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ABSTRACT. - We study the asymptotic expansion of a class of Brownian
integrals with paths constrained to a finite domain as this domain is dilated
to infinity. The three first terms of this expansion are explicitly given in
terms of functional integrals. As a first application we consider the finite
size effects in the orbital magnetism of a free electron gas subjected to a
constant magnetic field in two and three dimensions. Sum rules relating
the volume and surface terms to the current density along the boundary
are established. We also obtain that the constant term in the pressure
(the third term) of a two dimensional domain with smooth boundaries is

purely topological, as in the non magnetic case. The effects of corners in
a polygonal shape are identified, and their contribution to the zero field
susceptibility is calculated in the case of a square shaped domain. The
second application concerns the asymptotic expansion of the statistical sum
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148 N. MACRIS, P. A. MARTIN AND J. V. PULE

for a quantum magnetic billiard in the semiclassical and high temperature
limits. In the semiclassical expansion, the occurence of the magnetic field
is seen in the third term, whereas in the high temperature expansion, it

appears only in the fifth term.

RESUME. - On etudie Ie developpement asymptotique de certaines

intégrales browniennes dont les chemins sont astreints a demeurer dans
une region bornee de l’espace lorsque cette region est etendue a l’infini par
dilatation. Les trois premiers termes de ce developpement sont explicites. La
premiere application concerne les effets diamagnetiques de taille finie dans
un gaz electronique libre soumis a un champ magnetique homogene. La
densite de courant au voisinage des parois obeit a des regles de somme qui
mettent en jeu les contributions volumiques et superficielles de la pression
thermodynamique. En presence du champ magnetique le terme d’ordre 1
dans le developpement de la pression d’ un systeme bidimensionnel avec
frontiere reguliere est purement topologique. On identifie egalement 1’effet
des coins dans des domaines polygonaux, et on calcule leur contribution
a la susceptibilite en champ nul dans le cas du carre. Dans la seconde

application, on etablit le developpement asymptotique semiclassique et de
haute temperature de la fonction de partition d’ un billiard magnetique.
Dans le developpement semiclassique, le champ magnetique apparait dans
le troisieme terme, alors que dans le developpement de haute temperature,
celui-ci n’ apparait que dans le cinquieme terme.

Mots clés : Billiard magnetique, magnetisme orbital, courants de bords, intégrales
fonctionnelles, developpement de Weyl.

I. INTRODUCTION

In a previous work [1] ] we have studied the diamagnetism of quantum
charges in thermal equilibrium subjected to a uniform magnetic field by
means of the Feynman-Kac-Ito representation of the Gibbs state. It is well
known that diamagnetic effects result from an induced current localized at
the surface of the sample, and we were mainly concerned by establishing
exact relations between the magnetisation and the surface current in the
thermodynamic limit.

In the present work, we continue our investigation by the same methods
as in [ 1 ] focusing attention on finite size effects in orbital magnetism. The

Annales de l’Institut Henri Poincaré - Physique théorique



149BROWNIAN INTEGRALS AND ORBITAL MAGNETISM

understanding of finite size effects in this context is of interest both for
physical and mathematical reasons. In a recent paper [2], Kunz presented a
study of the surface corrections to orbital magnetism. The surface correction
to the zero-field Landau susceptibility is given by an explicit formula for
a sample of general shape and could contribute to the magnetic properties
of small metallic aggregates. At the mathematical level the problem can
be viewed as a natural generalisation with a magnetic field of the famous
Kac problem [3] of calculating the asymptotics of the statistical sum

of eigenvalues Ei of the Laplacian -A in
a bounded domain as ~3 - 0.

Let us formulate our questions and results in more precise terms. We
consider a quantum particle of charge e and mass m subjected to a constant
magnetic field B and confined in a finite region E~ == {Rr IrE ~~ in

= 2, 3, that is the dilation of some fixed domain ~. We consider
domains which are simply connected, having smooth boundaries 9E (with
finite curvature), but we do not require convexity. The Hamiltonian is (n ==
Plank constant, c = velocity of light)

where the potential vector A(r) = 2 B A r is chosen in the symmetric
gauge, and HR is defined with Dirichlet boundary conditions on 
Using the Feynman-Kac-Ito representation in terms of the Brownian bridge,
the statistical sum reads (see [ 1 ], section II)

with E = ~ and A given in (1.6). In the functional integrals (1.2) and (1.3),
a(s) = (ai (s), ..., cx"(s)) is the v- dimensional Brownian bridge process,
a(0) = a(1) = 0, with covariance

and J a A da is to be understood as an Ito integral.

Vol. 66, n° 2-1997.



