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ABSTRACT. - A class of quasi *-algebras which exhibits some analogy
with C*-algebras is studied. The extension of some properties of C*-
algebras which are relevant for physical applications (such as the GNS-
representation) is discussed.

Quasi *-algebras of linear operators in rigged Hilbert space are shown
to be typical examples of the developed framework.

RESUME. 2014 Nous etudions une classe de quasi *-algebres presentant
une analogie avec les C*-algèbres.
Nous etendons a ces algèbres quelques-unes des proprietes des C*-

algebres les plus familieres en physique, par exemple la representation
GNS.
Un exemple typique de ces algebres est fourni par les quasi *-algebres

d’operateurs lineaires dans les echelles d’espaces de Hilbert.
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1. INTRODUCTION

In the Haag-Kastler [1] algebraic approach to quantum systems, with
infinitely many degrees of freedom, a relevant role is played, as is known,
by C*-algebras: what is normally done is to associate to each bounded
region V the C*-algebra Ay of local observables in V. The uniform

completion A of the algebra generated by the Ay’s is then considered as
the C*-algebra of observables of the system.

There are, however, many physical models that do not fit into the

Haag-Kastler setup. In many quantum statistical systems, in fact, the

thermodynamical limit of some local observables, for instance the local
Heisenberg dynamics, does not exist in the uniform topology and thus it
is not an element of the observables algebra as defined before. This is the
case, for instance, of the BCS model ([2], [3]), and, in general, of any
mean field model. This kind of behavior has been discussed by the authors
also for easy spin models with an ’almost’ mean field interaction ([4], [5]).
Also the long range interactions, like the Coulomb one ([6], [7]), give rise
to a similar behavior. The key of this phenomenon is essentially the fact
that the interaction between any ’particle’ (spins, electrons, ...) of the
above systems with any other particle of the same system does not go to
zero fast enough: actually, for mean field spin models the finite volume
hamiltonian

shows that any spin interact with any other independently of the mutual
distance. Therefore the time evolution of a spin located at the origin is

really affected from the behavior of infinitely far spins.
Also, in the Wightman formulation of quantum field theory, point-like

fields are not, in general, elements of any C*-algebra: the field A (x) at a
point x E [R4 is, in fact, an (unbounded ) sesquilinear form on the domain ~
where all smeared fields A ( f ), f E ~ (~4) are defined. If the field A (x) is
regular enough [8], then it is the limit of a sequence of observables localized
in a shrinking sequence of space-time regions and, therefore, it belongs to
a certain completion of the C*-algebra do of local observables ([9], [ 10]).
As a matter of fact Haag-Kastler approach is often too narrow to cover

a lot of models of physical interest. On the other hand, it is rather clear
that this algebraic formulation does not depend crucially on the assump-
tion that the observable algebra j~o is a C*-algebra. Therefore it is, in
principle, possible to try to weaken this hypothesis without affecting the
elegant Haag-Kastler construction.
Two possibilities are then at hand. The first one occurs if there exists

on weaker norm such that the completion of with respect to
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, this norm contains all ’objects’ of physical interest. If this possibility fails,
it could still happen that these ’objects’ can be recovered by taking the
completion of j~o with respect to the locally convex topology generated
by a suitable family of seminorms.

In both cases we are led to consider quasi *-algebras, introduced by
Lassner ([ 11 ], [ 12]), as the most natural mathematical structure where this
sort of problems can be successfully handled. Actually, the completion of
a locally convex algebra, where the multiplication is not jointly continuous,
is the most typical instance of quasi *-algebra. In this case the multiplica-
tion in the completion is defined for pairs of elements one of which lies
in the original algebra (for detailed studies on quasi*-algebras, see [ 11 ]-
[17]).

Quasi *-algebras are a particular class of partial *-algebras : this math-
ematical object, introduced originally by Antoine and Karwowski [18], has
been studied by Antoine, Inoue, Mathot and one of us in a series of
papers ([ 19], [20], [21 ], [22]). From this point of view, however, quasi
*-algebras presents as the simplest example: the lattice of multipliers
consists, in fact, of two elements only. One of the first steps of this paper
is just to consider quasi *-algebras with a finer multiplication structure.
We call them rigged quasi *-algebras. Roughly speaking, they contains
two algebras, which turns out to be, respectively, the sets of right- and
left universal multipliers and which are changed one into the other by the
involution.

For what concerns applications to quantum theories (see [ 11 ], [ 12], [ 14]
and [8]), the most relevant seems to be played by the quasi *-algebra
(~ (~, ~), ~ (~)). Here ~ (~, ~’) denotes the space of all continuous
linear operators from !Ø = (T), with T an unbounded self-adjoint opera-
tor on Hilbert space Je, into its conjugate dual !Ø’ and ~ (~)) is the
maximal O*-algebra on ~ ([15], [16], [23]). This quasi *-algebra is, in some
sense, the unbounded analogous of C*-algebras [ 13] and for this reason it
has been called a CQ*-algebra.

In this paper we will try to give a purely algebraic description of this
structure and study some of its properties. With respect to Reference [13],
we change a little the names. We reserve the name CQ*-algebra simply
for the (roughly speaking) completion of a C*-algebra with respect to a
certain weaker norm. The structure introduced by Lassner will be called
here LCQ*-algebra since it is an inductive limit of CQ*-algebras as defined
here.

In a sense, CQ*-algebras appear as a possible extension of the notion
of C*-algebra. Other possible extensions of the notion of C*-algebra (or
that of W*-algebra) to unbounded operator algebras have been explored
in several papers ([24]-[22]). Our approach follows, however, a different
path and works in a different frame.

Vol. 61, n° 1-1994.



106 F. BAGARELLO AND C. TRAPANI

It is not in the spirit of the present paper to carry out a full mathematical
analysis of the introduced structures. This will be undertaken in further
publications.

Just to begin with, we will fix here the basic aspects of the theory and
discuss non-trivial examples. We will focus our attention, in particular,
on those mathematical statements that frequently occur in applications to
quantum theories, such as the GNS-representation. This latter is shown
to be possible for CQ*-algebras with respect to certain families of states.
In this case, however, the representation does not live in a Hilbert space
but in a scale of Hilbert spaces [28].
The paper is organized as follows.
Section 2 is devoted to preliminaries.
In section 3, we introduce the class of CQ*-algebras and discuss some

simple aspects of this structure. The example of the CQ*-algebra of
bounded operators in a scale of Hilbert spaces is shown in details.

Section 4 is divided into two parts: in the first one we consider represen-
tations of CQ*-algebras and give our variant of the GNS-construction; in
the second, we examine the abelian case, trying to extend the famous
Gel’fand-Naimark theorem (see, e. g. [29]) concerning the representation
of an abelian C*-algebra as a C*-algebra of continuous functions.

In section 5, we introduce the notion of LCQ*-algebra and show that
it can be made into a partial *-algebra, in natural way, by refining the
multiplicative structure it carries as quasi *-algebra.

Finally, we consider a quasi *-algebra (0 (~’), 0 (~)) of operators in a
nested Hilbert space ~ ~’, I} [30] and show that it fulfills, in the most
general case, all the algebraic aspects of our definition.

