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On an example of phase-space tunneling

Shu NAKAMURA*

Department of Mathematical Sciences, University of Tokyo,
3-8-1, Komaba, Meguro, Tokyo, Japan 153.
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Vol. 63, n° 2, 199 Physique theorique

ABSTRACT. - A typical example of phase space tunneling, which is
related to the Born-Oppenheimer approximation and has been studied by
Martinez, is considered. An upper bound on the width of the resonance,
which seems to be optimal, is proved. The main idea is to construct a
suitable canonical transformation, and then to use the standard Agmon-
type exponential estimate. In order to define resonances, we use a local
distortion method.

Nous considerons un exemple type d’ effet tunnel dans l’espace
des phases. Cet exemple est relie a 1’approximation de Born-Oppenheimer
et a ete etudie par Martinez. Nous donnons une borne superieure qui semble
etre optimale, sur la largeur des resonances.

L’ idee principale consiste a construire une transformation canonique
convenable puis d’ utiliser une estimation exponentielle du type d’ Agmon.
Pour definir les resonances nous utilisons la methode de distorsion locale.

1. INTRODUCTION

The purpose of this paper is to study a class of two-channel Schrodinger
operators as an example of phase-space tunneling phenomena. In [ 12],
Martinez studied resonances for the operator:
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212 S. NAKAMURA

in the semiclassical limit: 0, where R is an n-pseudodifferential operator
of 0 (1). The principal symbol of H (as an -pseudodifferential operator)
is given by F" B O xz s ~2 _ . _ i x y ~, ~ E R, and the 0-energy surface is

This consists of two connected components. The first diagonal elements
of the principal symbol is a harmonic oscillator, and the spectrum is
pure + 1 ) = 0, 1, 2,...}. The second element is a Stark
Hamiltonian and the spectrum is absolutely continuous, and is the whole
real line R. Intuitively, at least, each eigenfunction of the harmonic
oscillator is supported (micro locally) in a very small neighborhood of the
0-energy surface {(0, 0)}, whereas generalized eigenfunctions of the Stark
Hamiltonian is supported in a small neighborhood = -1+~}.
By the effect of the lower order perturbation the eigenvalue vanishes
generically, and it becomes a quasi-bound state, or a resonance. This
phenomenon may be considered as an interaction between the two 0-energy
surfaces, or so-called tunneling between them. Thus we can expect, by an
analogy of the WKB analysis, that the imaginary part of each resonance
(which is usually called width), is 0 with some c &#x3E; 0 as 1i 1 0.
Martinez showed that this is true under certain conditions on R, using
FBI-transform, or more specifically, Bargman transform, and the resonance
theory of Helffer and Sjostrand [7].

In this paper, we mainly consider special cases where R has the form

where ~ is the multiplication operator by x, p - (d/ dx), and a, /3,
1 e C. We will prove an exponential bound on the widths of the resonances
using certain canonical transform and Agmon-type estimates. The bound is
sharper than the one by Martinez [ 12], and seems to be optimal, though we
have not been able to verify. Generalization to a larger class is considered
in the last section.

l’Institut Henri Poincaré - Physique theorique



213ON AN EXAMPLE OF PHASE-SPACE TUNNELING

In order to state our result explicitly, we first introduce a definition
of resonances [4], Chapter 8 and references therein). More precise
discussion is given in Section 2. We use a class of ahalytic vectors, defined
by

where cj; denotes the Fourier transform of ~p:

If R satisfies certain analytic conditions, in particular if R has the form
( 1.3), then the function

is extended meromorphically to a neighborhood of R. We will prove this
fact using local distortion method in Section 2. A pole of this function is
called resonances, in other words, the set of resonances is defined by

R n R is the eigenvalues of H, and thus resonance is a generalization of
eigenvalue. Usually, resonance is defined as a non-real pole, but here we
define the resonances as a superset of the eigenvalues for the convenience.

