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ABSTRACT. - Given a retarded functional differential equation, a stable
equilibrium point and a bounded neighbourhood contained in its basin of
attraction, one perturbs the differential equation with small white noise
and states a large deviation result, namely, solutions starting in the neigh-
bourhood very likely escape from it. The end of the escaping path can be
described. The Euler-Lagrange equation corresponding to the extremals
of the action-functional presents delay and advance in time. An example
is completely studied.

RESUME. 2014 Soit un voisinage borne d’un point d’equilibre stable d’une
equation differentielle avec retard contenu dans Ie bassin d’attraction de
ce point d’equilibre. Nous montrons un resultat de grandes deviations
concernant les perturbations de 1’equation avec retard par un petit bruit
blanc. Nous decrivons la fin du chemin de sortie probable du voisinage.
C’est la solution d’une equation avec retard et avance.
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0. INTRODUCTION

It is well known that small random perturbations can produce large
deviations in the behavior of the trajectories of a deterministic dynamical
system. In fact~ let us consider as the unperturbed dynamical system an
ordinary differential equation given by

and the perturbed system given by

}, is the Brownian motion in !R" starting from
0, that is, (0.2) is a perturbation of (0.1) with a white noise. Given
any ~&#x3E;0 and denote by X~(t, p) the solution of (0.2) satisfying
Xt (0, p) = po Suppose is a bounded domain and 0~D is an
asymptotically stable equilibrium (constant solution) of(0.1). Freidlin and
Wentzel considered the action functional associated to (o . 1 ):

defined 0 for of all absolutely continuous
functions 03B3:[ - T, 0] such L 2 { - T, 0]. For each (p E IRn they
introduced the so-called o quasipotential o I relatively to 

and o proved o that, if V (p) has its minimum in a unique point
then

for any where Here, P
denotes the probability measure.

In the same authors have developed a theory of large deviations
for Gaussian processes with values in Hilbert spaces; Azencott {Az] also
considered processes with values in Banach spaces. As a general reference
on large deviations we can mention the book by Deuschel and Stroock
[D-S], 1989.

In the present paper, we consider a small stochastic perturbation of a
retarded functional differential equation. This kind of equation defines a
dynamical system in a Banach space but the solutions have a description
in [R" with many self intersections. The perturbation is made with a white
noise in but, since the dynamical system defines a semigroup in a
suitable Banach space, the deviations will be measured with the distance
of the (not locally compact) considered space. That is, the solutions
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starting in a neighbourhood contained in the basin of attraction of an
asymptotically stable equilibrium point, very likely escape from the neigh-
bourhood, generalizing the Freidlin and Wentzel ideas. We will see that
the Euler-Lagrange equations, which gives the points of the
action functional, turns out to be a functional differential equation with
advance and delay in time. We were able to compute the minimum on
the boundary of a suitable domain of the qu.siotential for the case of
the linear equation j~ 2014x(~-~).

I. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

Let C be the Banach space of all continuous paths p: [- 1, 0] -4 Rn with
respect to the - 1 ~ e ~ O}, I is the

Euclidean norm in For a continuous function ~:[~- 1, --4 ~~,
A&#x3E;0, and a real number t in write xt to denote the element
in C given by then, the function

is continuous.

We call retarded functional differential equation a relation of the form

where/: C --+ is a continuous function [Ha]).
For technical reasons, we will suppose continuously differentia-

bte and that

is finite, where

Equation (1.0) defines the solution ftow2014on

Cby

where x is the solution of (1.0) in [0, + oo) which starts in (p, ~i. e,, 
or x (B) = p (0), for all e in {- 1, 0]. We know that )) (t) : C ~ C is continu-
ously differentiable, 03C6(t+s)=03C6(t)03C6(s) for all t, ))(())= identity of C
and also that for any fixed cp in C, and any 03C8 in C,

Vo!.55,n°2-1991.
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Let W1,2 be the subset of all functions (p:[-l,0]-~" absolutely
continuous on [20141, 0] such that 03C6~L2 i. e.

With respect to the norm

W1,2 is a Hilbert space and the inclusion W1, 2 ~ C is continuous. We
know that W1,2 is invariant under the flow ((()(~))~o and that

~ (~): W1, 2 ~ W 1, 2 remains continuously differentiable.
Later, we will suppose that the function (p=0 in C is an equilibrium

point of equation ( 1. 0), that is,/(0)=0, which attracts its small neighbour-
hoods. We assume that there exist positive constants K and a such

for all ~0 and all cp in a sufficiently small
neighbourhood of o. The above estimate is obtained (see [Ha]) by consider-
ing the linearized variational equation about ~=0:~(/)=/~(0)~.