150 N. MACRIS, P. A. MARTIN AND J. V. PULE

is the indicator function of the paths that remain in ~. We denote by b
the unit vector in the direction of B in dimension v = 3; for v = 2, b is
chosen orthogonal to the planar surface ~, or ~~.
With the physical constants occurring in the Hamiltonian ( 1.1 ) we can

form two lengths, the thermal de Broglie length A and the magnetic length l

The functional integral (1.3) involves the two independent dimensionless
parameters

Setting

one can single out three limiting regimes of interest:

(i) large volume limit R ~ ~ corresponding to ~ ~ 0, ,u fixed,
(ii) semiclassical limit  ~ 0 corresponding to ~ ~ 0, = Cl fixed,
(iii) high temperature limit {3 ~ 0 corresponding to ~ - 0, = C2
fixed.

In the absence of magnetic field (IL = 0), the three limits (i) - (iii) coincide
with the usual asymptotics of the statistical sum for the Laplacian in ~~,
which can therefore be equivalently viewed as a large volume, semiclassical
or high temperature limit (high temperature limit equals small time limit
in the language of stochastic processes). However, when  ~ 0, the three
limits (i) - (iii) correspond to distinct physical situations, and each of them
can be considered as a possible generalisation of the Kac problem. In this
paper we shall mainly be interested in the case (i) (large volume limit with
fixed magnetic field). This limit is the appropriate one to exhibit finite size
effects in orbital magnetism. It can also be phrased as a semiclassical limit
h - 0 in which the magnetic field is rescaled so that the product hB is
kept constant. To our knowledge, the existing literature (with the exception
of [2, 4]) has been more concerned with the two limits (ii) and (iii) in the
sense that one considers strictly confined systems, where the confinement
is insured either by an external potential or by an inhomogeneous magnetic
field growing at large distances. Then one studies the high temperature and
semiclassical asymptotics of the statistical sum (see [5] for recent references
as well as the discussion of section VI).

Annales de l’lnstitut Henri Poincaré - Physique théorique



151BROWNIAN INTEGRALS AND ORBITAL MAGNETISM

In section II, we establish the asymptotic behaviour of the quantity ( 1.2)
as R - oo in a more general setting, allowing for a general functional F(cx)
in place of the magnetic phase factor and an arbitrary dimension v &#x3E; 2. The

expansion is established up to order Rv-2, and this constitutes the main
mathematical results of the paper. In section III, we apply these results to
the magnetic situation. In particular, the functional integrals occurring in
the calculation of the zero-field magnetic susceptibility can be computed
explicitely, thus recovering Kunz formulae [2]. Section IV is devoted to
some geometrical aspect of the surface correction to the magnetization and
its relation to the current density (v = 3). In [1] ] we showed that in v = 2
dimensions the bulk magnetization can be expressed as the integral of the
current density along a plane wall. In [2] Kunz has shown that the surface
correction to the bulk magnetization has a similar form: it is the first moment
of the current along a plane wall. In this section we give the generalization
of these results to three dimensions by expressing the surface correction of
the pressure as a surface integral of the planar interface pressures associated
with magnetized half spaces, as well as the relation of the latter quantities
with surface current. We study in section V the case when the boundary
is not smooth (polygonal shapes in dimension v = 2). The contribution
of corners is isolated, and the corner zero-field susceptibility is explicitly
computed for a square shaped domain. The section VI discusses some
conclusions that can be drawn on the two other limits (ii) and (iii) from our

analysis. We show that in the semiclassical limit, the effect of the magnetic
field is only seen in the third term of the asymptotic expansion of the
statistical sum, and in its fifth term in the high temperature limit. Finally,
concluding remarks are presented in section VII.

II. LARGE VOLUME EXPANSIONS

As explained in the intoduction the main purpose of this paper is to

obtain a generalization of Kac’s result which can give amongst other things
the surface corrections to the pressure and magnetization. These physical
quantities both are of the form:

where ~ is a region in I~v with boundary and

x~R is the indicator function (1.5) of the paths that remain in ~~ (in this

Vol. 66, n° 2-1997.
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section, we set A = 1). We shall assume that F in (2.1 ) is square-integrable
in the sense that

We will obtain expansions for IR of the form

and

where 0 as I~ ~ oo, by taking successively stricter smoothness

conditions on 0£.

Assumption AO

At every point of ~03A3 the principal curvatures, 03BA1,...,03BA03BD-1, and the

principal directions are defined, and

Since near the surface we shall be using Gaussian coordinates in which a
point is labelled by the nearest point to it on the surface and its distance

from the surface we shall need also the following assumption.

