of Dirichlet condition.

2. A FUNDAMENTAL CASE

On R2 with the standard metric, we take a C1 differential 1-form b

satisfying the following condition:

(v) f is smooth on the open interval (0, oo) and each deriva-
tive of f is dominated by a polynomial.

We take a functional a on the Wiener space W. For this functional, we
introduce the following conditions:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(A.2) a(w) = A(r(t1), r(t2), ..., r(tK)), where r(.) = 0  tl 

t2  ...  tK  1 and A is a smooth function on [0, oo) x whose
derivatives are dominated by polynomials.

Let  pi # /~2 ~ " ’ be the eigenvalues of the harmonic oscillator

on L2(R2), 03C60, 03C61, 03C62, ... be the corresponding normalized eigenfunc-
tions, and P 1- be the orthogonal projection to the orthogonal comple-
ment to the ground states, where A = E~=i~/9(~~- In this case,
J1-o = f (0) /2 and CPo can be taken as

We denote the norm of L 2 (II~2 ) by (( . II and the inner product by (. , . ) .
For the function 7(~), ~ E R, defined in (1.2), we prove the

following in this section:

THEOREM 1. - Under the conditions (A.l)-(A.2), we have the

following asymptotic expansion as 03BE - ~:

in the sense that

for any N > l, where
,. ""

Vol. 35, n° 4-1999.
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and In, n E N, are finite linear combinations of {(8~A)(0): a E 7G+}
whose coefficients are polynomials of 

.

We first show the following:

LEMMA 2.1. -

where .

Proof. - By the stochastic version of Stokes’ theorem (cf. [8,25]), we
have

where

and S (t ) is Levy’s stochastic area defined by

As is explained in Section VI-6 of [ 10], the stochastic area is represented
as

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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where B(.) is a 1-dimensional Brownian motion independent of the
process {r(~)}. By taking the expectation in the Brownian motion B(.) ,
we have

By using the scaling property of the Brownian motion

we obtain (2.1 ). D

We introduce an operator

where F(~) is the function defined in Lemma 2.1. This operator
is essentially self adjoint on by Theorem X.28 in [18]. We
denote the self adjoint extension by the same symbol. The integral kernel

> 0, x , x’ E R2 of the heat semigroup e-tH(03BE), which
we call the heat kernel of H (~ ) in the following, has the following
representation:

(cf. [21 ] Theorem 6.2). Thus (2.4) is rewritten as follows:

On the other hand, by the condition (A. 1) (iv), the operator H (~ ) has

purely discrete spectrum (cf. [19] Theorem XIII.67). We denote the

Vol. 35, n° 4-1999.
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eigenvalues by /~o(~) ~ ,c,c 1 (~ ) C /~2(~) ~ ... and the corresponding
normalized eigenfunctions by ~o(~~)~i(~~).~2(~~)..’.. Since the
heat semigroup generated by 77 (~) is positivity improving, we
see that  1 (ç) and we can take as a positive function
(see [19] Theorem XIII.44). By Mercer’s expansion theorem, the heat
kernel y) is represented as the following convergent series:

For the asymptotic behavior as ç ~ oo, we follow the argument of
Simon [22]. We first show the following:

PROPOSITION 2.1. - For each n > 0, /~(~) = 

Proof. - For the upper bound, we use the Rayleigh-Ritz principle:

Since each is a polynomial times a Gaussian function, we easily see
that

Therefore we have

We next show the lower bound. We take smooth functions {h, k} on
R2 so that h2 + k2 ~ 1, supp h c {Ixl (  2} and supp k C ( > 1 }. For
any ç > 0, we set = and k~(x) = k(x/~~~1°). By the
Ismagilov-Morgan-Sigal-Simon localization ([22] Lemma 3.1), we have

for some Ci > 0 and any 03C6 ~ C~0(R2). For the first term, we easily see
that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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For the second term, we estimate as follows:

By the conditions (A.1) (ii)-(iv), we can estimate as

for some C3 > 0.
We now take JL E and set G = h~ (H - where

is the orthogonal projection onto the eigenspace of H correspond-
ing to the eigenvalues less than p and h~ is regarded as a multiplication
operator. Then, by the above estimates, we have

for large enough ~. Since the rank of G is at most n, we have

by the min-max principle. From this we obtain

Moreover, by the same procedure as in Simon [22], we have the
following:
PROPOSITION 2.2. - (i) As ç - oo, we have

where E.r,o, are those of Theorem 1.
(ii) As 03BE - ~, we have

Vol. 35, n° 4-1999.
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where n E N, are continuous functions such that E L2 for any
0, in the following sense:

for any compact set K in IIBz, and

for any m  0.