If the nested Hilbert space reduces to the chain of Hilbert spaces
generated by an unbounded self-adjoint operator T (this is, as we

already mentioned, one of the most significant cases for applications)
then also the topological requirements are satisfied, so it turns out that,
in this case, (0(~’), O (~)) is a LCQ*-algebra and it coincides with

(~ (~~ ~,)~ ~ + (~)).
In Section 6 we will discuss two possible physical applications of the

developed ideas.

2. BASIC DEFINITIONS AND NOTATIONS

The basic notion we will deal with throughout the paper is that of

partial *-algebra [21].
A partial *-algebra is a vector space ~ with involution A -+- A*

and a subset such that

(i) (A, B)Er implies (B*,A*)er; (ii) (A, B) and (A, C) E h imply

Annales de l’Institut Henri Poincaré - Physique theorique
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(A, and (iii ) if (A, B)Er, then there exists an element AB ~ 
and for this multiplication the distributive property holds in the following
sense: if (A, B) E r and (A, C) E r then

Furthermore (AB)* = B* A*.
The product is not required to be associative.
The partial *-algebra ~ is said to have a unit if there exists an alement 0

(necessarily unique) such that * = 0, (H, 0 A = A n, 
If (A, B) E r then we say that A is a left multiplier of B [and write

A E L (B)] or B is a right multiplier of A [B E R (A)]. we put
the set is defined in analogous way. The set

called the set of universal multipliers of ~.
The most typical instance is obtained when is a *-algebra. In this

case, following Lassner ([II], [ 12]) we speak of a quasi *-algebra. We give
a detailed definition for reader’s convenience.

Let .91 be a linear space and j~o a *-algebra contained in d. We say
that j~ is a quasi *-algebra with distinguished *-algebra (or, simply,
over (i ) the right and left multiplications of an element of .91 and
an element of j~o are always defined and linear; and (ii ) an involution *

(which extends the involution of d 0) is defined in .91 with the property
(AB)* = B* A* whenever the multiplication is defined.
A quasi *-algebra (~, is said to have a unit 0 if there exists an

element 0 E such that A 0 = 0 A V A 
A quasi *-algebra (j~, is said to be a topological quasi *-algebra if

in .91 is defined a locally convex topology ç such that (a) the involution is
continuous and the multiplications are separately continuous; and (b) j~o
is dense in j~ [~].

Following [13], if (~ [~], ~o) is a topological quasi *-algebra, by Ço we
will denote the weakest locally convex topology on such that for every
bounded set M ~ A[03BE] the family of maps B -+ AB, B -+ BA; A ~ M from
.91 0 [ço] into j~ K] is equicontinuous. In this cased 0 is a locally convex
*-algebra. The topology Ço will be called the reduced topology of ç.
Some spaces of continuous linear maps provide the most interesting

examples of quasi *-algebras.
Let D be a dense linear manifold of Hilbert space H. Let us endow D

with a topology t, stronger than that induced by the Hilbert norm
and let ~’ [t‘] be its topological dual endowed with the strong dual

topology t’. In this fashion we get the familiar triplet

called a rigged Hilbert 
Given a we will denote ~’) the set of all

continuous linear maps from .@ [t] into ~’ [t’]. The space 2 (~’, !Ø’) carries

Vol. 61, n° 1-1994.



108 F. BAGARELLO AND C. TRAPANI

a natural involution A --+ At defined by

If !!} is a dense linear manifold of Hilbert space ~f we will denote by
2 + (!!}) the *-algebra of all closable operators in ~f with the proper-
ties D (A) = ~, D (A*) ~ ~ and both A and A* leave ~ invariant (* denotes
here the usual Hilbert adjoint). The involution in 2+ (!!}) is defined by
AA+=A*/fØ.

If ~ c ~ c ~’ is a RHS, the space 2 + (fØ) is not, in general a subset of
2 (~, !!}’) but, for instance, when t is the so called graph-topology defined
by a closed O*-algebra j~ on !!} ([ 11 ], [ 13]) then 2+ (~) c 2 (fØ, fØ’) and
(2 (fØ, ~), 2+ (!!})) is a quasi *-algebra and At = A + (fØ).
Throughout the paper we will make extensive use of the theory of C*-

algebras : in general, we follow the terminology and the notations of
classical textbooks such as those by Dixmier [31], Sakai [32], Kadison and
Ringrose [33], Bratteli and Robinson [34].

3. CQ*-ALGEBRAS: ELEMENTARY THEORY AND EXAMPLES

DEFINITION 3.1. - ~et (~, ~o) be a quasi *-algebra. We say that

(ja~, BQ*- 
(i) A is a Banach space under the I
(ii) 
(iii) for B~A0 the maps A ~ AB, A --+ BA are continuous with respect

to II . II
(iv) j~o is II . II-dense in j~
(v) A0 is a Banach algebra with respect to the norm

or, equivalently

Equations 1, or 2, defines, as is easily seen, in the reduced topology
introduced in Section 2.
Remark. - It is clear that if (~, is a BQ*-algebra then j~ is a

bilateral Banach [32]).
From the definition of II . 110 it is clear that ~ B * 110 = II B 110’ d B liEd 0
From now forth ~. 110 will denote the norm defined by Eq. 2.
Finally, notice that in the C*-case, i. e. ~ _ ~o, Equation 2 gives exactly

the C*-norm ([31], 1. 3. 5).
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The proof of the following lemma is straightforward.

LEMMA 3 . 1. - Let (A, A0) be a BQ*-algebra. The following
/!?M

Remark. - Inequality 3 plays a quite crucial role, as we shall see below
(Proposition 3 . 2), for the construction of examples of BQ*-algebras.
Making use of (3) it is easy to prove that

defines the same topology as II . 110. Also Equation 2 admits an analogous
generalization.

Inequality 4 means that with ~ . 110’ is in any case a normed algebra.
Therefore condition (v) in Definition 3.1 could be weakened by requiring
that j~o is a complete normed space with respect to II . 110.

DEFINITION 3 . 2. - A rigged quasi partial *-algebra . for
which there exist two vector subs paces ~b and J~~ such that

(iii) both ~b P and ~~ are algebras with respect to the partial
multiplication (A, B) E h -~ AB E ~ defined in ~.

The multiplication (A, B) E 0393 ~ AB ~ A is supposed to be (weakly) semi-
associative; i. e. (AB) C = A (BC) V A E A and d B, C E A b.

Obviously, we get and We set ~o is,
clearly, a *-algebra; thus (~, ~o) is a quasi *-algebra. With a usual
terminology, A is an R A-left-module and an L A-right-module.
Of course, the structure of a rigged quasi *-algebra is fully determined

if we know ~ with its involution * and the set of right multipliers R ~
with its involution. For this reason we will denote a rigged quasi
*-algebra by (~, *, ).

DEFINITION 3 . 3. - Let (~, *, R ~, b) be a rigged quasi *-algebra. We
say that (~, *, R ~, ) is a CQ*-algebra if

(i) (~, is a BQ*-algebra
(ii) the map A ~ AB, B E R ~ is continuous in ~;
(iii) R ~ carries a norm II. and an involution A ~ Ab with respect to

which R ~ is a C*-algebra; i. e.