. Assumption Al

There exists 8 &#x3E; 0 satisfying 0  8  1/xo such that if r E
and d(r, 9E)  6 then there is a unique point s(r) E ~~ for which

Ir - 81 = d(r, ~~~.
At each s of 9E let n be the inward drawn unit normal to 9E

and ti~t2~...?t~-i unit vectors in the tangent plane of 9E along the

principal directions (directions of principal curvatures). Set up coordinates
x , ~1, ... , at each point s of 9E so that x is along n and rci,... 
are along ti, t2,..., In this local frame the surface 9E is given by

with X == (~i,~2?...~~-i). The interior, E, is given by

Annales de l’lnstitut Henri Poincaré - Physique théorique



153BROWNIAN INTEGRALS AND ORBITAL MAGNETISM

Let

The volume element in E* is given by

In Appendix E we give a proof for this formula.
We start by rewriting IR in the form

In this discussion we shall call r + a path starting at r so that
the integral (2.8) is constrained to the set of paths starting at r and staying
in E. We can write the integral with respect to a in IR as an integral
over all paths starting at r and then take away the integral over the paths
which leave E

The idea here is first to estimate I~ and to show that it is of order 
then we approximate I~ by the integral over the paths which cross the
tangent plane and show that the difference between 12 and this integral is
of order Rv-2. Finally we approximate the remainder by the integral over
the paths which cross the parabolic surface tangent to 9E with the same
curvatures as 9E and show that the correction term is bounded by Rv-2ER
where 0 as R - oo.

We have

and

Vol. 66, n° 2-1997.
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where AR is the indicator function of the set (a ) sups~[0,1]|03B1(s) I  
and 1] is to be defined later. In the last equation we have split the paths
which leave E into those which start in E B E* and those which start in E*
and the latter according to whether sup is greater than or less than 
It is easy to show by using the bound (see sect. 11.7 in [6])

that 7s + 74 = O e-~‘R2 . Indeed

To simplify the notation, we shall denote all constants by C. Similarly,
using assumptions A0 and Al

We now estimate the last term 15. We have

We have used the notation ii = a - (cr . n)n, that is, ii is the projection
of cx onto the tangent plane at r. To bound 15 by we need only that
fr be linearly bounded on each neighbourhood of the surface.

Annales de l’Institut Henri Poincaré - Physique théorique
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Assumption A2

There exists r~ &#x3E; 0 and C &#x3E; 0 such that for each r E c~~,

whenever Ixl  7J.
We then have

We have thus proved.

PROPOSITION 1. - Under the assumptions Ao, Al and A2

where

This result has already been obtained in [ 1 ].
We now strengthen the assumption on the surface to obtain the second

expansion (2.3). In this case we want to approximate the integral over
the paths which leave ~ by the integral over the paths which cross the
tangent plane. We thus require that ( be bounded by on each

neighbourhood of the surface; for simplicity we take ~ = 1.

Assumption A3

There exists r~ &#x3E; 0 and C &#x3E; 0 such that for each r E c~~t

whenever ~ ~ ~  7].

PROPOSITION 2. - Under the assumptions A~- A3

Vol. 66, n° 2-1997.
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where

Proof. - Let

Note that the first term in (2.23) can be written as

and so corresponds to the integral over the paths which cross the tangent
plane. With this definition we have

We want to show that ~7  CRv-2. Choose a time Tn E [0, 1] , depending
on a, for which n attains its minimum, i.e. (cx - n) (Tn ) = inf (a . n).
Then

Choose TR such that

Then by assumption A3

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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Therefore

For a such that we have

and so for R sufficiently large

Thus by (2.29) the contribution to 17 from these paths is bounded by

The contribution to 17 from a’ s such that sup &#x3E; Ri is clearly bounded

by Ce-CR2.
To estimate 18, we expand the product

and observe that

since curvatures are uniformly bounded by xo. Hence

and this concludes the proof of proposition 2.
To obtain our final expansion (2.4) of IR we approximate the integral

over the paths which leave ~ by the integral over the paths which cross

Vol. 66, n° 2-1997.
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a parabolic surface tangent to 0£. To do this we shall assume that

03BAix2i for small )k):

Assumption A4

There exists ri &#x3E; 0 and C &#x3E; 0 such that for each r E c~~,

whenever

PROPOSITION 3. - Under the assumptions Al - A4

with

where Tn is such that (rx ~ n) (Tn) = infa. n and E~ -~ 0 as R --~ oo.

Proof - We set a . t; = We write

where

and

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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and show that 7io = Arguing as we did from (2.26) to (2.31), we
conclude that the dominant contribution in (2.41) is obtaind when (2.31 )
holds. Now

On the other hand

Therefore

The inequality (2.27) implies

Therefore if Too is a limit point of 

Now Tn is unique (see sect. 2.8 D in [7]), therefore TR  Tn as R - oo.
Thus 0 oo .

Vol. 66, n° 2-1997.



