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ABSTRACT. - Using a notion of theory of wavelets, the frame condition,
we show that a real or complex inner product space S (not necessarily
separable) is complete iff there is a unit vector x in 9 (or in S) such that
the sum of squares of absolute values of Fourier coefficients of x through
any maximal orthonormal system in 9 is uniformly separated from 0. In
addition, 8 is complete iff there is at least one weak frame function. These
criteria generalize ones of Gudder, Gudder and Holland, and the author.

Key words : Inner product space, Hilbert space, wavelets, frame condition, orthonormal
basis, frame function, weak frame function.

Grace a la notion de « Frame Conditions », issue de la theorie
des ondelettes, nous montrons qu’un espace vectoriel reel ou complexe .9
(non necessairement separable) muni d’un produit scalaire est complet si
et seulement si on peut trouver un vecteur x de norme un dans S (ou
dans son complete) dont la somme des modules carres des coordonnees
dans toute base orthonormale complete de 9 soit uniformement separee
de zero. De plus, S est complet si et seulement si il existe au moins une
fonction « frame » faible. Ces criteres generalisent ceux de Gudder, Gudder
et Holland, ainsi que ceux de l’auteur.
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1. INTRODUCTION

Real or complex inner product spaces play important role in mathematics.
Hilbert spaces form a special class of inner product spaces, which

frequently encounter in different areas of mathematical investigations and
their applications. Today there are plenty of completeness criteria using
functional, topological, algebraic, and measure-theoretic aspects. In [4],
38 different completeness criteria are presented. Very important is that of
Gudder [7, 8], and Gudder and Holland [9] saying that a real or complex
inner product spaces S is complete iff any maximal orthonormal system
(MONS, for short)1 in ,S is an orthonormal basis (ONB, for short) in 9,
that is,

In [3], it was shown that S is complete, iff

The criteria ( 1.1 ) and ( 1.2) can be rewritten in the equivalent forms

and

~ 

Both criteria (1.3) and (1.4) have been generalized using a frame function
[3]: 8 is complete iff there is a non-trivial frame function, i.e. a mapping
f : 8 (S) :== {~ E 8 : II = 1} -4 R+ such that, for some constant W
(called the weight of f ) and any MONS in S,

holds.

1 A system of orthonormal vectors in H is said to be a MONS in ,S if x E H, x 1. xi
for any i imply ~ = 0.
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431FRAME FUNCTIONS AND COMPLETENESS OF INNER PRODUCT SPACES

In theory of wavelets [ 1 ], "the frame condition", i.e. a system of vectors
in 8 such that, for any x E 9,

holds for some constants a and b, plays an important role. This notion
has been adopted, for example, in [9], for informational completeness in
physics as well as for numerical stability in applied mathematics.

Motivating ( 1.6), we show that 9 is complete iff there is a unit vector x
in 9 such that ( 1.6) holds for any MONS in 6’, which will generalize
both criteria ( 1.1 ) and ( 1.2). In addition, using a we

give a criterion generalizing (1.5).

2. COMPLETENESS CRITERIA

We present two completeness criteria generalizing ( 1.1 ) and ( 1.2).

THEOREM 2.1. - A real or complex inner product space ,S’ is complete iff
unit vector xES positive number W &#x3E; 0 such that, for

any MONS 

holds.

Proof. - If 5’ is complete, the statement is evident, and in this case we
can put W = 1.

Suppose the converse. First we assert that (2.1 ) holds for any unit vector ~/
in 6’. Indeed, let M = sp (x, ?/), where sp denotes the span in 9, and define
a unitary operator U : 9 2014~ 5’ such that U x = ~/ and U z = z for M1.
Let be a MONS in S. Then

when we have used the fact that {!7 ~ xi~ is a MONS in 9.
Choose a MONS in S, and motivating by Schroeck [9], we define a

mapping F : S ~ l2 (1), where 1 is the cardinal number of the MONS 
(and of all MONSs in 8), and l2 1 is over the same field as S, via

Vol. 62, n ° 4-1995.
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In view of the Bessel inequality ~ ~ (z, xi) 12 ~ 1/ z ~~2, we see that F
i

is a continuous operator from 9 into LZ (I). Then F can be extended to a
continuous operator F : S -+ Lz (I), where S denotes the completion of
S. It is evident that

for any z E 9.

We claim that S is complete. Since by [6], 17], [8], 5’ is complete iff any
MONS in 5’ is an ONB, there exists a MONS {xi} which is not ONB.
That is, there is a unit vector xo in S which is orthogonal with to ~x2 ~. We
can find a sequence of unit vectors in 8 such that Then
F (xn) --~ F (xo ) . From the continuity of F and (2.1 ), we have

and

which is a contradiction, so that S is complete. a

THEOREM 2.2. - A real or complex inner product space ’ 9 is complete iff
there is a ’ unit vector x E S and a positive ’ number W &#x3E; 0 such that, for
any MONS {xi} in ,S’,

holds.