Proof. - The proof of (i) and (2.8) with m = 0 is identical to that of
Simon [22] Theorem 4.1. The rest is also proven by modifying slightly
the proof of Simon [22] Theorem 4.1. In fact, if we write as

then ~po are linear combinations of

m , k(l), k (2) , ... , k (m ) E Z+ and is also some polynomial of the
functions dominated by functions of this type and

where V (r, ~) = F(r, ç)2 - ( f (0)r/2)2 and e > 0 is taken small enough.
Then to prove (2.8), as in the proof of Theorem 4.1 of [22], it is enough to
show the subsequent Lemma 2.2. To prove (2.7), by the Sobolev lemma,
it is enough to show that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for any ç E This is proven by the subsequent Lemmas 2.2
and 2.3. D

LEMMA 2.2 (Lemma 4.2 of [22]). - For each fixed m E Z+, we have

and

is the operator norm and £ > 0 is taken small enough.

LEMMA 2.3. - For any ~ E we have

and

Proof of Theorem 1. - We decompose as

where

and IR(~; a) = I (~; a) - Io () ; a). lo(~; a) is expanded by Proposition 2.2
and 7~ (~; a) is negligible by the subsequent Lemma 2.4. D

LEMMA 2.4. -

Proof. - Since A is of polynomial growth, it is enough to show that

Vol. 35, n° 4-1999.
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for any m E 

We take 8 > 0 small enough. By using (2.5) and Schwarz’s inequality we
estimate as follows:

and

Moreover we use the following: for each k G N,

and there are C > 0 and N E N such that

(2.11 ) is deduced from Proposition 2.2 and (2.12) can be shown as
follows: by using the Feynman-Kac formula, Jensen’s inequality, the

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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translation invariance of the Lebesgue measure and the assumption (A.I)
(iv), we estimate as follows: 

.

for some N > 0.

Now we can show (2.9) by using Schwarz’s inequality and these
estimates in the right hand side of (2.10). 0

3. OTHER AMPLITUDES

In this section we consider more general amplitude functionals. We
first give a fundamental theorem for the function T(~; ~), ~ E R, defined
in ( 1.3). For this we introduce the following conditions:

(A.3) b(O) = 0, b is smooth, and each derivative of b is dominated by
a polynomial.

(A.4) a(w) = A(r(~ r(~),..., ~))C(~(1)), where A(r(tl), r(t2),
..., r (tK )) is same as in (A.2) and C is a smooth function on R2 whose
derivatives are dominated by polynomials.
Then we have the following:

THEOREM 2. - Under the conditions (A.1), (A.3) and (A.4), we have
the following asymptotic expansion as 03BE - ~:

in the same sense as in Theorem l, where po, are same as in

Theorem 1, Z~o = +t E2 is the

Vol. 35, n° 4-1999.
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2 x 2 identity matrix and In, n E N, are finite linear combinations
of {(8aA)(0) x a E E 7G+} whose coefficients are

polynomials of

Remark 3.1. - Under the condition (A.3), f’(o) _ = 0.

To consider more general amplitude functionals, we introduce the
following conditions:

(A.5) > 0.

(A.6) a = A(r(~)) E L1 = 0)), A(r(-)) = A(~)
and !A(0)!  oo, where I I 2 is the norm on the L2 space on the interval
fO, 11.

C is C and C, VC are bounded.
Then we have the following:
THEOREM 3. - Under the conditions (A.1 ), (A.5) and (A.6), we have

as 03BE - ~, where po, and Io are given in Theorem 1.

THEOREM 4. - Under the conditions (A.1), (A.3), (A.5) and (A.7),
we have .

as 03BE - ~, where po, 20, Io are given in Theorem 2.
Moreover, we introduce the following condition:
(A. 8) a = A (r (.)) , A > 0, sup A  00 and

Then, for the function I (~; a), we have the following: .