160 N. MACRIS, P. A. MARTIN AND J. V. PULE

Note that al in (2.33) is equal to (v - where Km is the mean

curvature,

and break up 18 into three parts

where

and

We deal with 7i2 as we dealt with 17 (see (2.26) to (2.31 )). The contribution
to 7i2 from those a’ s such that sup Ri is bounded by

Annales de l’Institut Henri Poincaré - Physique theorique
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and the contribution to 7n from a’s such that sup lal &#x3E; is clearly
bounded by Ce-CR2. In h3

since curvatures are uniformly bounded by xo. Therefore

This completes the proof of proposition 3.
We remark that the conditions A2-A4 that we assume here can be

weakened, for example, in the linear bound (2.16) we can make both
~ and C depend on r with the condition that d03C3C2  oo and

 for all t E R and similarly for the other

two conditions (2.20) and (2.36). However for the sake of making the
exposition simple we stated the results with the stronger conditions ??
and C independent of r.

If the functional is rotation invariant, the corrections T~
and take a simpler form. Since Dcr is also rotation invariant,

J D03B1F(03B1) inf(03B1 . n) is independent of the orientation of n at the surface,
and thus can be evaluated in (2.22) once for all for a fixed unit vector ki.
In the same way, the functional integral occurring in (2.38) is independent
of the point on the surface and can all be computed for an arbitrary fixed
pair of unit orthogonal vectors kI, k2+ Thus we have

COROLLARY. - Assume that is invariant under rotations and let

ki, k2 be any fixed pair of orthogonal unit vectors, then

with (a . ki)(Ti) = inf(a . ki).
In particular, in two dimensions, the term is purely topological since

by the Gauss-Bonnet theorem d03C303BA = 27r(1 - m) if 03A3 has m holes.

Vol. 66, n° 2-1997.
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Finally, the familiar case of the "small time" ,~ expansion of the statistical
sum for the Laplacian is obtained by setting F( Q) = ( / 2014= j B ~ and R = 
in (2.55) and (2.56) (see (1.3) and (1.7), and the discussion of scalings in
the introduction). Then the functional integral occurring in (2.55) equals
(using 

and that occurring in (2.56) equals, using (C.2) and (C.3)

With (2.57) and (2.58) one recovers the usual first terms of the "small
time" expansion of the heat kernel.

III. APPLICATION TO THE MAGNETIC SYSTEM

We apply the results of the previous section to a system of free particles
with Maxwell-Boltzmann statistics in presence of a constant field B in
dimensions v = 2,3. The grand-canonical potential QR corresponding to
the Hamiltonian ( 1.1 ) is given by

In view of (1.2), is an integral of the form (2.1 ) (with R replaced
by = ~’~) where the functional F(o;) is now

Annales de l’Institut Henri Poincare - Physique théorique
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and it can be expanded according to the Propositions 1-3. The volume term
of Proposition 1 is the well known Landau bulk pressure

where, for a one dimensional Brownian bridge a

It will not be further discussed here (see (A.1 ), as well as Proposition 1

and formula (2.19) in [ 1 ] ).
To express conveniently the surface contribution let us

define, for any unit vector k, the following functional integral, depending
on the two vectors ~cb and k

The second equality follows from the fact that F(a) is an even

function (together with and for the same
reason = II~1~ (-k~. Since is a real quantity (see for
instance (3.6) bellow), it depends on the magnetic phase only through
cos (~b - J cx A dm), so (k) is also an even function of ,u.. Morover,
because of the rotational invariance of the measure Dm, depends
only on ji and on the projection k of the magnetic field on the direction
k. Then, according to the result of Proposition 2, one can define a surface
pressure expressed as a surface integral

with

and n is the inward unit normal at the point cr of the surface; (n) is
the interface pressure between a magnetized half-space and empty space.
The following simple interpretation of can be given: it is (up
Vol. 66, n° 2-1997.



164 N. MACRIS, P. A. MARTIN AND J. V. PULE

to the factor the excess interface pressure obtained by cutting
the infinitely extended system into two half-spaces with a Dirichlet wall
having normal k. To see this we choose an orthonormal system of axis
kj , j = 1,... v, such that ki = k, and consider two cubic boxes At of
volume Lv

The excess interface pressure is then defined as

I A! U AL - can be split into the sum of two contributions: (i) the paths that
start in 11~ or in AL and remain in the same box; (ii) the paths that start in
one box and visit the other box. The contribution (i) is exactly Z~~ + Z~~ ,
thus the quantity (3.7) is given by the contribution (ii).The paths starting
in AL and visiting AI give the contribution

As L - oo, the constraints on the components aj, j = 2,..., v, of

the path become irrelevant, and this quantity behaves asymptotically as
DaF(a) sup03B11. Since the paths starting in +L give the same

contribution, the excess interface pressure (3.8) is indeed given by (3.4).
Hence the surface pressure pCI) can be calculated from (3.6) once the planar
interface pressure is known for general orientations of b and k.