THEOREM 1.1. - Let H be defined by (1.1) and (1.3). non-

negative integer. Then resonance En (~,) == (2n + + 0 (~,2).
Moreover, for any 0  6  5/12,

Remark. - In [ 12], Martinez proved (1.8) for 0  8  (3-B/5)/4  5/ 12,
for a larger class of R.
The tunneling estimates for Schrodinger operators in the semiclassical

limit has been studied extensively. See, for example, [ 17], [6], [3], etc.

In these papers, they studied tunneling effects in the configuration space,
i. e. , for the case when the energy surfaces of the principal symbol are
separated spatially. Recently, the tunneling effects in momentum space has
been studied by several authors ([ 1 ], [ 12], [ 13], [ 15], [ 16]). In particular,
Martinez studied operators of the form ( 1.1 ), which appear in the theory
of Born-Oppenheimer approximation of two-atomic molecules [11],
[ 14]). In order to formulate micro-local exponential estimates, he used the
Bargman transform, which is also called coherent wave packet expansion
in the physics literature [5], see also [ 16]). By this expansion, L2 (Rd)
is represented as a subspace of L2-space on the phase space: LZ (Rd x Rd).
Vol. 63, n° 2-1995.



214 S. NAKAMURA

This method is symmetric in configuration variable x and momentum
variable ç, and seems quite natural to study phase-space tunneling. However,
it is not clear if the estimates obtained by this method is optimal, since the
results depend on the choice of the wave packet with which the transform
is defined. moreover, the method is not invariant with respect to canonical
transform, since the Bargman transform is coherent in x in ç.

In this paper, we first use a canonical transform to make our 0-energy
surfaces separated in x-variable. The main technical step is the exponential
decay estimate for the eigenfunctions of the transformed operators, which
is a fourth order differential operator. It is proved using a generalized
Agmon estimate.
The paper is constructed as follows: In Section 2, we construct the

canonical transform explained above, and then define several operators
necessary in the proof of Theorem 1.1. Then the local distortion method
is introduced to define resonances. In Section 3, an exponential decay
estimate for the eigenfunctions is proved, and theorem 1.1 is proved in
Section 4. Section 5 is devoted to discussion on the general scheme and
generalizations. Some simple results on -pseudodifferential operators are
explained in Appendix.

Acknowledgement. - The author thanks Professor Andre Martinez for
helpful discussion and comments.

2. PRELIMINARY CONSTRUCTIONS

2.0. Self-ad j ointness

It is well-known that p2 -~ x2 and p~ 2014 1 2014 ~ are essentially self-adjoint on
Co (R), where p = 2014z~ and x denotes the multiplication operator

by x. Hence H0 = (p2 + x2 2 _ 0 1 _ B J is essentially self-adjoint on

Co. It is easy to see that R is Ho-bounded symmetric operator,
hence H = Ho is self-adjoint with D (H) = D (Ho) if  is small.

2.1. Canonical transform

If we use the canonical transform

then our principal symbol is transformed to { n -1 - /
The 0-energy surfaces of the diagonal elements are then {(0, O)} and

Poincaré - Physique théorique



215ON AN EXAMPLE OF PHASE-SPACE TUNNELING

{x = -1}, respectively, and they are separated in the x-variable. The

generating function of the transform is ~p+p~/3, and hence the quantization
is given by

where .~ is the Fourier transform, and ç is the conjugate variable of x.
Then it is easy to see that W is unitary and

Thus we have

where

and

It is easy to see that Ro is self-adjoint on D (p2 + (x + p2)Z) ~ D 
and R’ is relatively bounded perturbation of Ho. Hence H’ is a self-adjoint
operator with the same domain.

2.2. Approximation system

Here we construct an operator on H ~ H = LZ (R)4, which is a good
approximation of H’ in order to estimate Im E~ (~). Let e &#x3E; 0 be a small

constant specified later. We choose ji (x) E C(R).z = 1, 2, so that

M ~ 1 and

Then we define JZ E B (~), i = 1, 2, by

Now let

63, n° 2-1995.



216 S. NAKAMURA

and let J E B(7~ defined by

J is an isometry, i.e., J*J = 1 on ~. In fact,

for 03C61 ~ 03C62 ~ H.