Vol. 61, n° 1-1994.
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(iv) S’etting A ~ L A=A#, ~B~0=max{~B~,
results;

(v) ~o is dense in R ~ with respect to II I lip.
LEMMA 3 2. - ~n L ~ let us define an involution A ~ A# by A# = A *p*

and the norm II . 11# as above ; then L ~ is a C*-algebra with respect to this
norm and this involution.

The proof is straightforward

DEFINITION 3 . 4. - A CQ*-algebra (~, *, R ~, ) will be said proper
if RA=L A and A#=AP, 

LEMMA 3 . 3. - Let (~, *, R ~, ) be a proper CQ*-algebra; then

~A~#=~A~,
Proof - Since ‘_ #, by lemma 3 . 2, R ~ is a C*-algebra with respect

to both norms II I .~b and II. 11#. Then the statement follows from the
uniqueness of the C*-norm. 0

PROPOSITION 3 .1. - Let (~, *, b) be an abelian CQ*-algebra
(i. e. and AB=BA, V’ A ~ A and ~ B~R A); then (A, *, 
is proper.

Proof - The space X of characters of is independent of both norm
and involution. If A E we denote with A its Gel’fand transform. Then
if w E X we et

This implies co and Hence

A~A~=0. This, in turn, implies that since the Gel’fand transform is
an isometric isomorphism of into the C*-algebra C (X) of continuous
functions ( possibly, vanishing at infinity) on X. 0

Remark. - For a proper CQ*-algebra (even in the abelian case) it not
necessarily true that also the involution * coincides with both and ~. This

is due to the fact that a C*-algebra may have another involution for which
it is only a Banach *-algebra, with respect to the same norm. We will come
back to this point in Example 3 .1.
The next lemma shows that, under stronger assumptions, the

involution of R ~ can be extended to the whole ~, preserving the nature
of CQ*-algebra.

LEMMA 3.4. - Let (~, *, Let () . I~ be
the norm and the involution If

Annales de I’lnstitut Henri Poincaré - Physique theorique
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then the involution ean be extended to the whole ~/ and (j~, , R ~, ) is
proper 

The proof is very simple and will be omitted.

Remark. - In a rigged quasi *-algebra (~, *, ), one could find
an unit IR of R A (and therefore a unit °L = 0: without

(j~, *, R ~, ) have a unit. But if (j~, *, R ~, ) is a CQ*-algebra the
existence of OR implies that CR= 0 is a unit for the whole j~, due to the
continuity of the multiplication and to the fact that R ~ is dense in j~.

CQ*-algebras will be, as announced, the main object of our study. To
begin with, let us give some examples that we consider quite enlightening.

Example 3.1. - Let X be a compact space and  a (positive) Baire
measure on X; let C (X) be the C*-algebra of continuous functions on X,
endowed with the usual sup norm, denoted here simply and C’(X)
the topological dual of C (X), endowed, as customary, with the norm

FEC’(X) (6)
As is known, C’ (X) is a Banach space of all complex Baire measures on

X and C (X) can be identified, by means of Il, with a subspace of it in the
following way:

with

The usual involution of C’ (X) extends clearly the involution of C (X). It is
not difficult to prove conditions (i ), (ii ) and (iii ) of Definition 3 .1. For
what concerns condition (v) it is very easy to show that 
V/eC(X), where sup The converse inequality follows

from the fact that V f E C (X) there exists F E C’ (X) such that F ( f ) ~ f ~ I :
F is just the Dirac Ö functional centered in one of the points where

I is maximum. This implies V/eC(X). As
a result, the closure C (X) of C (X) in C’ (X) is a proper CQ*-algebra
over C (X) .

If we choose X = [ - 1, 1] and define in C (X) a new involution t by
f ~ (x) ==/ (2014 jc), we get an example of the situation described in the Remark
after Proposition 3 .1.

Example 3 . 2. - The above example is a particular case of a more general
situation. Let j~o be a C*-algebra which can be identified with a subspace
of its dual Banach space ~, by means of a one-to-one linear map I [for
shortness, we set I (A) = A for If we define in ~o the Arens
multiplication [29] .

Vol. 61, n° 1-1994.
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and the involution ())* by 03C6*(A)=03C6(A*) then (A, A0) is a proper CQ*-
algebra (with =#=*), where A denotes the closure of A0 in The

proof is similar to that of the previous example. The existence, for any
of a continuous linear form 03C6 on A such that ~03C6~’=1 and

~ (B) = II is a well known property of normed spaces.

Example 3 . 3. - Let eÝt be a Hilbert space with scalar product ( .,. )
and 03BB ( . , . ) a positive sesquilinear closed form defined on a dense domain
~~ c ~. Then fØ’).. becomes a Hilbert space, that we denote by ~~, with
respect to the scalar product

Let ~P~ be the Hilbert space of conjugate linear forms on 
This is the canonical way to get a scale of Hilbert spaces ([28], VIII. 6)

where i and j are continuous embeddings with dense range. In fact, the
identity map i embeds in ~P and the where

7’W ())) = ()), B)/), V ()) E is a linear imbedding of ~f into ~. Identifying
and ~f with their respective images in we can read (8) as a chain

of inclusions

Because of this identification, the bilinear form which puts in duality
with (the complex conjugate of) reduces, for pairs (~, w) such that
(j)e~B, to the scalar product ( ., . ) of Jf. For this reason we will
adopt the same notation. then ~/~~/~~/~.
As is known the Riesz lemma implies the existence of a unitary operator U

from onto ~~, and therefore and ~~, are isometrically isomorphic);
On the other hand, by the representation theorem for sesquilinear forms

([28], Ch. VIII), there exists a selfadjoint positive operator H such that
D (( 1 + H)1/2) 

The operator R = (1 + H)1/2 has a bounded inverse R -1 which maps H
into therefore (by a standard argument making use of the transposed
map) R -1 has an extension (denoted here with the same symbol ) to ~f~
and R-1 Taking these facts into account, we have

It turns also out that R2 = U and then f; g )À =  f, U g ) =  U f; U g )i,
V f, 

~~ be the Banach space of bounded operators from ~~
into H03BB and let us denote with II A the natural norm of

Annales de l’Institut Henri Poincare - Physique theorique
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In B (H03BB, H03BB) we can introduce an involution in the following way: to

each element we associate the linear map A* from ~~, into

.~r defined b the equation

As can be easily proved A*e~(~, and

denotes the C*-algebra of bounded operators on (the
usual involution will be denoted here as ) the C*-

algebra of bounded operators on H03BB (the natural involution of R(H03BB)
is denoted as ~). As is easily seen and ~(~) are contained

in and if, and only if, A*e~(~). Moreover

g’’*=g** 
If and the product AB is defined by

for/e~. It is readily checked that If

A E ~ (~~,, ~~,) and Be~(~) the product ~~) is defined in

similar way. ~. , ~ ~ri-

Then *, ~(~), ) is a rigged quasi *-algebra. The

distinguished *-algebra of~’(~’~, ~~,) is

Clearly, if Be~(~) then and the is

one-to-one and onto. denotes the

C*-norm Therefore ~(~, ~~,) are isometrically

isomorphic. An analogous statement holds 
-

We will now prove that ~), *~ ~(~). ) is a CQ*-algebra
(clearly, not proper) ~~,) carry their natural norms.

