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ABSTRACT. — Stereographic projection from RN to SN maps Brownian
paths in RN to the paths of Brownian motion on SN conditioned to be at
the centre of the projection at a negative exponential time.

Key-words: Stereographic projection; Conditioned Brownian motion; Conformal
transformations.

REsUME. — La projection stéréographique de RN a SN applique les
trajectoires Browniennes de RN sur les trajectoires Browniennes de SN

conditionnées par le fait d’étre au centre de projection & un instant de loi
exponentielle.

In this brief note we shall discuss how Brownian motion in RY, for N > 3,
can be interpreted as a Brownian bridge conditioned to go to the « ideal
point at infinity ». This question was posed by Prof. L. Schwartz [2].
Prof. M. Yor [3] presents an alternative, more probabilistic, approach.

1. STEREOGRAPHIC PROJECTION

Consider the unit sphere SN in RN*! and the hyperplane
RN = {y =1 ¥ne1) Ins1 =0}.
Stereographic projection from the point P = (0, . . ., 0, 1) of SN maps ye RN
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188 T. K. CARNE

to the point x € SN\{ P } which lies on the straight line from P through y;
see the diagram. This is a diffeomorphism between SM\{ P} and RN, so
we regard P as being the point of SN which corresponds to the « ideal point
at infinity of RN ».

PROPOSITION 1. — Brownian motion on RN is mapped by stereographic
projection onto a time changed version of the Brownian motion on SN together

1 1
with a drift towards P at speed E(N - 2) tani 0 on the sphere.

Proof. — Brownian motion on a Riemannian manifold with metric
gadx.dx, has as its infinitesimal generator one half of the Laplacian, viz.

1,1 0 0
e D)

where g = det (g,) and (g) = (gs)~ ! On SN take co-ordinates (6, z)
for x e SN where 0 < 0 < n is the angle shown in the diagram and
z=y/llylleS" 1 =SNARN
Then
lldx||> = |dO|* + sin? 6. dz||*

so the Laplacian on SN is

1 0 0 1
Agn= ——— — | sinN" 10 — ———Agn-1.
SN SinN-10 26 (Sm ae) T sin? o
Similarly, if we take co-ordinates (r, z) for ye RN, where r = || y ||, then

Il dy|* = [dr|* +r?|dz|?

so the usual Laplacian on RN is

1 0 0 1
ARN:——J(I"N~1 )‘l"‘—zAle.

N1 or or) ¥
The infinitesimal generator for the deterministic motion given by a
drift towards P at speed %(N — 2) tan % 0 is clearly
%(N — 2)tan%9.%
Hence, to prove the proposition we need to show that, under stereo-
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BROWNIAN MOTION AND STEREOGRAPHIC PROJECTION 189

graphic projection > Agn~ corresponds to some strictly positive function times

g, = 1A +1(N 2) ta 19 9
= — N — — n-o.—.
PT 78T 2760

1
Under stereographic projection we have r = tanil) SO

2r \VUN/14+r3 0 2r \N"1 /1472 0 1+ 7r2\?
AsN: - 2 - Astl
1472 2 Jor|\1+r 2 Jor 2r
1472 N a2 W, ] 1 }
— ] B ¥A N-1
( >{<1+r> N-lar[<1+r2> Toa T
147 , 0 2r 0 1 }
—_ —_ - ““‘AN*[
) e alra)-m (1) g+ s

(1 r22A N2<2r)6}
>{ w = )1+r or

I

+ o

[\

Equivalently,

1 2 2 (1 1 1+r2>ﬁ}
EAR":<W) {EAS”E(N-z)r( 2 )a

1 1 0
_ 2 " Aen + —(N — 00—
= (1+cos 0) {2As +2(N 2)'[an2 66}

This completes the proof. O
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190 T. K. CARNE

We now wish to obtain the random process with infinitesimal gene-
rator %p by conditioning the standard Brownian motion BM(S™) on the
sphere to be at P at an appropriate time. To do this we will follow the
analysis of conditioning given by J. L. Doob [/, Chapter 10]. Note that
we are seeking a time-homogeneous process, so that conditioning BM(SY)
to be at P at a fixed time will not do. Furthermore, we cannot simply condi-
tion BM(SM) to hit P at some time since, to do so, we would require a posi-
tive harmonic function on SN\{ P } with a singularity at P. No such func-
tion exists. However, we do obtain time homogeneous processes by condi-
tioning BM(SY) to be at P at a random time T which is independent of
BM(SY) and has a negative exponential distribution.

PROPOSITION 2. — Let T be a random time which is independent of
BM(SY) and has a negative exponential distribution with parameter
2 = N(N — 2)/8. Then BM(S™) conditioned to be at P at time T has infini-
tesimal generator

%= At LN 2taniol
= — N — — n—-—uv-—
P Aol MY

on SN\{ P }. Hence, BM(RY) is mapped by stereographic projection to a
time-changed version of BM(SY) conditioned to be at P at the time T.