Then we set K Kz on as follows: Let h (.r) E Co (R) be a
non-negative function such that h (0) &#x3E; 0 and supp h C {xl ~~~  1/2}. Let
k (x) E (R) be a negative function such that k0 = sup k (x)  -1/4,
and k (~r) = -~1 + ~~ if ~x + 11 &#x3E; ~-/2. Ki,o, i = 1, 2, are then defined by

and we let o + As in Subsection 2.1, it is easy to see that

z = 1, 2, are self-adjoint on 
Since h (x) = 0 on supp j2 and k (x) = -1 - x on supp j1, we have

Hence we obtain

Note that JZ , ~], i = 1, 2, are differential operators supported in

[-1 + ê/2, -1 + c].

LEMMA 2.1. - The spectrum == 1, 2, are given 

where I~o = l~o + 0 ( ~ ) and ~’n ( ~ ) = ( 2 n + 1 ) ~ + 0 { ~ 2 ) ; 7 (~2) =
== R.

Annales de l’Institut Henri Poincaré - Physique theorique



217ON AN EXAMPLE OF PHASE-SPACE TUNNELING

2.3. Local distortion

In this subsection, we explain a method of local distortion to define
resonances. This formulation is formally very close to the one by Hunziker
[9], but is also close to the energy distortion method by Babbit and
Baslev [2] in the spirit, since we essentially distort the energy of the Stark
hamiltonian locally.
Let x (x) E Co (R) be a smooth cut-off function such that

and let M = sup Ix’ (~r)~. If () E R, 101  M-1, then the transform

is a diffeomorphism in R, and it induces a unitary transform in L2 (R):

where JB (x) = |det (~T03B8/~x)| = 1 + Bx’ (x) is the Jacobian. We denote
U03B8 ~ U03B8 in L2 (R) 0 LZ (R) by the same symbol Ua (we will use such
notations without further remarks). It is easy to see that by this transform

operators x and p are transformed as follows:

Hence H’ (B) = UB H’ Ua 1 is an analytic family of type A in a

neighborhood of 0. Also, Kz (B) = UB K2 UB 1 is an analytic family of

type A since h (~) = 0 in a neighborhood of 0.

LEMMA 2.2. - There is 6 &#x3E; 0 such that H’ (9) and Kz (B) are anadytic
families of type A in Bõ = {z E  8}. Moreover, the point spectrum
of H’ (8) and KZ (B) are invariant in B.

LEMMA 2.3. - Ho (B) = UB Ho UB 1 and K2,o (8) = Ue K2,o UB 1 are
analytic families of type A in B6. Moreover,

if 03B4 and  are sufficiently small.

Vol. b3, n° 2-1995.



218 S. NAKAMURA

The proofs are standard or easy, possibly except for (2.20). In order to
show (2.20), we use the following consequence of the Garding inequality.

LEMMA 2.4.-Z~(~) &#x3E; -1/2;~) = -~-1/4~ ~ -1/2.
Then

as an operator inequality.

Proof. - If é &#x3E; -1/2 then we have

-1 / 2, we set e = x to obtain

If x  -1/2, we set e = -1/2 and

Thus (~ + + ~2 &#x3E; ~ (x) for x, ~ E R. Then we apply the Garding
inequality (Appendix, Theorem 5) to

to obtain (2.20)..

By Lemma 2.4, we have

if  is sufficiently small, which we always assume implicitly. Since the
spectrum of !7~ ((x + + p2 + h (x)) is discrete, and hence is

invariant in B, (2.26) and

imply (2.20).
We let 03B8 = zA with sufficiently small A &#x3E; 0, which we will fix in the

next section. Then the spectrum of I~2, o (9) avoids the origin. Since K2 (8)
is a small perturbation (8), we can expect 0 is in the resolvent set
of KZ (B).