We need only to show that ~ + (~~,) is dense ~).
Let R = (1 + H)1/2 be the operator defined in Equation (9) and

R = its spectral resolution. If Ac[l, (0) is a bounded Borel set,

then E (0) also has a continuous extension (again denoted with the

same symbol) to ~; since E (0) is idempotent, it turns out that E (0)

maps into ~,. From this it follows that 

V A E ~ (~f,,, ~~,) and for any pair 0, 0’ of bounded Borel sets.

By the definition of R it follows easily that II A R -1 AR -1 II (the
norm in (Jf)....
Following [ 11 ], we identify ~~,) with an operator matrix (A,,J,
where Am, n = Pm APn with Pm = E ([m, m + 1 )). Then the norm ~111., i is equiv-
alent to the following one

Vol. 61, n° 1-1994.
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From this it is clear that any can be approximated by
means of finite matrices. These latter, represent, as it can be easily shown,
operators of + (03BB).

In similar way, the density of + (H03BB) in can be proved. One
has just to take into account and

then adopt a procedure analogous to the above one. The equivalent norm
in term of operator matrices is, in this case

Finally, let us check that the norm ~.~1 of +(H03BB), where

coincides with the II defined in Equations 1 or 2.

To show this it is enough to observe that

So the statement is proved.
As we mentioned beforehand, the completion of any locally convex

*-algebra where the multiplication is not jointly continuous is the typical
instance of quasi *-algebra. Now the question is: if we endow a given C*-
algebra with a weaker norm, is its completion a CQ*-algebra? The answer
is provided by the following

PROPOSITION 3.2. - Let  be a C*-algebra, with norm ~.~1 and

involution *; ~ be another norm on , weaker than ~. 111 and such that
(i) 

(ii) 
then the completion  of , with its natural norm, is a proper CQ*-algebra
over  (with = * ).

Proo, f : - Conditions (i ) and (ii ) imply that ~ is a topological *-algebra
whose topology is defined so its completion ~ is a quasi *-algebra
and also a Banach space. Let II . 110 denote the norm defined on  as in
Equation (2); then (ii ) implies easily that I I I/o ~" . To show the converse

inequality, we recall that by, (4), %’ with 1/ . 110 is a normed algebra. Let
and let M (X) denote the abelian C*-algebra generated by X.

Since every norm that makes an abelian C*-algebra into a normed algebra
is necessarily stronger than the C*-norm ([32], Theorem 1.2.4), we get the
equality For an arbitrary element we

Annales de l’Institut Henri Poincaré - Physique théorique
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have

This concludes the proof. D

Example 3 .4. - Let X be a compact space and J.l a Baire measure on
X. Let C (X) be the Banach space of continuous functions on X. Then
the Banach space of all (equivalence classes of) measurable
functions f (x) such that

y

is the completion of C (X) with respect to the norm (10) which, when
restricted to C (X), fulfills the requirements of the above Proposition (with
respect to the natural involution). Thus C (X)) is a (commuta-
tive) proper CQ *-algebra with ’’ == ~ = $.

4. REPRESENTATIONS OF CQ*-ALGEBRAS

In the previous Section we have described the basic example of a
CQ*-algebra as the set of bounded operators in a scale of Hilbert spaces.
It is then natural to look for representations of an abstract CQ*-algebra
into such a CQ*-algebra of operators.

DEFINITION 4 .1. - *, rigged quasi
*-algebras. A *-bimorphism of (~, *, R ~, ) into {~, *, 
pair (~, of linear maps ~ : ~ --~ ~ and 1tR : R ~ t-~ R ~ such that

(i) is a homomorphism of algebras with 

(iii ) 
In general, the restriction of 03C0 to is different from Of course, if

j~ has a unit (0)~(8); but in contrast with what happens
for TCR, 7t(!!) need not necessarily be equal to 0.

LEMMA 4 .1. - If is a *-bimorphism of (A, *, R A, ) into

(~, *, R ~, ) then

where 1tL (B) = 1tR (B*)*. Moreover 1tL ia a homomorphism of Ld into L!!À
preserving the involution # of L ~.

The proof is straightforward.

DEFINITION 4 . 2. - A *-representation of a CQ*-algebra (~, *, 
in the scale of Hilbert spaces .Ye Â. is a *-bimorphism (~, of
(~, *, Rd, ) into the CQ*-algebra ~~), *, ~‘ (~~). ) of bounded
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operators in the scale. The representation ~ is said to be faithful if
Ker 03C0 = Ker 1tR = 0.

We say that the representation 1t is regular if the linear manifold

is. dense in ~~. In this case ~ is called the domain of regularity U.

If 03C0 is a regular *-representation, then 03C0 (A) when restricted to !Ø (7r) can
be considered as an element of the partial *-algebra 2+ (~ (r~), Yf) of all
closable operators X in Yf such that and D(X*)~~(7r) (for
a detailed study of this partial *-algebra, see [21] and [22]). This makes
clear the unbounded nature, in Yf, of a *-representation of a CQ*-algebra
and allows the use, which we will make later, of structures and techniques
developed for unbounded operator families.
We will now prove, as well as is usually done for C*-algebras, the

existence of *-representations. This is in fact the content of the following
subsection where the GNS-construction is performed starting from certain
states called admissible.

4.1. The GNS-construction. - Following an idea of Antoine [3 5], applied
also in Refs. [21] and [36] to partial *-algebras, we will make use here, in
view of a GNS-construction for CQ*-algebras, of sesquilinear forms, instead
of linear forms. This appears to be quite natural whenever the multiplication
is not defined for arbitrary elements. Of course the two approaches are
fully equivalent for C*-algebras with unit.
As already discussed in Ref. [ 17], it is not reasonable to expect the GNS-

representation to be possible starting from an arbitrary positive sesquilinear
form, since our definition of representation requires the continuity of the
operators 03C0(A). Thus we must select a class of well-behaved states.

This fact will suggest how to choose forms which allow a GNS-representa-
tion.

As usual, if j~ is a complex vector space, we say that a sesquilinear form
Q on A x A is positive ifQ(A, A)~0,
Any positive sesquilinear form on complex linear space is hermitean and

fulfills the Cauchy-Schwarz inequality; i. e.

Before going forth, we need the following.

LEMMA 4 . 2. - Let HR be a Hilbert space, whose scalar product is denoted
as ~ . , . ~R and the space of continuous conjugate linear forms on 
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The following statements are equivalent.
(i) There exists a Hilbert space ~ such that

were , c~ means continuous im e ing , with nse , range.
(ii) There exists a positive , sesquilinear form ç on HR fulfilling , the following ,

conditions:

(a) ~ is non-degenerate, i. e. ~ (()), ())) = 0 ~&#x3E; ~ = 0,
(b) ~ is dominated by the ’ scalar product of Je R, i. e. there ’ exists C &#x3E; 0 1

such that

If either (i) or (ii) hold true, then the scalar )ç of ~ is an
extension of ç.