Proof. - The necessity is evident. For sufficiency, let be any MONS
in S and similarly as in the proof of Theorem 2.1, define a continuous
linear operator F : S 2014~ L2 (1) via

for any z E S. Find a unit vector :co E S such that a?o II  c, where

which means that
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433FRAME FUNCTIONS AND COMPLETENESS OF INNER PRODUCT SPACES

This proves that there is a unit vector and a non-zero constant

Wo = W/4 such that, for any MONS in S,

Calling £ Theorem 2.1, this entails the completeness of 8. 0

COROLLARY 2.3. - If 8 is an incomplete inner product space, ’ then for
any x E ’9 (x E ’9)

where any MONS in S.

Proof. - It follows immediately from Theorems 2.1 and 2.2. D

3. WEAK FRAME FUNCTIONS

A mapping f : ? (9) :== {x E 9 : = 1} 2014~ R+ is said to be a
. frame function iff there is a constant W (called the weight of f ) such that

holds for any in S.

A mapping f : S (S) 2014~ R+ is said to be a weak frame function iff (i)
there is a positive constant W such that

i

holds for any MONS {xi} in 6’, and (ii) is a frame function

for any finite-dimensional subspace M of 9. From (ii) we have that

f(03BBx) = f (x) for any |03BB| I = 1.

It is evident that any frame function is a weak frame function, and
the converse holds, too, as we shall see below, which will prove the

completeness. We recall that if x is a unit vector in 9 or in S, then

f : ~ ~ ~ ~ (z, x) ~2, z E 8(8), is sometimes (iff 9 is complete) a special
type of a frame function or a weak frame function.

THEOREM 3.1. - An inner product space 9 is complete iff there is at least
one weak frame function f on ?(?).

Vol. 62, n° 4-1995.
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Proof. - The necessity is evident if we put f (x) _ ~ (x, xo) (9),
where xo is a unit vector in 9.

Suppose that f is a weak frame function. If M is any finite-

dimensional subspace of S, then f 18 (M) defines a unique finitely additive
measure mM on L (M), the system of all subspaces of M, such that

rn,~ (N) _ V~ where is an ONB in N E L (M). Using the
i

Gleason theorem [4], there is a unique bilinear form on M such that

tM (x, x) = /(~)~ ~ ~ ?(M). Now we shall define a bilinear form t
on 6’ x 8 as follows: be two vectors of 9 and let M be any
finite-dimensional subspace of 6’, dim M &#x3E; 3, containing x and y. Put
t (x, y) = t,~ (x, y). It is easy to show that t is a well-defined bilinear

form on 9 x 9, moreover,

Hence, t may be uniquely extended to a bounded, positive, bilinear form t
defined on the whole completion S of S. At any rate, there exists a unique
positive Hermitian operator T : S 2014~ S such that t (x, x) _ (T x, x),

Now we claim to show that T is a trace class operator on S. Suppose that
..., is an arbitrary finite system of orthonormal vectors in S. Then

so that ~ (T xi, xi)  oo for any system of orthonormal vectors of S.
i

Let ..., be any finite system of orthonormal vectors in S.
For any i, 1  i  n, there is a sequence {xk~~ such that

xi = lim ~~.. Applying the Gram-Schmidt orthogonalization process to
k

k, we obtain an orthonormal sequence in S which is an ONB

in Mo == E L (9), where cl denotes the closure in S, and
L (9) is the system of all closed subspaces of S.

Complete ..., ~~~ to to be an ONB in Mo and calculate

Annales de l’Institut Henri Physique theorique
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On the other hand, for Mo (similarly as above) there exists a unique
positive Hermitian operator Mo 2014~ Mo such that (Tl,,lo x, ~/) =
(T x, 7/) for all E Mo D S. Therefore,

The last inequality shows that T is of trace class operator on 5B
Hence, there is a finite or infinite sequence of orthonormal vectors,

{e~}, and a sequence of positive proper values of TB {A~}, such that
T = y~ ~n We assert that there is no such that, for any MONS 

n

in S, we have

where Wl = W/ ~ ~n . Indeed, if not that, for any n, an ~ ~ ( en , 12 
Tt i

which gives  W, which contradicts (3.2).
n

Applying Theorem 2.2 to (3.3), we see that S is complete. 0

COROLLARY 3.2. - Any weak frame function is a frame function.

Proof. - It follows from the proof of Theorem 3.1. 0

In the rest of this section, we generalize the notions of a frame function
and a weak frame function, which allow us to present another completeness
criterion.

A mapping f : ? (9) :== ~x E == 1} ~ R is said to be a signed
frame function iff there is a constant W (called the weight of f ) such that

holds for any MONS in S.

A mapping f : 8 (S) -; R is said to be a weak iff

(i) for any MONS is S, { f is summable; (ii) there is a positive
constant W such that

Vol. 62, nO 4-1995.