Annales de l’Institut Henri Poincaré - Physique theorique



219ON AN EXAMPLE OF PHASE-SPACE TUNNELING

LEMMA 2.5. - There ’ exist c, C &#x3E; 0 such that if  is sufficiently small then
~ {z E  c} C and ’

Proof. - Note that the principal symbol of K2, o (B) is

If I () I is sufficiently small, then

for z in a small neighborhood of 0 by the argument above. Hence by the

Garding inequality (or by the construction of parametrix),

if  and c are sufficiently small. On the other hand, it is clear that

independent of Then (2.28) follows by the standard perturbation
argument..

Similarly, H’ (B) is a small perturbation of Ro (B) and the spectrum is
very close:

LEMMA 2.6. - There exist En (n) E C, n = 0, 1, 2,..., such that

E~ (~,) == (2n + 1) ~ + 0 (~,2) as ~ j 0, and for any C &#x3E; 0,

Proof. - By the standard perturbation argument as in the proof of
Lemma 2.5 (cf. [10]), (2.33) holds with == (2n + 1) ~, + O (~,).
Here E~ (~) is a perturbation of the eigenvalue (2n + 1) ~x of the harmonic
oscillator. If we note that R has no diagonal component by the assumption,
we see

where ~ ° is an eigenfunction of Ho ( 8 ) . Hence the 0 ( ~ ) -term in the

perturbation expansion vanishes, and we have the desired estimate..

Vol. 63, n° 2-1995.
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2.4. Resonances

Since the set of analytic vectors is invariant under the transform
W = eip3 /3, it suffices to consider analytic continuations of

On the other hand, ~p E ,.4 is an entire function by the Paley-Wiener theorem.
Hence is an x-valued analytic function in 03B8 in a neighborhood of 0.
For 03B8 E R, we have

By the analyticity, this equality holds for any 03B8 in a neighborhood of 0.
Hence we may set 03B8 = ia in (2.36) as in the last subsection. Then g’03C803C6 (z)
is analytic in the domain ~ ~ 7 (H’ (B)) and it has poles at the eigenvalues
of H’ (B). In particular,

where C &#x3E; 0 and En are as in Lemma 2.6. Thus we have shown:

PROPOSITION 2.7. - There exist bo &#x3E; 0 and En (li) E C, n == 0, 1, 2," ’,
such that for any C &#x3E; 0, the set of resonances for B(C~) - C (
(z~  = 0,l,2,...}n~(c~ where 

(2n -~ 1) b + O (~2).
Prom now on, we will study the eigenvalues and eigenfunctions of

H’ (8) in order to prove Theorem 1.1.

3. EXPONENTIAL DECAY ESTIMATES

Here we prove that the eigenfunction decay exponentially in ~Z-1 in

classically forbidden region, i.e., in an area with which the projection of
the energy surface does not intersect.

We 0, and let (~) - (2n + 1) ~ + 0 (~2) be the
(n + 1)-th eigenvalue of .K~ . Let ~~ (x) be the corresponding (normalized)
eigenfunction.

Annales de l’Institut Poincaré - Physique theorique



221ON AN EXAMPLE OF PHASE-SPACE TUNNELING

It is well-known that for any smooth function p (x) on R,

Hence, if a (~; x, p) is a differential operator: a (~; x; p) _

then

In particular,

If p’ (~) = 0, then the principal symbol of the diagonal elements are positive
except = 0. Let us consider under what conditions on p (~) it

holds. If we solve the equation: ç2 + (~ + (2)2 = 0 in ç E C, we have

We be the least absolute value of the imaginary part of the
solution ç. Namely, r~ (~) = 1/2 1/4; = 1/2 - ~ + 1/4 if

-1/4  a;  0; = ~ +1/4 - 1/2 if x &#x3E; 0. If 0 ~ ~p’ (~) ~  ~(a;),
then

We will take a smooth function p (~r) so that p (~c) ~ 0; p (x) = 0 in a

neighborhood of 0; and - p’ (x) ~ 0 is slightly smaller than ~ (x). Since

p (x) should be slightly smaller than 5/12 in a small neighborhood of (-1).
Now let 1 - [-1 + é/2, -1 + supp [T], and let ~yo = 5/12.