THEOREM 5. - Under the conditions (A.1 ) and (A.8), we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We here give general remarks:

Remark 3.2. - (i) As is explained in Ikeda-Manabe [9], our results are
regarded formally as an infinite-dimensional example of the principle of
the stationary phase. We here discuss this aspect. We assume b(0) = 0.
On the Cameron-Martin subspace H of W, we consider a functional

defined by

This functional is sometimes called the skeleton of our phase functional. _

For k E H such that k(l) = 0, the derivative in the direction k is

Therefore, h = 0 is the only stationary point. The Hessian at h - 0 is

for h, k E H. Another expression of this is

where B is a linear map on H determined by

This operator B is one to one. Thus ~ == 0 satisfies the condition of the

nondegenerate stationary point except that the operator B may not be
onto (cf. [17]). On the other hand, our results state that the asymptotic
behavior of the oscillatory integrals 1 (~; a) and I() ; a) as ~ - 00 are
determined mainly by the behavior of the functionals and a at the

point /r= 0 on H. More precisely, if we assume b is smooth at 0 and
put [32(W) = and 12(ç) = ( w ( 1 ) = 0], then we

Vol. 35, n° 4-1999.
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have

The right hand side becomes 1 if we replace 12(ç) by

where

The skeleton of fJ2(W) and are the lst and 2nd approximating
functionals appearing in the Taylor expansion of around the critical
point h = 0, respectively.

(ii) In Ikeda-Manabe [9], Theorem 3 is obtained in the case that
f (r) = for some ,B > 0 and a is represented as

where A is a bounded uniformly continuous function and ~1,~2....,~
are smooth functions on the interval [0.1].

(iii) The estimate in [28] asserts that

for the present situation. Since inf,. >o f (r) may be less than f(0), the
result in this paper is an example that (3.1) is not best possible.
Theorem 2 is proven as in the last section by using the following:
LEMMA 3.1. -

Annales de l’Institut Henri Poincare - Probabilites et Statistiques
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The following proof is essentially that of Theorem 3.1 of [9]:

Proof of Theorem 3. - Taking K > 0 large, we decompose the right
hand side of (2.4) as

where

and

By the conditions (A.I) (ii), (iii) and (A.5), there exists C1 > 0 such that

Then, by Holder’s inequality, we have

This is negligible if K is taken large enough.
For any 8 > 0, by the condition (A.6), there exists ~E > 0 such that

!A(r(.)) - A(0)!  s if ~~r(~)Ilz ~ Therefore we have

By all these, we can complete the proof. 0

The proof of Theorem 4 is almost identical with that of Theorem 3.

Vol. 35, n° 4-1999.
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Proof of Theorem 5. - For large enough ~ > 0, we have

- ~ 

u ’ J

where C = inf{A(r(.)): sup[0,1] r (t )  R } . From this we have the lower
bound. 0 

Remark 3.3. - (i) In this proof of Theorem 5, it is essential that
the integrand of I (ç; a) is real nonnegative. Such an expression is not
obtained for T(~; a) (cf. Lemma 3.1 ).

(ii) By using Hörder’s inequality, the condition (A.8) is weakend as
follows:

for some R > 0, where xR is the indicator function of the set { w :
sup[0,1] r (t)  R { on W.

4. A GENERAL ROTATION INVARIANT METRIC

In this section we extend our results in last sections to the case where
the Wiener process w is replaced by a process associated to a general
rotation invariant metric and the 1-form b may degenerate finitely at the
origin. For the formulation, we refer to a work of Sheu [20]. Using the
polar coordinate (r, 03B8), we assume that a Riemannian metric g on R2 is
given by

where g (r) is a positive smooth function on the interval (0, oo) satisfying
the following:

(g-i) As r - 0,

Annales de l ’lnstitut Henri Poincare - Probabilités et Statistiques
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where a E R, go = 1 and 0 = a(0)  a(I)  a (2)  ... / oo;
(g-ii) infr>1g(r)/r03B1’ > 0 for some a’ E R;
(g-iii)  oo for some a"  a’ and 

 00;