Let us consider in dimension v = 3 the two special cases 

and II11~ (,~~ obtained by taking b parallel or perpendicular to k (say
k = b = ki or k = ki, b = k2 ) giving

Annales de l’In,stitut Henri Poincare - Physique théorique
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The expressions (3.9) and (3.10) where obtained by performing the Gaussian
integration over 03 with the help of (A.I). The parallel component can be
computed explicitly (see (C.3) and sect. 15 in [6])

We can also compute the perpendicular component up to second order in f.L
(see appendix D)

This enables us to compute (k) to second order in ft. Because of the

symmetries of (even in  and depending only on  and k), its
expansion to second order in  is necessarily of the form

The coefficients a, band c in (3.13) can then be found from (3.11 ) and
(3.12) giving 

’

and hence, from (3.6), (3.7) one finds the surface pressure to second order
in /~. In particular, the surface magnetic susceptibility at B = 0 is

The Fermi-Dirac statistics can be incorporated by replacing (3.1 ) by

Vol. 66, n° 2-1997.
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Thus the Fermi-Dirac susceptibility is

since the Maxwell-Boltzmann susceptibility (3.15) is independent of {3. The
expression (3.17) multiplied by 2 to take into account of the two spin states
has been found by Kunz (formula (5.27) in [2]).

In two dimensions, b and n are orthogonal, thus is independent
of n and reduces to the perpendicular component (3.10) with (~27r)~
replaced by (203C0)-2. Therefore, we see from (3.6), (3.7) that the two-
dimensional pressures and (n) are identical, with

with given in (3.10).The associated susceptibilities are

The next term ~z~~~Z~2~1 ~ in the expansion of the grand-canonical
potential can be expressed by the functional integral of Proposition 3. It
can be calculated for various shapes when the quantities

are known for any pair of orthogonal unit vectors kl ; k2. In two dimensions,
since is invariant under rotations around b, this correction is again
universal in the sense that it depends only on the topology of the sample,
but not on its shape (see end of section 2). At the moment, k2)
is only known explicitly at zero field (see (2.58)).
To conclude this section, we emphasize that we have worked in the

grand-canonical ensemble. If we want to compute physical quantities at

fixed averaged density p

we must first find the activity z~ as a function of the size R by
solving (3.22) at fixed p, and then expand jointly the potential 
for large 1l.

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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IV. RELATION BETWEEN MAGNETIZATION

AND CURRENT IN A HALF SPACE

In this section, we establish various relations between the current density
and the thermodynamical magnetization for matter contained in a half space
system in three dimensions, limited by a plane whose normal is n pointing
into the system. In the grand canonical ensemble, the average of the quantum
mechanical current operator density ~(v~(q 2014 r) + 8(q - r)v), with q
the position and v = 2014~V 2014 ~A(r) the velocity operator, is expressed by

where p(r, r’) is the one particle reduced density matrix. For the half space
system, it has the functional integral representation (sect. II in [1])

In (4.2) and the rest of this section, we set A = 1, i. e. we measure all lengths
in the unit of the de Broglie length. Because of translation invariance, the
current at a point inside the half space depends only on the distance
x = r. n of the point from the limiting plane, and the current has no
component orthogonal to the plane. Working out the components of j that
are parallel to the plane, one finds from (4.1 ) and (4.2) that the current in
the semi-infinite system with inward normal n is given by

where F( a) is the functional (3.2). 
’ ’

The direction of j(x, n) is along nAb in the plane (see (4.6) below). There
is no current in the bulk : if one removes the constraint x + mf(o:.n) &#x3E; 0
in (4.3) by letting ,z - oc, the integral vanishes since the integrand is an odd
function of a. In fact, j(x, n) = x - oo, as in Proposition 2
of ref. [ 1 ] .

Vol. 66, n° 2-1997.
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The following propositions 4 and 5 relate the total integral of the current
to the bulk magnetization.

PROPOSITION 4. - Let be the bulk (Landau ) magnetisation,
then

Proof - Let kj, j = 1, 2, 3 be the orthonormal right handed triad of
unit vectors with ki = b and k2 along b A n, and set nj = n . kj,
aj = kj. Then

The k3 component of j (x, n) in (4.5) vanishes because of the antisymmetry
in a2, and we can perform the a2 integral by (A.I). Moreover, since the
integral (4.6) without restriction vanishes because of the antisymmetry in a3,
we can replace the constraint by x  and change the
sign of the integral. Therefore

We make the change of variable (B.I) a(s + u) - a(u)
and integrate with respect to u; G(a3) is invariant and inf(nlal +
n3a3) Jo dsa3(s) changes to

When integrated on u, 03B11 and the term involving inf(n103B11 + 
does not contribute and the term linear in a 1 vanishes by antisymmetry.
Noting also that n3k2 = n A b one finds

Annales de l’Institut Henri Poincaré - Physique théorique
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By differentiating (3.3) with respect to B, we recognize that the right hand
side in (4.8) is precisely cn n = cn n 