Vol. 63, n° 2-1995.



222 S. NAKAMURA

PROPOSITION 3.1. - There exists C &#x3E; 0 such that

the characteristic function and e’ _ (3/4) c.

Proof. - Motivated by the above argument, we set /? e C°° (R) so that
03C1(x) = 0 for x ~ -6 with some 6 &#x3E; 0; p (x) &#x3E; 0 for any x e R;

|03C1’ (x)|  ~ (x) for x  0; 03C1(x) &#x3E; ~ (y)dy - c/4 for x e (-3/2, 0);
03C1(x) is constant for x ~ -2. Let 03C8 = 03C81n. Then we compute

The principal symbol of ~’’ - ~ I is given by

and it is positive 0 by the choice of /) (~). Note that Fn = 
Now let a (x) be a smooth function such that: a (x) is supported in a small
neighborhood of 0; supp a c = 0}; a (x) ~ 0 for any x E R; and
a (0) &#x3E; 0. Then it is easy to see

for any x, ~ E R with some c &#x3E; 0. Then by the Garding inequality, we have

for cp E Thus, by letting ~ = we obtain

Annales de l’Institut Poincaré - Physique theorique



223ON AN EXAMPLE OF PHASE-SPACE TUNNELING

if  is sufficiently small. This implies, in particular, C. Noting
that

we conclude (3.7). t!
The same argument holds for H’ (B). Then we need to use the positivity of

instead of (3.9). If 101 is sufficiently small, however, we can employ the
same p (x) to obtain the estimate:

for cp E D (Ho), as well as (3.11). We now fix 03B8 " = ia with A &#x3E; 0 so small
that the above " estimate " holds. Then we obtain

PROPOSITION 3.2. - eigenfunction , I wi th H’ I ~~ _
Then there , exists C &#x3E; 0 such that

where ~’ == (3/4) c.

4. ESTIMATES FOR RESONANCES

We first show that En = F~ + 0 for any N &#x3E; 0.

If  is sufficiently small, then r c and 
.

where ’ C is independent of ~.

Vol. O 
’ 
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Proof. - The proof is standard and we only explain the case N = 1,
which is in fact enough for our purpose. We set

L has no spectrum in a neighborhood of 0 (if h is sufficiently small), and
it is easily shown that

Let a (:~) be a smooth function such that a (x) = 1 on 1 and a (x) = 0 on
Then by easy computations,

But since [a, Kl~ = 0 (~,) as an operator from D to D (L)*, the last
term is O (~,) in norm, and clearly = O (~N) for z E f.
Combined with (4.3), these completes the proof for N = 1. For the general
case, we use a series of functions aj (x), j == 1, 2,’ " , N, with supp aj C

(x) = 1} to carry out the above argument iteratively..
We set

Then the right hand side has a symbol of 0 (~) supported in I, and we have

COROLLARY 4.2. - Let T be as in Lemma 4.1. Then

is  is sufficiently small.

LEMMA 4.3. - Let C be as in Lemma , 4.1. If  is sufficiently small,
r (B)) and = 1, where , P (?) is the projection:

Proof. - As well as (2.13), we have

de Henri Poincaré - Physique theorique



225ON AN EXAMPLE OF PHASE-SPACE TUNNELING

where K (03B80 = K1 ~ KZ (B). Hence

and

By Corollary 4.2, [’’ -] is invertible in D (H’) if  is sufficiently small
and z ~ r, and

Moreover, (4.6) implies

On the other hand, the eigenprojection to the Fn-eigenspace of K1 is

given by

and since KZ (B) has no spectrum in f,

Combining them with the definition of P (B), we obtain

since If I = 

By the exponential decay estimate (Proposition 3.1), we also have

and hence

Then (4.14) and (4.16) imply

63, n° 2-1995.
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If 1i is so small that the right hand side is less than 1, then