(g-iv) -1  a  3 and a(l) > (1 - 
The corresponding Laplace-Beltrami operator is represented as

on {r > 0}. Its radial part is a Sturm-Liouville operator

on (0, oo) . The boundary 0 is entrance if a ~ 1 and regular if -1  a  1

in the sense of Feller [5]. The boundary oo is always natural. Let r(t, r),
t > 0, r ~ 0 on [0, oo) be the diffusion process generated by Or /2 with
the domain

Then we can construct a diffusion process X(~), ~ ~ 0, x ~ 0,
generated by A/2 as the skew product of the process r (t, r) and an

independent spherical Brownian motion run with the clock

fo g-2(r(s, r)) ds (cf. [11]).
We consider a differential 1-form b given by

where k (r) is a positive smooth function on (0, oo) . The fibre norm of this
form with respect to the above metric is F(r) := k(r)/g(r). We assume
that this function F satisfies the following:

(b-i) As r - 0,

where p > 0, fo > 0, 0 = p (0)  p ( 1 )  p (2) -../’ oo ;
. (b-ii) There are 0  p’  p" and c’, c" > 0 such that

Vol. 35, n° 4-1999.
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tor any r ~ 1.
We consider the asymptotic behavior, as ~ ~ oo, of a function defined

by

where vol is the volume with respect to the above Riemannian metric
and B (R) := {x E Ixl  R } for R > 0. By taking the expectation in
BM(Sl), we can rewrite this as

where r(t) := r (t, 0) .
To state the theorem, we introduce an operator

with the domain D defined in (4.1 ), where

and Fo (r) := forP. By Lemma 4.1 below, this operator is essentially self
adjoint as an operator on Z~((0, where ma(dr) := ra dr. We
denote the self adjoint extension by the same symbol. By Lemma 4.3
below, this operator has purely discrete spectrum. We denote the eigen-
values by Jto   p2  ... , the corresponding normalized eigenfunc-
tions by CPI, ..., and the orthogonal projection to the orthogonal
complement to the ground states by Pj_. We easily see that Jto > 0 and
that CPo can be taken as a positive continuous function on the closed in-
terval [0, oo) . Let r’), t > 0, r E [0, (0), r’ E (0, (0), be the tran-
sition density of the process r (t, r) with respect to the speed measure

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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m(dr) = g(r) d r . By the proof of Lemma 4.7 below, we see that

exists. This value is positive (see, e.g., McKean [16]). Let

Let

ForB=(Ao,AI,...,Am) ~ B, we set

The main theorem is the following:

THEOREM 6. - Under the conditions (g-i)-(g-iv) and (b-i)-(b-ii), we
have the following asymptotic expansion as 03BE ~ ~:

where y = !/(/) + 1), { A0: A E A} are polynomials 0/’

/.. (~~(r-~d/~)~~, (~ - ~)-’P~~-~~/~ ...

(~o - M E Z+, ~(0), ~(1),..., ~(n)

~ 0,0 ~ c(0), c(l),.... ~(M) ~ 1 - a(l), ~(0), ~(1),..., ~ {0,1}},

Vol. 35, n° 4-1999.
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and {IB: B E .13} are polynomials of

The condition (g-iv) a  3 ensures that the boundary 0 is of limit circle
type for the operator Or (see, e.g., [18] Appendix to X.1 ). When this
condition is not satisfied, we assume the following:

(g-v) a > -1 and a(l) > 2.
Then we have the following:
THEOREM 7. - Under the conditions (g-i)-(g-iii), (g-v) and (b-i)-

(b-ii), we have the following asymptotic expansion as 03BE ~ ~:

where y, and Io are those in Theorem 6. 
’ ’

Remark 4.1. - (i) Under the condition a(l) > 2, {~co : A E A, c (A) 
2} are polynomials of only

(ii) We can treat also general amplitudes as in Sections 2 and 3.
However, since the discussion is almost identical, we omit it.

In the following we always assume only (g-i)-(g-iii), a > -1 and
(b-i)-(b-ii), unless otherwise stated.
To analyze the function I (~ ), we first represent this as

where r’) and r’), t > 0, r, r’ > 0 are the heat kernels
of the operators

~

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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and - Or /2, respectively, with respect to the measure m (d r ) . To define
these operators, we use the following lemma, which is proven by the same

technique of Sheu [20] :

LEMMA 4.1. - The operators ~L(~) and Or are essentially self adjoint
on the domain D defined in (4.1) as operators on L2((0, (0), m).