COROLLARY 1. - Let the surface ~03A3 be parametrized (in R3 ) by 
a E a~. Then

Proof. - In view of (4.4), the right hand side of (4.9) is equal to

by Gauss divergence theorem.
In two dimensions, n is always orthogonal to b, k2 = b A n, and the

current magnitude j(x) = k2 . j (x, n) is independent of n. Then it is easy
to check that both Proposition 4 and its corollary reduce to the relation

already found in [1], where m° = b . m(O) is the scalar
value of the two dimensional bulk magnetization m(°).
The formulae (4.4) and (4.9) give the proper relations between the

bulk magnetization and the current density flowing in the neighborhood
of a point a of the surface in the three dimensional system. The total

integral of the current is still related to the bulk magnetization by
(4.4). The equality (4.9) is the precise form that the familiar relation

M~ = 2~, Js drr between finite volume magnetization and current
takes in the thermodynamic limit.

PROPOSITION 5. - Let m~(n) = magnetization
associated with the planar interface pressure (3. 7). Then

Proof - Proceeding with the same arguments used in (4.5)-(4.7), one
obtains
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After the transformation a(s + u) - + ~23(x~))2
~’a changes to

The first term in (4. 1 2) vanishes once integrated on u, and the third term will
not contribute because it is odd in a. Thus, introducing the definition (A.3)

It remains to identify with the right hand side of (4.13).
From (3.7) one finds

Since is a real quantity only sin enters in

the integral (4.14). This implies that the k2 component vanishes, the

corresponding integrand being odd in (}:2. We can perform the Da2
integration (calculating the first moment with the help of (A.2))

Comparing (4.15) with (4.13) the result of the proposition follows from the
observation that n A k~ = n3k~, n A k3 = -nlk2
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It is worth noting that the magnetization (n) at a point of the surface,
although lying in the plane subtended by n and b, is not directed along b,
but depends on the orientation of the surface element with respect to b.
However, the surface magnetization of the whole sample

is along b.

In 2 dimensions, since there is no distinction between and

pel) (see (3.18)), we have also the equality m(l) (n) = m(l). Then, the
proposition 5 reduces to

with mCl) = b . is the scalar surface magnetization, a relation already
obtained in [2]. The first moment sum rule (4.10) is the proper generalization
of (4.16) to three dimensions. In this case, it bears no direct relation to the
three dimensional surface pressure given by (3.6).
We add that the equalities (4.4), (4.9) and (4.10) remain true if one

includes Fermi statistics since an average quantity in a free gas
with Boltzman statistics is related to the corresponding quantity OFD (/3)
with Fermi-Dirac statistics by

V. CORNERS

In this section we briefly discuss the case of non smooth boundaries
constituted of polygons. For simplicity, we restrict the analysis to two

dimensional regions ~R limited by convex polygonal contours with k
faces of length Lj and obtuse angles = 1, ... ,1~, ~  0j  7r. The
orientation of the faces are given by their inward unit normals n j with

nj . nj+1 = cos j = 1, ..., k (k + 1 identified to 1).
We write for a general square integrable functional 
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with

In Io, all restrictions on paths have been removed, so Io = Z~ ~ is equal
to the bulk contribution (2.19) of proposition 1. The integrals 7i and I2
result of expanding the product in (5 .1 ) and keeping the linear 0-constraints
in (5.4) and quadratic 0-constraints in (5.5). In 7i, paths have to cross one
face, in 12 they have to cross two adjacent faces (i.e. to encircle a corner).
Paths that contribute to the remainder I have to cross at least two non
adjacent faces, thus they must extend over distances of order R, and their
contribution is 

We now consider one face of length L = (b - a) R in between two
corners of angles () a and We set coordinates such that this face is along
the x-axis and its normal along the y-axis. We associate to it the rectangle
C of height 6R, 6 fixed, as well as the two sectors A and B of radii 6R and
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angles 03C6a = 9a - 2 and 03C6b = 0b - j (see fig. 1 ). We decompose the term
in (5.4) corresponding to this face, say into the sum of the integrals of

paths starting in the three regions plus a reminder consisting of

paths that have to travel a distance at least 8 R,

Clearly

and, in polar coordinates

One has the same result for IB with 0b in place of 0~z.
We now consider a corner of angle 83 = 8 measured from a face oriented

along the x-axis, with normal nj along the y-axis. Then the normal to the
next face has coordinates nj+1 = (sin 0) (see fig. 2).
The dominant contribution to the term Ie in the sum (5.5) corresponding

to the corner 0 will be given by the paths starting in the parallelogram
AR with sides of length 8R
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We have made the change of variables x’ = with

Jacobian (sin 6’)’~.
The sum on all faces of the terms (5.7) gives the usual surface

contribution (2.22)

We can identify the contribution of a corner c(0j) (of order 1) as the

term (5.9) plus twice the term (5.8), i. e.

Thus we arrive at.