Here we have use the fact that J* is isometry.
Then En is contained in r since En is the unique eigenvalue of H’ (0)

of the form (2n + 1) ~ + 0 (~C2) == Fn + 0 (h2).
COROLLARY 4.4. - For En - In particular,

|Im En| I  

Proof of Theorem. 1.1. - Let 03C6 be the Fn-eigenfunction of and let

then as in the proof 0 Lemma 4.3, we have

for any N, since C~N by (4.11). Combining
this with (4.15), we have

if 1i is small. Now we compute the difference of the eigenvalues En - Fn .
Since ~ is an En-eigenfunction of H’ (0),

On the other hand, since ~p is an Fn-eigenfunction of Kl, we also have

Note that Tl =E (H’ (B) Jl - Jl is a third order differential operator
with the coefficients supported in supp Ji c [-1 - c/2, -1+6-]. Then by
Propositions 3.1 and 3.2,

Combining these, we conclude

By (4.11), this implies 

Annales de l’Institut Poincaré - Physique theorique
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5. DISCUSSION

Here we discuss what this example suggests us about phase-space
tunneling. If we compare our result with the Martinez’ result, our estimate
is more than twice as sharp. This may suggest that in order to obtain sharp
decay estimation on, e.g., eigenfunctions, we have to decide the direction of
the decay in the phase space. The direction is not necessarily linear, but may
be one coordinate of a canonical coordinate system. It seems impossible
to obtain a sharp decay estimate for the all directions in the phase space
simultaneously. This can be considered as a consequence of the uncertainty
principle. Thus a general scheme of the phase space tunneling might be
as follows: In order to estimate tunneling effect between two microlocal
wells, i. e. , two disjoint classically allowed areas in the phase space, we first
find a canonical coordinate which separates the wells in a maximum way
(in some sense). Then construct a unitary transformation corresponding the
canonical change of coordinate. Finally we use the Agmon-type estimates
to prove the exponential decay of (generalized) eigenfunctions. However,
situations may be greatly varied both geometrically (i.e., in the behavior of
classical mechanics) and analytically (i.e., in the choice of symbol classes),
and hence it seems hardly possible to construct a general theory which is
applicable to all the problems of phase space tunneling phenomena.
At last, we sketch an idea of a generalization of our theorem in the

lower order term R. As is seen from the proof, the form of R ( 1.3) is

not really relevant. We only need some analyticity conditions and upper
bounds on the symbol. Let 03B4 &#x3E; 0 and suppose R’ = W RW* has a

symbol a(~; ~ ç) == and ~(~; x, ç) satisfies the following
conditions: ai~ (~; x, ç) is analytic in

and satisfies

for any l~, l &#x3E;; O. Then the analytic continuation (or distortion) arguments
in the proof work, and R’ is ~-bounded. One technical problem may be
the fact that the operator R’] is not necessarily supported in supp ji,
even though the symbol is. But the distribution kernel decay exponentially

Vol. 63, n° 2-1995.



228 S. NAKAMURA

away from the support of the symbol, by virtue of the analyticity in ç. We
refer [15] Section 4 for the detail of this argument.

APPENDIX: SYMBOL CALCULUS

We need to use calculus with symbol class which includes functions
like ((x + ç2)2 + (,2 + 1)"B which is not included in the standard symbol
classes, e.g., ~’ ((~)N, dx2 + d~z/(~)2).
Here we set the metric g on Rd x Rd by g = d~2 + d~2. If

m (x, ç-) E Coo x $d) satisfies

and

with 0, then it is easy to see that m is g continuous (cf. [8],
Definition 18A2), and c~, g temperate (cf. [8], Definition 18.5.1 ). Then the
symbol class ~’ (rrc, g) is well behaved under the condition (A.1), and we
can use the theory of Weyl calculus with the quantization:

In particular,

satisfies (A.I). Thus we can now construct the parametrix for a e S (mo, g)
such that it is elliptic in the following sense:

n particular, we have " the Carding £ inequality:
THEOREM A.l. -- Suppose 1 ç) E g) satisfies (A.5). Then

for any e &#x3E; 0 there is C &#x3E; 0 such that

Annales de l’Institut Poincaré - Physique theorique
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