Moreover, by this lemma, we can represent the heat kernel as follows:

~-t7-l(F ) (r~ r’~

(see, e.g., [21] Theorem 1.1 ). By a general theory (see, e.g., [ 11 ]
Section 4.11), the heat kernel (r, r’) is a positive smooth function
of (r, r’) E (0, (0)2. For the representation (4.6), we use the following:

LEMMA 4.2. - positive continuous function of
(r, r’) E [0, 00)2.

Proof. - When a  1, this fact is well known since the boundary 0
is regular (see, e. g., McKean [16]). When a ~ 1, we use a result of
Hille [6] as follows (see also Matsumoto [15]). We assume ~ = 1 and
write 7~ := 7~(1). We use a canonical scale x = T (r), where .

r

Then the operator H is represented as

where d M (x ) = Since the boundary 0 is entrance, we
have limr~0 T (r ) = "oo and

Vol. 35, n° 4-1999.
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Moreover, if we set

then we have

Therefore, by the same method of the proof of Theorem 4.1 of Mat-
sumoto [15] (cf. Hille [6]), we have

for any xo E R, where m 1  m 2  ... are the eigenvalues of 1t and
~1,~2.... are the corresponding normalized eigenfunctions. The dis-
creteness of the spectrum of H is ensured by the subsequent Lemma 4.3.
Moreover by the same lemma and Mercer’s expansion theorem, we see
that e-tx (r, r’) is a bounded continuous function of (r, r’) E [0, (0)2.
Since the boundary 0 is entrance, we have

Thus we have

for any (r, r’) E [0, 0

LEMMA 4.3. - The heat semigroup generated by ~nC(~) consists of
trace class operators.

Proof. - As in the last proof, we consider only := ’~C { 1 ) . We set
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where [( and ( ~ , ~ ) g are the norm and the inner product of L2(gdr),
respectively. By the condition (g-i), we can take positive smooth
functions gl (r) and g2 (r) on the interval (0, oo) such that

for some 0  Ci  C2. Then we have

where

and J(r) := By the min-max principle, it is enough to
show that the self adjoint operator

on L2(gl dr) generates a heat semigroup consisting of trace class

operators. We use a scale o- = S(r) defined by

Then 1t is regarded as a self adjoint operator

on L2«0, oo), where

and
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By the unitary from da ) to L2(aa da), the
operator 7~ is transformed to a self adjoint operator

on da), where

By the conditions (g-ii) and (g-iii), 9(a) is a bounded continuous
function on [0, oo) . Therefore the heat kernel of the operator 1t has the
following representation:

for (a, a’) E [0, 00)2, where or)~ ~ 0, 0, is the Bessel diffusion
process with index a + 1 and a’) is its transition density
function:

(cf., e.g., [ 10] IV-(8.20) and [21 ] Theorem 6.1 ). By this explicit represen-
tation, we have

for any t > 0. Moreover if we take large R > 0, then we have

for any R, where C3 and C4 are positive constants depending only
on R. In fact, if we divide as
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then the first term is estimated by the Chapman-Kolmogorov equality,
(4.11 ) and an estimate of stopping times (cf. [10] Lemma V-10.5) as
follows:

where C7 and Cg are positive constants depending only on R. The second
term is estimated as
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by the condition (b-ii). From (4.11 ) and (4.12), we obtain

which completes the proof. a

As in Section 2, we rewrite (4.6) as

where r’ ) , t > 0, r, r’ ~ 0 is the heat kernel of the self adjoint
operator

on L2(m) with respect to the speed measure = g(r)dr,

and gi (r) = (4.13) is obtained from the scaling property

where r~(’) is the diffusion process generated by A~/2. Moreover we
rewrite (4.13) as

where   ~,c2 (~ )  ... are the eigenvalues of H (~ ) and
~o(~~)~i(~)~2(~~-" are the corresponding normalized eigen-
functions.
The aymptotic behavior of pn (ç) is as follows:

PROPOSITION 4.1. - n(03BE) = n for each n > 0.
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PROPOSITION 4.2. - We have the following asymptotic expansion as
~ ~ 00:

where A, y and c (A) are those in Theorem 6.
’ 

To prove these propositions we use the following:
LEMMA 4.4. - For each we have the following:
(i) For some c1, c2, c3 > 0 depending only on n, we have

(iii) For any N = 0, 1, 2, ... , we have

(iv) 03C6n E Dom(H(03BE)).