Moreover, for each there exists an element such that

and therefore the conjugate bilinear form which makes ~R and ~R into a
dual pair can be identified with an extension of .,. )ç.
Proof - The necessity is clear. For the sufficient part, let 03BE be a

sesquilinear form fulfilling conditions(a) and (b). Let ~ the completion of
~R with respect to the ~)1/2. Then ~R c ~.
Now, then the form on defined by

is continuous with respect to ~.~R since

Then the map

is well-defined, one-to-one and continuous. In fact, by the previous estimates
it follows that

Let now (j~, *, be a CQ*-algebra and COR a state (in usual sense)
on the ). Set

then we can construct, as is known, a Hilbert space ~f~
just taking the completion of ~ with respect to the norm ( [B] 
where [B] denotes a rest class in ~. We will now exploit Lemma 4. 2 to
construct a representation of the whole CQ*-algebra (~, *, R ~, ).

Let Q be a positive sesquilinear form on A for which there exists C &#x3E; 0
such that
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We can now define a sesquilinear form ( ., . )0 on putting

if ~ = lim [Bn] lim in ~R.

Making use of ( 14), it is easy to see that ( ., . &#x3E;n is well-defined on 
Now, we assume that

In these conditions  ., . )0 satisfies the assumptions of Lemma 4.2 and
therefore if H is the completion of HR with respect to the scalar product
 ., . )0’ we get

where  denotes, as before, a continuous imbedding with dense range.
Now we should define the representation. As a matter of fact the condi-

tions ( 14) and ( 15) are not enough to ensure the continuity of the representa-
tion.

DEFINITION 4 . 3. - Let (~, *, R ~, ) be a CQ*-algebra and (ÙR a state
on the C*-algebra ),

Let Q be a positive sesquilinear form on A x A and HR the carrier
Hilbert space of the usual GNS-representation 1tR of R ~ defined by (ÙR.
We say that S2 is admissible, with respect to (ÙR (or, simply, 03C9R-admissible)

i_f
(i) 03C6 E and 03C6, 03C6 &#x3E;n = 0 implies I 03C6110 = o
(ii) Bif A E ~ there exists KA &#x3E; 0 such that

(iii) Q(AB, C)=Q(B, A*C) VB, 
In the sequel we will say, simply, admissible instead of 03C9R-admissible,

whenever this will not create confusion.

We are now ready to build up our variant of the GNS-construction.

PROPOSITION 4 . 1. - Let 03C9R be a state on the C*-algebra Rd, ) and S2
an 03C9R-admissible form on the CQ*-algebra, with unit 0, (A, *, R A, ).
There exists a scale

of Hilbert spaces and a cyclic *-representation (~, Ç) of (~, *, R ~, )
into the CQ*-algebra (~ ~R), *, ~ (~R), ) such that
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&#x3E;ç denotes the form which puts ~R and duality (and
which extends the scalar product of ~~~ ( .. - &#x3E;R the scalar product

Proof. - We only need to define the representation. If we first
define 03C0 (A) on D = R as follows (we will take into account the last
statement of Lemma 4 . 2). ~ (A) [B] is the conjugate linear form acting on
an arbitrary element [C] as

Condition (ii ) of Definition 4 . 3 implies that both the form 03C0(A) [B] and
its value on [C] do not depend on the particular choice of the representa-
tives of the rest classes [B] and [C].
Moreover, always by (ii), 7r(A) is a bounded operator from!!) into 
Then it can be extended to the whole space 
From (iii) of Definition 4. 3 it follows that 7t is a *-representation. Finally,
we have to show that We have

It is, now, easy to check that ~=[0] is a cyclic vector for 1t, in the sense
that 03C0 (A) is dense in This concludes the proof. D

Remark 1. - Given two cyclic representations (7r, Q and (7t, Q
of (j~, *, ), constructed as above with respect to the same pair
(Q, it is known that and nR are unitarily equivalent. Let Vo be the
corresponding unitary operator and let us define Here U
and U’ are the two unitary operators defined by the Riesz Lemma respec-
tively for and for One can show that the map -+- is

unitary and In this sense we may say that
the GNS-representation is determined up to unitary equivalence.
Remark 2. - In [22], the GNS-construction has been proved to be

possible for an arbitrary partial *-algebra j~ with respect to any invariant
state : a rigged quasi *-algebra is, by definition, a partial *-algebra but a
positive sesquilinear form on a rigged quasi *-algebra is not necessarily
invariant in the sense of [22]. The two notions at a first sight seem to be
not directly comparable.

Since the main example of CQ*-algebra is, for us, that described in

Example 3.3, we would expect that, vector f’orms over the CQ*-algebra
(~ (~~, ~), *, ~(~B), ) in the class of states for which the GNS-

representation is possible. This is true if vector forms are defined in a
suitable way.

we say that ç is a regular vector if for any sequence
{Xn} ~ (H03BB) such that !! 0 then ~Xn03BE~03BB ~ 0.

It is easy to check that if ç is regular then (~~,, 
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For a regular ç, we can now define a sesquilinear positive form 0 by

where ~ . , . ~ is the scalar product 0 ~.

We can now prove the following

PROPOSITION 4 . 2. - For every regular 03BE E the vector form Qç is
admissible with respect to the positive linear form 03C9R on B (H03BB) defined by

Proof. - It is readily checked that Qç fulfills the following condition:

denotes the usual norm in This shows (ii ) of
Definition 4 . 3. Now and

and then, by the assumption, 

This shows (i ) of Definition 4 . 3 . The proof of (iii ) of the same definition
is straightforward. 0

Remark. - The condition for the regularity of ç is similar to the
condition for a sesquilinear form to be closable. In fact, if the sesquilinear

A,Be~(~B) is closable in then the

vector ç is regular. The converse is, however, not true.
Let us now give an example of admissible positive sesquilinear form on

an abelian CQ*-algebra of functions.

Example 4.1. - Let (Lp (X, d~,), C (X)), /~2, be the CQ*-algebra
considered in Example 3 . 4. Let us assume, in addition, that ~(X)= 1. Let

(X, d~,) with w &#x3E; 0 and define

By a simple application of Holder inequality, it is readily checked that Q
is a continuous positive sesquilinear form on d~,).
Now, we assume that and then the
linear form on C (X)

is a state on C (X).
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The conditions on w given above are, however, not enough to ensure
that Q is 03C9R-admissible. To get this result we will consider the following
set

Since C (X) c ~p (X, d~,) ~p (X, d~,) is dense in d~). If we endow

~~ (X, d~) with the following norm

then Dpw (X, d ) is a Banach space and C (X) is dense in it.
The norm satisfies, as is readily checked, the conditions of Proposi-
tion 3 . 2 and, therefore, (~w (X, d~), C (X)) is also a CQ*-algebra.
Now, d~,) and ~, we get

where we have used the Cauchy-Schwarz inequality in L‘ (X, w-1 J.1 .
Clearly, there is no matter of taking quotients, because either S2 ( f, f ) = 0

or 03C9R ( f ) = 0 imply/=0 almost everywhere. This Q fulfills the conditions
of Definition 4. 3, i. e. Q is admissible [(iii) of Definition 4 . 3 is actually
trivially satisfied].