Proof. — To condition BM(S) to be at P at time T we need to find a
positive function & on SN\{ P } with a singularity at P and

(1 Agn — ll)h =0
2

Then the conditioned process will have the h-transform:
1 ,
u — h’1<§ AsN - /LI)(hH)

as its infinitesimal generator. Such a function h must be a multiple of the
1 . .
Green’s function for EASN — Al with a pole at P and hence it must be a

function of # only. Thus we wish to solve

1 é SmNﬂBah 0
2sinN"10 00 0| T
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BROWNIAN MOTION AND STEREOGRAPHIC PROJECTION 191

—-W+2
When A = N(N — 2)/8 the required function his given by h= (cos % 9)

Consequently, the conditioned process has infinitesimal generator
e n
u - h EASN——AI (5. u)
_ (1 1
—_—h 1 EhAsNu—i‘Vh.Vu+§uAsNh—lu.h

1
= EASNU + h_IVhVu
1 0
-0 —

1 1
pAsu+ )tan 3050

where V is the gradient for the Euclidean metric on S™. This proves the
first assertion and the second follows from Proposition 1.

(Note that the conditioning described above does correspond to the
naive idea of conditioning a process by its position at time T. For sup-
pose that U is a subset of SN with a smooth boundary. If (x,) is the Brownian
motion on SN, then we may form a new process

x¥=x tor t<T
=0 for t=T

which jumps to a coffin state 9 at the random time T. If we condition (x¥)
so that x¥_ € U then we obtain the transition semigroup P, given by

P f(x) = E(f(x") | x¥- e U)
= E(f(x)l¢<n | xrel)
= E{(f(x)1¢<nlulx1)
EX(1y(xr))

Setting

h(x) = EX(1y(x1))
we find that

P,f(9) = h0)~ EX(f (x) < nyh(xr)
— b r E(f (e h(x)Ae~ds
— ) e MBS hx,)

by using the Markov property of the Brownian motion. Thus the condi-
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192 T. K. CARNE

tioned process is the h-transform of the Brownian motion for h the dis-

tributional solution of
1
—Agn — AL )h = 1y.

We can now decompose this process into an average of the processes condi-
tioned to be at a point X e U at the time T. See J. L. Doob [I] for further
details.) O
1 NN -2
For each Y € SN let h(Y, .) be the Green’s function of 3 Agn _—(g—l 1

with a pole at Y. Then the Brownian motion conditioned to be at Y at
the negative exponential time T has infinitesimal generator

1 NN -2
R T
on SY\{ Y }. As in Proposition 2 we find that this is

1
u - EASNu(x) —N=2x=Y|I"'V]Ilx =Y. Vux).
Call this generator %y.

COROLLARY. — Let (x;:0 <t < S) be the process with generator %,
which starts from Y at time t = 0 and stops at the time S when it first hits P.
Then the time reversed process (X,:0 < © < S) given by

Xy = Xg—1

has infinitesimal generator %y, starts from P at t = 0 and stops at the time S
when it first hits Y.

Proof. — Since stereographic projection maps (x;) onto Brownian
motion in RN it is clear that (x, : £ > 0) almost surely never hits Y. Thus
the reversed process certainly starts from P at ¢ = 0 and stops at the time S
when it first hits Y. It remains to find its infinitesimal generator.

Let 2(Y,.) be the Green’s function for %, with pole at Y, then, for any

smooth function f which is compactly supported within SN\ {P,Y },
we have

EJ flx)dt = jg(x, Y)f(x)dV(x) = E rf (3x.)de
0 0

where dV is the N-dimensional Lebesgue measure on SN
Consequently, if we denote by %, (P,) the generator and transition
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BROWNIAN MOTION AND STEREOGRAPHIC PROJECTION 193

semigroup for (x;) and by Gy, (1~)t) the corresponding operators for (X,),
then we obtain
S
Jg(x, X)f ()P k(x)dV(x) = E | f(x)Pk(x,)dt
JO
S
=E | f(x)k(x,+,)dt
JO

S

=E f( }I“F r)k( }r)dr

= J gx, Yk(x)P, f(x)d V().
So N
P,k(x) = g(x, Y)™ 'P¥(g(x, Y)k(x))
and N
Gok(x) = g(x, Y) ™ 'G#(g(x, Y)k(x)) .

1
Now recall that % = h(P, .)” 1<§A — lI)h(P, .) so

h(Y, x)h(P, x)
Y)= 2777
g% ) hP,Y)
and consequently

Gok(x) = WY, x)” 1(% A — }J)*(h(Y, x)k(x)) .