PROPOSITION 6. - Let 03A3R be a two dimensional domain enclosed hy a

polygon with k corner with angles 83, ; ~ 8~  1r then

where and are as in (5.3) and (5.10), and 2~2~ _ ,

c~ 8~ ) defined by (5.11 ).
It is interesting to note that, contrary to (2.4), the remainder in (5. 12) is

exponentially small; so IR for a polygon in two dimensions has only the
three non exponential terms of Proposition 6 in its large volume expansion
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(a similar situation occurs in [8]). We expect that when approximating a
smooth curve by polygonal lines, r12) in (5.12) should tend to the expression
(2.38) given in Proposition 3 for v = 2, but we have not verified this by
a direct calculation.

In the magnetic case, with defined in (3.2), because of rotational
invariance of we can always choose axis such that the contribution
of a corner reads (using also -supa)

For a right angle c(~) can be computed up to second order in the magnetic
field strength (see appendix D)

Since the coefficient of /12 is negative, this corner contribution to the zero
field susceptibility is diamagnetic (as the bulk term), in contrast to the

surface contribution which is always paramagnetic according to (3.19).

VI. SEMICLASSICAL
AND HIGH TEMPERATURE ASYMPTOTICS

The propositions proved in section 2 are sufficiently general to allow
us to derive expansions in powers of ~C, keeping all other variables fixed
(semiclassical) or in powers of (3, keeping all other variables fixed (high
temperature). In what follows we use the dimensionless parameters /1 and E
of formula (1.3) in the introduction. We recall that in these limits /1 tends
to zero with E (see (ii) and (iii) in section I), so that we have also to

expand the phase factor in (1.3). Thus the basic quantities which will enter
in our expansion are

for n = 0, 2. From the problem without a magnetic field it is well known
that admits an asymptotic expansion in powers of E
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where the coefficients dz are explicitly known up to i = 6 in two dimensions
and i = 2 in three dimensions. For example do = ~~ di = - ) J§)0£[
and in two dimensions d2 = ~(1 - m) if ~ has m holes (see (2.57) (2.58)).
We refer to [9] and references therein for these properties, and precise
assumptions on ~.
The quantity W2(e) is of the form = where is the

functional integral (2.1) with R replaced by and F(a) _ 
Therefore proposition 3 yields

with

The functional integral in (6.4) can be computed exactly and yields
ho = j;!~. The one appearing in (6.5) can be read off from the magnetic
susceptibility (3.15)

Note that in two dimensions hi == 2014(3/2~7r)~9E~ Similarly for the special
case of a square we have from (5.14) h2 = ~-~ 20141/32. In the semiclassical
expansion (i), defined in the introduction, E is proportional to 1i and  = Ci6.
Expanding the phase in (1.3) to order /-L2 gives

where the rest E) satisfies
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The first inequality in (6.9) follows from cos x - (1 - 2 ) ~ I  CX4, for
some C &#x3E; 0 and all x. Thus E) = O(E4). From (6.2), (6.3) and (6.8)

We see that the first two terms are the usual ones and the effects of the

magnetic field enters only in the third term of the expansion.
We note that a similar fact holds in the situation considered in [5] and

references therein where, as explained in the introduction, the particles
are confined by a smooth potential well instead of Dirichlet boundary
conditions. 0, the leading term is identified and seen to be

independent of the magnetic field. This result holds even for inhomogeneous
fields.

In the high temperature expansion (ii), defined in the introduction, E is

proportional to B//3 and tt = C2E2. Using again (6.2), (6.3) and (6.8) we get

Now the effects of the magnetic field enter only in the fifth term of the
expansion. In low temperature physics or studies in quantum chaos the
density of states of a particle confined in a finite region ("billiard") is of
central importance. Since in (6.11 ) we evaluate the asymptotic behaviour of
its Laplace transform, an immediate consequence of the Tauberian theorem
is that the leading term in the high energy behaviour of the density of states
(all other variables being kept fixed), is the usual Weyl term. Unfortunately
(6.11) doesn’t give a rigorous information on the next terms of the high
energy asymptotics, but it suggests that the effects of the magnetic field
enter only in higher orders.

These facts are again consistent with the situation in [5]. Indeed, it is

proved that when the confining potential grows faster than the magnetic
field at infinity, the leading term in the ,~ - 0 asymptotics is independent
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of the field. On the other hand if the magnetic field grows faster than

the potential at infinity, the leading term depends only on the field. The

latter case, however cannot be compared with our situation where the

Dirichlet boundary condition always "dominates" any possible growth of
the magnetic field.

VII. CONCLUDING REMARKS

The main result of the paper is the expansion of the Brownian integrals
presented in Section II, valid for a general class of functionals F ( ex ).
Many works have considered the expansion of such integrals when F( ex)
has the special Feynman-Kac form, i. e. when the powerful tools provided
by the associated differential equation are available. However, in several
circumstances, one is interested in more general functionals : this will be
the case if one wants to expand average values of observables (such as the
diamagnetic current), or generalize such finite size expansions to interacting
particle systems (as in Section IV of [1] ] for a low density gas), where there
is no one body Schroedinger equation at hand.