Let us see how the GNS-construction works in this case.

The completion of C (X) with respect to the inner product defined by co~
is the Hilbert space L2 (X, and the completion of !!)~ (X, with

respect to the scalar product defined by Q is L2 (X, The fact that

WE L 00 (X, implies that

and L2 (X, and L2 (X, are dual to each other with respect
to the scalar product of L2 (X, 
The representation 7r is then defined, for by

It is easy to check thatfgEL2(X, 
In this case we have, finally, 1tR = 1t 
As expected, the inequality 16 implies that, is a

bounded operator from L2 (X, into L2 (X, 
Furthermore 03C0 is a regular representation in the sense of 4. 2.
As we already remarked, the state Q in Example 4.1 is continuous as a

sesquilinear form on So, it is natural to ask ourselves whether

any continuous state on a CQ*-algebra is admissible. Example 4.1 sug-
gests that it is not so: in spite of the continuity, we had to choose a
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different CQ*-algebra, namely ~ (X, d~), where the conditions for admis-
sibility were fulfilled.

4.2. Abelian CQ*-algebras. In this Section we will describe the structure
of abelian CQ*-algebras.
For C*-algebras, as is known, the situation is completely clear: an

abelian C*-algebra with unit is isometrically isomorphic to the space
C (X) of continuous functions on the compact space X of characters. The
correspondence stated in this way is the so-called Gelfand transform.
We do not expect CQ*-algebras to behave so regularly: the first reason

is that Proposition 3 .2 allows the existence of non isomorphic CQ*-
algebras over C (X) (think also of Example 3 . 4); the second reason is

that, as is known [29], [37] already for Banach *-algebras the Gel’fand
transform is not, in general, an isometric isomorphism.
As shown before, every abelian CQ*-algebra is necessarily proper (thus
= L j~ = but the involution of j~o may be different from the

involution * of j~.

PROPOSITION 4.3. - Let abelian X the

space of characters Then the following statements hold true.
(i) If J~o admits a faithful state ~ which is continuous with respect to

the of A, then there exists a homomorphism 03C6 from A into C’ (X)
(the dual of the Banach space of continuous functions on X); the restriction
of  to ~/o is an isomorphism onto C (X).

(ii) If, in addition, for some positive constant K &#x3E; 0

then there exists a regular Baire measure  on X and a homomorphism 03C6
into L2 (X, d~); the restriction of  to J~o is an isomorphism of

onto C (X).
In both cases, if = *, then ~ preserves the involution.

Proof - (i ) Let j~o be the dual space of j~o (with respect to its own
norm). The Gel’fand transform extends to the whole j~o in the following
way: to F E j~o we associate the continuous linear functional F on C (X)
defined by F13 = F (B) where B denotes the Gel’fand transform of 
Now, let to be a faithful state co which is continuous with respect to the
norm 11./1 of j~; then co has a continuous extension (denote with the same
symbol ) to the whole j~; for each the linear functional roA defined

by roA (B) = co (AB) is, therefore, bounded on ~o and then it has,
as shown before, a Gel’fand transform Let us define the map

It is easily shown that ~ is a homomorphism of j~ into C’ (X).
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The fact that ~ 1.910 is an isomorphism can be seen as follows: if 
and then and then, by the faithfulness
of co, B=O.

(ii ) Set

By the assumption, no can be extended, by continuity, to a positive
sesquilinear form Q on A x A.
Since co is continuous on o is continuous on C (X) and then by the
Riesz representation theorem there exists a unique Borel measure  on X
such that

where the operator denotes the Gel’fand transform. 0

For the anti linear form F A on C (X) defined by B)
is bounded in L2 (X, due to the Schwarz inequality. Therefore there
exists a function A (ro) E L2 (X, such that

The map )): A e j~ -~ )) (A) = A ())) E L 2 (X, d~,) is, as is readily checked a
homomorphism of ~ into L2 (X, d~,) preserving the involution of j~o-
It is easy to see that ~ satisfies the requirements of our proposition. The
fact that ()) 1.910 is an isomorphism of j~o onto C (X) follows, as before,
from the faithfulness of o.

Remark. - It is clear that the assumption 
made in (ii ), implies the continuity of o required in (i ). The converse is,
however, not true in general. This could appear in contradiction with the
fact that any separately continuous sesquilinear form on a Banach space,
as j~ is, is necessarily jointly continuous. But, as matter of fact, the

continuity of o does not imply the separate continuity ofQ. There is,
however, one relevant exception: if the state 00 of (i ) can be taken to be
pure, then it is multiplicative and, as is easy to check,

is then separately continuous with respect to the norm 11.11 of j~; the same
holds true, clearly, for its extension Q to the whole ~.
A complete study of representation of CQ*-algebras should include, as

is clear, several other topics: irreducibility, properties of the commutant,
decomposition theory etc. These questions will be investigated in a further
publication. Two natural questions are, in our opinion, of particular
interest.
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First, given a representation 1tR of the C*-algebra (R ~, :tj:) is there a

representation 03C0 of the whole CQ*-algebra A "extending" 1tR to A (i.e.,
satisfying the conditions of Definition 4. 2)?

Second, is a CQ*-algebra (~, *, R ~, :tj:) isomorphic to a CQ*-algebra
of bounded operators in a scale of Hilbert spaces ?
We do not have a definite answer to these questions which we then

leave, at present, open.

5. LCQ*-ALGEBRAS

In this section we will consider quasi *-algebras which are algebraic
inductive limits of CQ*-algebras and discuss the example of the quasi*-
algebra of operators in Nested Hilbert spaces.
We need first some notation and definition.
Let P be a partially ordered set. An order reversing involution is a

bijective map r ~ r in P such that p _ q if, and only if, p &#x3E;__ q and r = r.~
P is said to be directed to the right if b’ r, s E P there exists q E P such that
r, 

By I we will denote, from now on, a partially ordered set satisfying the
following conditions
(A 1 ) I is directed to the right
(A2) In I an order-reversing involution r --+ r is defined (thus I is also

directed to the left)
(A3) there exists a unique element ~~I such that E = E.

DEFINITION 5. 1. - Let (~, ~o) be a quasi *-algebra and I a set of
indices satisfying (A 1 ), (A2) and (A3). We say that (A, A0) is a LCQ*-
algebra if V rEI there exists a CQ*-algebra *, R Ar, r) with the proper-
ties

(i) A ~ r ~ I

(ii) 
(iii) is a C*-algebra
(iv) For ~S and the identity is continuous and with dense

range

(v) d r, s ~ I ~ q ~ I with r, such that 

(vi) ~ = U { ~r, rEI}
(vii) d rEI there exists a bilinear map mr : ~r x ~r ~ ~ such that

(vii. a) mr(A, B)=AB whenever or B E ~o;
(vii. b) if (A, B) E (~r x ~r ) n (~S x ~S ) then mr (A, B) = ms (A, B)

(viii) A is endowed with a locally convex topology 03BE which is equivalent
to the inductive limit topology defined by { ~r, rEI} and such that

(~ [ç], ~o) is a complete topological quasi *-algebra;
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(ix) ~o is the completion of n { R ~r, rEI} with respect to the reduced
topology Ço of ç.