436 A. DVUREENSKIJ

holds for any in 9, and (iii) f ~ S (M) is a signed frame
function for any finite-dimensional subspace M of 9. From (iii) we have
that /(A~) = f (~) for I = 1.

It is evident that if f is a signed frame function with a non-zero weight,
then f a weak signed frame function. We recall that in [3], it has been
shown that 9 is complete iff there is at least one non-zero signed measure
frame function on ?(’?).

THEOREM 3.3. - An inner product space 8 is complete iff there exists at
least one weak f on ~S (S~.

Proof. - If 6’ is complete, the assertion is clear.

Suppose thus that f is a weak signed frame function. If dim 9  oo,

then 9 is evidently complete, so we can assume that dim S = oo. Due to
the definition of f, f is a frame-type function, (i) for any orthonormal
system (ONS, for short) in 5’, {/ is summable, and (ii) f ~ 15 (M)
is a signed frame function for any finite-dimensional subspace M of S. By
the result of Dorofeev and Sherstnev [2], or [4], Thm. 3.2.20, f is bounded,

E 8 (8)}  

Similarly as in the proof of Theorem 3.1, we can prove, applying
the Gleason theorem for bounded signed measures on finite-dimensional
Hilbert spaces [4], that there is a bounded bilinear from t on 5’ x S
such that t (x, x) = /(~), ~ E ?(’?). The boundedness of f entails
that t can be uniquely extended to a bounded symmetric bilinear form t
on S x S consequently, there is a Hermitian operator T on S such that
/M = E ?(9).

We claim to show that T is a trace class operator on S. Suppose
the converse. Then there is an ONS {/i,...,/~i} in S such that
nl nl

~ ~ fk) ~ I &#x3E; 1. Choose an c &#x3E; 0 such that ~ ~ (T f~, f~) ~ I &#x3E; 1+e.
k=1 ~=1

It is easy to see that for {/i, ... , we can find an ONS ..., 

in S such that ~ jak -  ~/(2n1 ~ T ~), k == 1, ... , nl. Then

If dim S  oo, there " are ’ unbounded signed frame . functions, see e.g. [4], Prop. 3.2.4.
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so that

Put Hl == {~i, ..., where 1 S denotes the orthogonalization in
S, then 6’! = 9 n ~fi is a dense submanifold in so that, f ~ is
a frame type function on 81. Therefore, as in the beginning of the present
proof, there is a Hermitian operator Tl (= PH1 on where PH1 is
the orthoprojector from S onto .Hi, such that f (~c) = (Tl x, x) _ (T x, x),
x E s ( sl ) . Here Tl is not any trace class operator on H1 since T is
not such one on S.

Repeating the same reasonings as above, we find an ONS
n2

{~,+1, ..., in Hl such that ~ ~ I &#x3E; 1, and for it

n2

we find and in 81 with ~ ~ I &#x3E; 1.

k=nl+1

Continuing this process, we find a countable family of orthonormal vectors
00

~ h 1, h2 , ...} C 8 such that I = oo which contradicts our
A;=l

assumption, so that, T is a trace class operator on S.
Put T = T+ - T - , where T + and T - are the positive and negative

parts of T (which both are trace class operators on 9), and define

f + (x) :== (T+ x, x), f - (x) _ (T- x, (8). Then /=/+-/-
and, in view of (3.5), for f o :== f + +/’. we have 0  03A3 |f(xi) I ~

i

y~ f o  oo for any MONS {~c~}. Since ~ (M) is evidently a signed
i

frame function on any finite-dimensional subspace M of 8, f o is a positive
weak frame function, which by Theorem 3.1 entails the completeness of
9. 0

COROLLARY 3.4. - Any weak signed frame function is a signed frame
function.

Proof. - If dim 9  oo, the statement is evident, and, for dim 9 = oo,
it follows from the proof of Theorem 3.3 a

COROLLARY 3.5. - If 8 is an incomplete inner product space, then, for
any Hermitian trace class operator T on S, we have

Vol. 62, nO 4-1995.
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where any MONS on 9.

Proof. - In the opposite case, S would be by Theorem 3.4 complete. 0

Remark. - The presented proofs are quite different from those for

frame functions in [3], [4]. In addition, any measure-theoretic criterion

using a non-zero completely additive (signed) measure m (for details, see
[4]) follows from Theorems 3.1 and 3.3, because f (~) := m (sp (x)),

is a (non-zero) frame function 3 
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3 If f is a non-zero signed frame function with a non-zero weight, it is clear that f is a weak
signed frame function; if the weight of f is zero, there is a unite vector ~ E 8 with f (~) 7~ 0.
Put 81 = sp (~r)~. Then fl := (81) is a signed frame function with a non-zero weight, so
that /i is a weak signed frame function, and 6’i, consequently 9, is complete.
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