In our formalism, we were not able to push the expansion (2.4) beyond
the third term. We do not know if this limitation is technical or a price
paid for generality, in the sense that existence and computation of further
terms in power of R would only be possible when there is an underlying
differential equation obtained from the Feynman-Kac formula.
As far as diamagnetism is concerned, we mention some open problems. In

Section III, we have studied the large volume expansion of thermodynamical
quantities (recovering some existing results). Using the propositions of
Section II, one could easily compute low activity corrections to these

quantities in the interacting electron gas. We conjecture also that the basic
relations given in Section IV (the sum rules of Proposition 4 and 5) remain
true in presence of interactions. These sum rules involve the current density
of the semi-infinite system. An interesting question, not treated here, would
be to discuss the finite size corrections to the boundary current itself (for
hard and smooth walls) in order to gain a better understanding of the
current distribution in the finite sample.
We plan to come back to these questions in future work.

ACKNOWLEDGMENTS

We thank H. Kunz for stimulating discussions. J.P. thanks Mr Clancy for
some very useful discussions on geometry. J. P. thanks the IPT at Ecole

Annales de l’Institut Henri Poincaré - Physique théorique



179BROWNIAN INTEGRALS AND ORBITAL MAGNETISM

Polytechnique-Lausanne and Ph. M. thanks the Department of Mathematical
Physics at University College-Dublin for hospitality. N. M. acknowledges
support from Swiss National Foundation for Science and J. P. acknowledges
support from the European Commission under the Human Capital and
Mobility Scheme.

APPENDIX A

Gaussian integrals

Let 0152 be a one dimensional Brownian bridge. For continuous functions f
and g (sect. 15 in [6])

with

Equation (A.2) follows from (A.l) replacing f by A f and differentiating

APPENDIX B

Change of variable

The measure Da is invariant under the change (Lemma 2 in [1])

where
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APPENDIX C

Distribution of supa and ~ra

For a one dimensional Brownian bridge a(s), 0  s  1, a (0) = ~(1) =
0, the normalized joint distribution of supa and the time at which a(s)
attains its maximum is from Proposition (8.15) in [7]

In particular, the distribution of Te, is found to be uniform in the interval

[0,1]

One has also P(supa E db) = and hence

APPENDIX D

Integrals involving supa and a(u)
To calculate integrals of the we consider

Brownian motion on the positive half-line with absorbing barrier at the

origin. The probability for a path starting at x to reach y within the time u
is

i. e. the solution of the diffusion equation with Dirichlet boundary condition
at the origin. From the Feynman-Kac formula, we have for closed paths
x + 0 _ s _ 1, a(0) = Ct(1) " 0,
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This formula is equivalent to

Multiplying and integrating on x, one obtains

reducing such functional integrals to Gaussian integrals. One finds

The first equalities in (D.5) and (D.6) result of an application of the change
of variable (B.I) and J Da(supa)3 respectively. The
details of the calculation leading to (D.6) can be found in [10].
To calculate the two times integral

we could proceed like we did to obtain (D.4). We rather apply the change
of variable (B.I) to the integral  D03B1 sup03B1 03B12(u) giving for any v E [0,1]
(note that the odd moments of the Brownian bridge vanish)

Using f(u) = /(1 - u), (D.8) can be rewritten as
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We are now in position to calculate the terms of the expansion (3.12).
Using (D.6) and (D.9), or equivalently, integrating (D.9) on u and v gives

This, together with (C.3), establishes (3.12). To establish (5.14), we
expand (5.13) with e = 2 to second order in p (since c(B)) is real,
only cos (J enters in the integral), and introduce the function (D.7)

Using (D.9) and f(O) = f (1) = 0, f(u) = f (1 - u), we can transform the
coefficient of the ~2 term in (DJ1) by partial integrations to

The result follows from a direct integration of f(u) multiplied by
du2 f(u) == -8( J21r)-l(u(l - ~c)) 2 , and this, together with (C.3) leads
to (5.14).

APPENDIX E

Calculation of volume element (2.5)

Let the v - 1-dimensional hypersurface 9E be given by s =

~c 1, ... Let n be the unit inward drawn normal at s. The Shape
Operator A on the tangent space at s is defined by ( see chap. V in [1 1])

The eigenvalues of A are the principal curvatures ~i~2?...?~-i. The
area element on 9E is given by

Annales de l ’lnstitut Henri Poincaré - Physique théorique



183BROWNIAN INTEGRALS AND ORBITAL MAGNETISM

Let r be a point in ~* and s the point on 9E nearest to r and x the
distance from r to s, then

The Jacobian of the transformation is given by

Since I - xA) Q are in the tangent space at s we can write J in block
form 
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