I, f ’ the set I is countable we will say that (A, A0) is a strict LCQ*-
algebra.
Remark. - As is clear from the above definition, only and (ix)

involve the topological structure of (A, A0); we shall see below a non-
trivial but quite general example where the algebraic conditions (i )-(vii) are
all fulfilled; however the topological ones hold true only under additional
assumptions.

Condition (vii) of the previous definition allows us to refine the multipli-
cative structure that (~, ~o) carries as quasi *-algebra.

PROPOSITION 5.1. - Let (~, ~o) be a quasi *-algebra fulfilling Condi-
tions (i )-( vii) of the Definition 5. 1.
Let us define

then A is a partial *-algebra when for (A, B) E r we set AB = mr (A, B)
where r E I is such that A E ~/~ and B E Ar.

Proof. - First of all we remark that because of (vii. a) and (vii. b) the
product AB, when it is defined, does not depend on the pair 
which we have used to define it. We check here only the distributive
property, the other points of the definition of partial *-algebra being
fulfilled trivially.

Let (A, B) E r and (A, C) E r; then there exist r, s E I such that
thus by (v) of Definition 5.1,

n s; therefore B+03BB C ~ Asince A~ A A.
Now the equality

follows immediately from the bilinearity of mq. 0

We do not go further in developing a theory of LCQ*-algebras, leaving
it to future papers. Here we are more interested in showing that certain
spaces of operators that frequently occurs in physical applications fit into
our framework. This is the case of some families of operators acting in
nested Hilbert spaces [30]; for reader’s convenience we recall the basic
definitions. A nested Hilbert space (NHS) is a vector space ~’ together
with

( 1 ) a family {Hr, r~I} of vector subspaces which covers D’; when
ordered by inclusion the family admits an order reversing involution

(2) a hermitean, positive definite form (., .) is defined on U ~r )
and the subspace !!) = separates points of ~.
The family { fulfills the following requirements
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(3) for each r E I, is a Hilbert space with respect to a scalar product
...x;

(4) there exists a unique element ~~I such that 
(5) the family { is stable under intersection.
If the set I is countable, following the terminology of Gel’fand and

Vilenkin [38] we say that ~’ is a countably Hilbert space. A detailed study
of this structure has been carried out in [39].

If the family {Hr, r~I} is ordered by inclusion, then the set I can also
be ordered in natural way: if, and only if, If we

denote with Esr the bounded linear injective map which embeds ~
into The map ESr has dense range.

Because of (2), Vrel, ~r and ~r are dual to each other. Let us denote
with Un- the unitary operator from into ~r defined by the Riesz
lemma.

The definition of operator in a NHS is rather tricky and we will omit
it, referring, for details, to [ 17], [37] and [38]. We will consider below a
family of operators in a NHS which provides an example of the structures
defined above.

Remarks:

( 1 ) The definition of NHS given here differs from the original one given
by Grossmann [30]; here we will adopt that given in [40] which is a little
more restrictive but more convenient for our purposes.

(2) Nested Hilbert spaces are a particular case of PIP-space as defined
by Antoine and Grossmann ([41 ], [42]).

(3) It is clear that the extreme spaces!!) and ~’ together with the central
Hilbert space H~ can be considered as a Rigged Hilbert space: in fact if
~ carries the projective limit topology defined by the family { ~r }, then
~’ is exactly its topological dual whose strong dual topology is just the
inductive limit topology defined by the family {Hr} (see, e.g., [43] Ch. 4,
§ 22, n° 6). So it turns out that!!) is a semi reflexive and weakly quasi-
complete space and D’ is barreled. Moreover D is dense in D’.

(4) In the case of a countably Hilbert space D is Fréchet and reflexive,
being a projective limit of countably many Hilbert spaces.

Let {~,{~f,},I} be a nested Hilbert space The
*-invariant Banach space ~ ~r ) of all bounded linear operators
from into as is easily seen, a subspace of the set 2 (~, ~~’) of
all continuous linear maps from!!) (with the projective topology) into ~
(with the strong dual topology).

Let O (~’) ~ ~ (~, ~’) be the linear span of all the ~),
rEI and ~ (~) the intersection of all rEI. As we have
seen in Example 3 . 3, ~ (~r, ~r ) is a CQ*-algebra 
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Finally let 0 (!!)) be the *-algebra of all elements of O (~’) which
(together with their adjoints) leave ~ invariant. Then as is easy to see

(0 (~’), 0 (!!))) is a quasi *-algebra. Moreover we have

LEMMA 5.1. - nested Hilbert space. Then

the quasi *-algebra (O (~’), 0(~)) satisfies Conditions (i )-(vii ) 
tion 5 . 1.

The proof is very simple and we omit it.
In order to get that also Conditions (viii ) and (ix) of Definition 5 .1 be

fulfilled we have to add restrictions to the above general set up. In fact, if
the nested Hilbert space we are dealing with reduces to the chain of
Hilbert spaces generated by an unbounded self-adjoint operator then the
quasi *-algebra (O (~’), O (~)) coincides with (~ (~, ~’), (!!))) and it

gives really a LCQ*-algebra.
Let T be an unbounded self-adjoint operator, with Then for

each D (Tr) is a Hilbert space with respect to the scalar product
 ./~ )r= ( Tr f, where (...) denotes the scalar product of Set

and let dual, which is also a Hilbert space where the
scalar product is defined as (/, ~)r-=T’~ We have so obtai-

ned a totally ordered (chain) family of Hilbert spaces {Hr, r~Z} with

H0=H. Let D=lim proj Hr and As already mentioned,
!!) is Frechet and reflexive and ~’ is its dual. For this domain,
(~ (~, ~’), (~)) is a quasi *-algebra and the quasi uniform topology
’t of ~ (~, ~’) ([ 11 ]-[ 13]) can be described by the following seminorms

where 11.11 denotes the C*-norm and f runs over the set ~ of
all positive, bounded 0 and 0 continuous functions on [0, 00) such that

sup 
00)

Analogously a topology 1* (~) can be " defined 0 by the seminorms

The following known results are here stated as a lemma for convenience

LEMMA 5 . 2. - }, 7~ ~ be the chain of Hilbert spaces
generated by an unbounded self-adjoint operator T. !!)oo (T) and

(i ) (!!), D’) = O (D03C0’) and + (D) = O (!!));
(ii) (!!), ~’) [’t], (~)) is a complete topological quasi *-algebra;
(iii) the topology ’t* of (!Ø) coincides with the reduced topology io

of i.