LEMMA 4.5. - For each fixed m E Z+ and a E [0, 1 /B + 1)/2}),
we have

and

where 11 . . ~op is the operator norm on 

Proof of Lemma 4.4. - (i) By estimating the probabilistic representa-
tion

as in the proof of (4.12), we obtain (4.15 ) with C3 = 2 ( 1 A p’ ) .
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(ii) Let 03C8 be a smooth function on (o, oo) such that = r-s
on (0, Rl] and 1fr(r) = 0 on [ R2, oo) for some small 3 > 0 and some
0  Ri  R2. For ~ E (0, R 1 ] , we have

Since the left hand side and the first term of the right hand side have
limits 0, the limit should exist. Thus we have

limr~0r03B103C6’n (r) = 0. On the other hand, we have

by the characteristic equation and (i) of this lemma. Thus we have

from which we obtain limr~003C6’n (r) = 0.
(iii) (4.16) with N = 0 follows from E Dom(H). For ~V ~ 1, we use

the integration by parts and the characteristic equation for qJn as follows:

The first term equals to

which is finite by (4.15). The second term is dominated by

which is finite by (4.15) and (4.16) with N = 0.
(iv) We define a domain by
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V

We easily see that D c D and that H (~ ) is defined as a symmetric
operator on D by the condition (g-iv) . Therefore, by Lemma 4.1, we have
D c Dom(H(03BE)). On the other hand, we have 03C6n E D by (i)-(iii) of this
lemma. Thus we have 03C6n E Dom(H(03BE)). D

Lemma 4.5 is proven by the technique in McKean [ 16].
The asymptotic behavior of is as follows:

PROPOSITION 4.3. - Under the conditions of Theorem 6, we have the
following asymptotic expansion as 03BE - ~:

where A, y, v(A) are those in Theorem 6 and {cpo (0): A E ,A} are
polynomials of

To prove this proposition, we use the following:
LEMMA 4.6. - Under the conditions of Theorem 6, we have

and

for large enough 0.
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The proof of this lemma is reduced to the following:
LEMMA 4.7. - Under the conditions (g-i)-(g-iii) and (b-i)-(b-ii), we

have

where

is a self adjoint operator on L2 (tnj ) .
Proof. - We note that

e~~~F’~> (0, 0)

and that R~ (t) := r~ (t)2, t ~ 1 is regarded as the pathwise unique solution
of the stochastic integral equation

where w (t) is the 1-dimensional standard Brownian motion with w (0) =
0 and

(cf. [ 10] Examples IV-8.2 and 3). By the conditions (g-i)-(g-iii), we have

for any ~ ~ 1, where

is a smooth function on (0, (0) such that
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and Ci, C2, C3 are some positive constants. Let Ro (t, R), t > 0, 7? ~ 0,
be the solution of

and let ro(t, r) := Ro(t, r2) for r > 0 and ro(t) := ro(t, 0). Then, by
the comparison theorem (cf. Ikeda-Watanabe [10] Theorem VI-1.1 ), we
have

and

The generator of the process r)} is 0~/2, where

For this operator, the oo is entrance and the boundary 0 is same as for the

operator Ar or A~. Thus the resolvent (JL - Do)-1 for each p > 0 is a
trace class operator (see, e.g., McKean [16]). Therefore, as in Lemma 4.2,
we can show the existence of

where mo(dr) = go(r) dr (cf. Hille [6], Matsumoto [15]). On the other
hand, by the condition (g-i), we easily see that

Therefore we obtain (4.22). 0

Now Theorem 6 is proven similarly as in Section 2 by using Proposi-
tions 4.1~.3.