Since the Laplacian is self-adjoint, this gives the desired result. [

2. CONFORMAL TRANSFORMATIONS

In this section we wish to set the results of § 1 in a more general context.
For any 4 > 0 we can condition BM(SY) to be at P at the independent
random time T which has negative exponential distribution with para-
meter 1. Indeed, to do so we need only find a positive function h of 6 with

(%Asn—il>h=0 on SM\{P}

1
and a singularity at P. If we make the change of variables q = 3 (1 — cos )

this becomes
2

a - g + N 2)‘”’ 2ih =0
Ve Vg B

2
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194 T. K. CARNE

for 0 < g < 1. This is in the standard hypergeometric form and may be
solved by a power series

o0

h= Zanq".

n=0

This series has radius of convergence 1 and each a,,is positive, so h is certainly
positive on 0 < g < 1. For A # N(N — 2)/8 this formula does not define
an elementary function. Although the conditioned process may be studied
as in the previous section, it does not correspond to a simple process on R,

The key property of stereographic projection is that it is conformal so
it alters the metric at any point only by a scale factor. We can develop the
arguments above for any such conformal transformation.

PrOPOSITION 3. — Let M be an N-manifold (N = 3) with a Riemannian
metric gqu and a conformally equivalent metric

gab = ngab Wlth Q>0.

Let R and R be the scalar curvature for g and & respectively. Then the Brow-
nian motion relative to g can be obtained, up to a time change, by conditioning
the Brownian motion relative to g according to its behaviour at a negative
exponential time if, and only if, R — Q2R is constant on M.

1 1~
Proof. — In terms of the infinitesimal generators — A and — A for the

Brownian motions, the Proposition states that there exists 4 > 0 and
strictly positive functions h and ¢ on M with

Y= e (XA -
Jhu=c ;8- (h . u) (1)

if, and only if, R — Q2R is constant. (If we consider the second degree
terms of (1) we see that the condition can only be satisfied if g and g are
conformal. So there was no loss of generality in restricting ourselves to
this case.)

The proof is simply a standard calculation of the scalar curvature for
conformal metrics. We shall use the usual index notation for vectors and
tensors on M. Let V,, %a be the covariant derivatives relative to g and g.
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Then a straightforward but tedious calculation yields the formulae:

Vavy = Vv, — Q71 0,V,Q + 0,V,Q — 24,8 0.V.Q)
Au= Z,Vu = 3V,(Vyu)
= Q¥Au + (N — 2)Q™ g™V, QV,u)
Q’R=R — 2(N — )Q1AQ — (N — 1)(N — 402"V, QV,Q.

Thus, for (1) to hold, we must have ¢ = Q and

_[1 1 1
h 1<§A ~ u>(h.u) =5 A+ 2 (N = 207"V, QV,u.

Now
A(h.u) = gV, Vi(h.u) = hAu +2g®V,hV,u+uAh

so we obtain the two conditions:

1
BV = S (N = 207'V,0

1
<—A—Al>h=0.
2

1
. . . . 5 (N-2)
The first of these is satisfied if, and only if, h = K .Q? for some constant
K. In this case, the second condition becomes

1 1o
0= <§A - 11)(92 N2

1 In-2 1 1n-3 IN-1
= Z(N —-2Q AQ + g(N—-Z)(N—4)Q2 gev.Qv,Q—i0% .

and

1 1
= A= (N = 207240 + 2 (N = 2N — 407 %¢"V,QV,Q

N-2 ~
=—— (R - Q%R). O
8N — 1)
If we take g to be the Euclidean metric on SN and g the metric on SN

which corresponds under stereographic projection to the Euclidean metric
on RY then

1

=———, R=NN-1, R=
1+ cos@ ( b R=0
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196 T. K. CARNE

and we recover Proposition 2. The above formula may also be usefully
applied to conformal mappings from SN to itself.

PROPOSITION 4. — Let (x,: 0 < t < S) be the process on SN\ { P} with
infinitesimal generator 9p and let T: SN — SN be a conformal automorphism
of SN. Then (Tx,:0 < t < S) is a time-changed version of the process on
SM\ { TP} with infinitesimal generator %qp.

Proof. — Recall that the group of conformal automorphisms of SN
is generated by the inversions in spheres orthogonal to SN, We could prove
the result by direct calculation, as in § 1, of the effect of such an inversion.
However, it is simpler to argue indirectly.

- Let U:RY — SY be stercographic projection with centre P and let
V:RN — SN be the stereographic projection with centre TP from the

N-dimensional subspace of RN*! orthogonal to TP. Both of these maps
are conformal, so the composite

Q =V 'TU:RY —» R¥

is conformal. Since N = 3, the only such conformal maps are the Euclidean
similarities of RN. These similarities obviously preserve Brownian motion
on RN to within alteration of the time scale by a constant factor. Now
Proposition 1 shows that, to within a time change, U maps BM(RY) to
the process with generator %, and V maps BM(RY) to the process with
generator %p. Therefore, T = VQU ™! does indeed transform the process
with generator %p to a time-changed version of the process with gene-
rator %rp. |

If we combine Proposition 4 with the earlier Corollary, we see that time-
reversal of the process starting at Y with generator %p corresponds to the
image of the process under any inversion which maps SN onto itself and
interchanges Y and P. This should be compared with the results of M. Yor [3]
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