Proof - (i ) See [43] Sect. 19, n° 5 (4) and [23] Cor. 3 .1.14; (ii) has
been stated in [ 12], Lemma 2 . 3 and (iii) in [ 13], Lemma 3 .11. D
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Remark. - Statement (ii ) of the above lemma does not hold for general
domains. In [44], for instance, an example of a domain ~ for which
~ (~, ~’) is not T-complete has been given. The density of 2 + (!!)) in
~ (~, ~’) for Frechet domains has been proved in [ 15]; other results in
this direction can be found in [23] (Ch. 3). Statement (iii ) holds also for
the so-called basic domains [ 13] .
We can now prove the main result of this Section

PROPOSITION 5.2. - projective limit of the chain of
Hilbert spaces generated by an unbounded self-adjoint operator T; then

(2 (!!), D’)[03C4], 2+ (!!))), where ’t is the quasi-uniform topology, is a LCQ*-
algebra.

Proof. - Taking into account the previous lemmas, it remains only to
show that and that 2 + (!!)) is the ’t * -
completion of B(D)=~B(Hr). The second part is easier and we prove
it first.

Let {E(~), ~, &#x3E;_ 1 } be the spectral family of T. Then and

On = [ 1, n) then it is easily seen that ~ r ~ Z and that

converges to A with respect to ’t*.
Let us finally prove that ’t coincides with the inductive limit topology

03C4ind defined Hr),
Let  denote the space of nuclear operators in Jf and for p ~  set

I’ pill = tr « p + p) 1/2).
Let

Then r is a Banach space under the norm ~03C1
With techniques completely analogous to the case of !/ (see, for

instance [34] Sect. 2 . 4 .1 ) it can be proved that the strong dual ~ of ~r
is ~ ~r ) with its natural norm.

Let, now,

be endowed with the topology P* ([13], [45]) defined by the seminorms

Then as is clear ~ (~) = is the projective limit
of the spaces ~r. Then for the duals we get

But, as stated in [13], ~ (~) [(3*]’ _ ~ (~, ~’) [i]. This completes the

proof. 0
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6. SOME PHYSICAL APPLICATION

In this final section we will discuss in some details two physical models
(already mentioned in the Introduction) whose mathematical formulation
seems to fit quite well into our framework. In both cases, the C*-algebras
formulation is known to be insufficient for a complete and satisfactory
mathematical description. Some of the problems that arise in that formula-
tion seem to be solvable in the present framework.

6.1. (Almost) mean field Ising model. The basic mathematical ingredient
for the study of this model is the usual spin C*-algebra We will adopt
here the same notations as in [4], but we will give the main statement in a

simpler formulation which is more adherent to this paper.
The finite volume Hamiltonian which describes this model is

For y =1 this is a typical mean field model, extensively discussed in the
literature [2, 3, 11]. The case 0  y  1 has been considered in [4].
The Heisenberg equations of motion are given by

whose solution can be easily computed as in )4j.
As is known, the thermodynamical limit of this local Heisenberg

dynamics does not belong to j~s’
To any sequence {!1} of three-vectors it corresponds a state I { !1} ) of

the system. Such a state defines, via the GNS-construction, a realization
the Hilbert space ~ f n }. This representation is faithful, since

As is a simple C*-algebra. In the-space one can choose an ortho-
normal basis obtained from I { !1} ) by flipping a finite number of spins.
A basis vector is, now, labeled by a sequence {~2} of 0’s and 1’s with

exactly m ones.
In we can define an unbounded self-adjoint operator M by

The operator M -1 counts the number of flipped spins with respect to
the ground state ~ { 0 }, {~} ). Then M is, by definition, a number operator.
It turns out that the operator eM is a densely defined self-adjoint operator.
Let!!) denote its domain. Then ~ can be made into a Hilbert space,
denoted as in canonical way. The norm in is given by
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Taking the conjugate dual of with respect to the scalar product
of ~ f n ~, we get the scale

Once this triplet is obtained, it is natural to consider the CQ*-algebra
(~(~M, ~M), *, ~ (~M), ~) [see Example 3 . 3] as a framework where to
discuss the existence of the thermodynamical limit of Oy.

Indeed, by simple modifications of the calculations of [4], one can
prove the existence of the thermodynamical limit of the local Heisenberg
dynamics in ~ provided that the state {!1} satisfies the condi-
tion

It is worth mentioning that the natural norm of ~ is given by

an that this norm automatically fulfills the conditions given in Section 3.

6.2. Wightman fields. In this subsection we discuss some facts of axio-
matic Quantum Field Theory which seem to be more conveniently descri-
bed in the language of LCQ*-algebras.
As is known, the algebraic formulation of Quantum Field Theory exists

in two variants: the Haag-Araki theory, where the algebras of local
observables are von Neumann algebras and the Haag-Kastler theory where
the local algebras are abstract C*-algebras. Clearly the link between the
two theories is provided by representations.

In a concrete realization, the point-like field A (x) is mathematically
represented as a sesquilinear form on a certain domain ~ in Hilbert space
~ ([46], [47]) and one of the basic Wightman axioms is that

is a well defined operator in ~. The local von Neumann algebra d ((~) is
then generated by the Wightman fields A ( f ) such that supp f c C~. It is
quite clear that this construction cannot be performed starting from an
arbitrary point-like field A (x).

Specializing some idea of [9], in [8] Epifanio and one of us proposed to
consider a point-like field A as a linear map

where H is the energy operator. It turns out that for
such a field there exists a number k &#x3E; 0 (independent of x) such that
RkA(x)Rk is a bounded operator, where R = (~ + H) -1. The boundedness
of Rk A (x) Rk is exactly the regularity condition (high energy bound)
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required by Fredenhagen and Hertel in [ 10] to get that A (x) satisfies both
the Wightman axioms and those of a local theory in the Haag-Araki
setup.

All these facts can be, more conveniently, reformulated in the language
of the present paper.

Indeed, let us consider the chain of Hilbert spaces {Hr, r E Z} generated
by the unbounded self-adjoint operator R -1 = 0 + Hand!!) =!!)oo (R -1).
As shown in Proposition 5 . 2, in this case (2 (D, D’), 2+ (!!))) is a LCQ*-
algebra with respect to the quasi-uniform topology ’to In is easy to see
that the boundedness of Rk A (x) Rk is equivalent to the fact that

~ _ k). Taking this fact into account, one can show, as in
[8], that if A (x) satisfies the usual physical requirements (translation
invariance, existence of a translation invariant vacuum, spectrum condi-
tion) then the smeared field A ( f ), f E Co ((~4) satisfies all Wightman
axioms; and in particular (~), (1R4).
Two features seem to us very relevant in this mathematical formulation

(whose main point is the fact that the point-like field takes its values in
an LCQ*-algebra).

First, by the definition itself, elements of an LCQ*-algebra enjoy very
nice approximation properties in terms of very regular elements (Proposi-
tion 5 . 2) and this can be very useful in many applications.

Second, an LCQ*-algebra carries a natural structure of partial *-algebra
and this can give a sense to many formal computations with point-like
fields which are often performed as they really were operators (think, for
instance, of the Lagrangian itself in a lagrangian formulation of a field
theory [48] or even of the commutators [A (x), B ( y)] usually evaluated to
check the local commutativity of two fields). In fact a product of the form
A (x) B ( y) is not always meaningless. As shown in Section 5, this will be
well-defined and B(~)e~(~f~, for a certain
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