For the proof of Theorem 7, we use the following:
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LEMMA 4.8. - Under the conditions of Theorem 7, we have

Proof - By the unitary operator from to the

operator H(~’) is transformed to a self adjoint operator

on L2(ma), where

Under the conditions of Theorem 7, we can show that g~ is a bounded
continuous function on the closed interval [0,oo). Therefore the heat
kernel has the following representation:

for (r, r’ ) E [0, By the Lebesgue convergence theorem, we have

By regarding

as a Laplace transform, we have

vaguely, as ~ - oo, from which we can obtain the result. 0
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5. AN ABSORBING CASE

In this section, we assume the conditions (g-i)-(g-iii) and
(g-vi) a  1 and a(l) > 2.
In this case, the boundary 0 is exit if a ~ -1 and regular if -1  a  1

for the operator Ar . Thus, to obtain a radial process on (0, oo), we should
take the boundary 0 as its absorbing barrier especially if c~ -1. We
assume this absorbing condition also for -1  a  1. We denote the

corresponding process by rO (t, r), t > 0, r > 0. As in the last section, we
construct a diffusion process XO(t, x), t > 0, x ~ 0, as the skew product
of the process rO(t, r) and an independent spherical Brownian motion

run with the clock fo r)) ds (cf. [11]). Then XO(t, x)
is a diffusion process generated by the half of the Laplace-Beltrami
operator A/2 with the point 0 as its terminal point. Let b be a differential
1-form satisfying the conditions (b-i)-(b-ii) in the last section.
As in the last section, we consider the asymptotic behavior of a

function defined by

By taking the expectation in B M (Sl ), we can rewrite this as

We define a self adjoint operator
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on Z~((0, oo) , ma ) as the Friedrichs extension of the corresponding op-
erator on oo) ) . This operator has purely discrete spectrum. We
denote the eigenvalues by  ~ ..., the corresponding nor-
malized eigenfunctions by cp? ’ ~,..., and the orthogonal projection
to the orthogonal complement to the ground states by We easily see
that > 0 and the nonzero existence of the derivative

with respect to the canonical scale (see, e.g., McKean [16]). Let

~A,/2~ ~ ~ r, r’ > 0, be the transition density of the process rO (t , r)
with respect to the speed measure m(dr) := g (r ) d r . The nonzero
existence of

is proven by using Lemma 5.2 below. Let A, B and be as in
the last section.
The main theorem in this section is the following:
THEOREM 8. - We assume the conditions (g-i)-(g-iii), (g-vi) and

(b-i)-(b-ii).
(i) When of > 20141, we have the following asymptotic expansion as

~00:

where y = I / (p + I ), { 0,A0: A E A) are polynomials of

lgn , fn , (r~~°~wk, (>I - H°) 
-1 

... (>I - 
’~ E Z+ , k(0) , k( I) , ... , kl’~) # 0) ,

B E ,~3} are polynomials of
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(ii) For any a  1, we have the following asymptotic expansion as

As in Theorem 7, A E 2 } are independent of n >

I} .
The fundamental tool is the following representation of the transition

density et~a~2(r, r’), t, r, r’ > 0, with respect to the speed measure

m" (dr), of the process r° (t, r) generated by the operator Da/2 with the
absorbing condition at the boundary 0:

LEMMA 5.1. -

We can prove this samely as in Example IV-8.3 of [10].

Remark 5. l. - In terms of the modified Bessel function

(5.5) is rewritten as

This expression is similar to that for the usual Bessel process with index
a + 1 for a > - 1 :
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By this lemma and the subsequent Lemma 5.2, we can represent as

where

and

on L 2 ( (o, (0), m ) is the Friedrichs extension of the corresponding
operator on Co ( (o, oo ) ) .

LEMMA 5.2. - The heat kernel r’) and the transition

density r’) have the representations

and

where

As in the last section, we use the scaling property to rewrite (5.6) as
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where

Moreover we rewrite this as

where

~,co (~ )  ~?(~)  ~(~)  ... are the eigenvalues of ~~(~) and ~po (r, ~ ) ,
~~(r, ~), ~(~, ~),... are the corresponding normalized eigenfunctions.
As in the last section, we have the following:

PROPOSITION 5.1. - (i) 0n(03BE) = 0n for each n > 0.
(ii) We have the following asymptotic expansion as 03BE - ~:

where A, y and (A) are those in Theorem 8.

PROPOSITION 5.2. - Under the conditions of Theorem 8(i), we have
the following asymptotic expansion as 03BE - 00:

where A, y, c (A) are those in Theorem 8,

and A E .A} are polynomials of

Vol. 35, n° 4-1999.



456 N. UEKI

By these propositions, Theorem 8 is proven similarly as in the last
section, since = a ) and
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