Let (Q, ff, [P) be a probability space and let w (t) : SZ ~ ~0, be the
Brownian motion in tR".

Let us consider the perturbed stochastic differential equation

A solution of this equation through cp E C at time t == 0 is a continuous
random variable w), t~ -1, w~03A9 such that

(with probability one) for all 6e[2014l, 0] and such that for all ~0, we
have

also with probability one.
We know that, for each cp E C, there exists one and only one solution

of equation (l, E) through cp defined for all We will prove that:

I.1. PROPOSITION. - Given an interval [0, T] and a function cp E C, then,
during the time interval [0, T], the solution XE (t) of’ equation (1, E) through
cp at time t = 0 very likely follows the solution of equation ( 1 . 0) through cp
at time t = 0; more precisely, for any 03B4&#x3E; o,

l’Institut Henri Poincaré - Physique theorique
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or, equivalently,

where , the subscript (p indicates that the considered solutions start at (p.

Proo.f’. - It is easy to see that

so, Gronwall’s inequality implies that

Using the classical inequality (see [F - W 1]):

we find that

for appropriate constants C1, C2, D1 and D2; this last inequality clearly
implies the conclusion of our proposition.

In order to estimate the probability that a solution X~ of the equation
( 1, 8) belongs to a neighourhood of a fixed T 1 _ t _ T 2 }, we
introduce the action functional associated to the random processes X~ and
a quasipotential extending Freidlin and Wentzell’s construction for pertur-
bed vector fields [see F-W 1].

In a similar way as Freidlin and Wentzell do for vector fields, let us

define the action functional associated to the processes X~ by:

for T2], which, when/=0, reduces to the usual action func-
tional associated to the Brownian motion.

Without loss of generality, we can assume that either T 1 == 0 and T2 &#x3E; 0
or and T 1  o.

Let us denote by PT the distance between two continuous functions x
and y in C [ - 1, T]:

and, T], let us define:

Vol. 55, n° 2-1991.
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Let us state, without proof, a straightforward extension af a theorem
of Freidlin and Wentzell [F-W1], which will be used several times:

1.2. THEOREM. - Let XE (03C6) be a solution of the perturbed equation (1 , E).
Then, given T&#x3E; 1, 03B4&#x3E;0, 03B2&#x3E;0 and s0&#x3E;0 we have:

(a) There exists Q such that for all E E (0, Eo) the inequality

T] such that 03B30=03C6 § 

(b) There exists 8o&#x3E;0 1 such that for all ~e[0, soJ and all
c~ ~ W ~ ~ 2, we have

The quasipotential of equation (1.0) with respect to the origin 0 in 
is, by definition, the functional

It is clear that V (0, p) ~ 0 for all cp E W1, 2 and that V (0, p) is continuous
in po Moreover, if 0 is an equilibrium of equation (1, 0), then V(0, 0)==0
and, since extending backwards y by zero does not increase the action,
one can assume T 1 == - oo .
The name quasipotential comes from the fact that for gradient systems

in x (t) = - grad U (x (t)), with 0 as an attractor, the quasipotential is
twice the potential U, if we stay in the basin of the attractor.
The following theorem, as in the non retarded case, studies the exit

from a bounded domain D contained in the basin of an attracting equili-
brium. Since, under our hypotheses, the solution operator of the retarded
functional differential equation is compact, one can extend each step used
by in the proof. The extension, although not completely standard,
can be done in a natural way and we will ommit the details.

Let the nonretarded case, it can be shown
to be almost surely finite and moreover, we have:

1.3. THEOREM. - Let 0 be an asymptotically stable equilibrium 
tion ( 1, 0) and let bounded connected open neighbourhood of 0,
the closure of which 03B40-neighbourhood Dõo contained in the basin

suppose also that D and Dõo are strictly contracted by the flow
of the nanperturbed system, that is, and 
suppose, moreover, that there unique point 3D minimizing the
quasipotential V (0, p) on aD.

for &#x3E; 0 and any we have:

Annales de ’ l’Institut Henri Poincaré - Physique " theorique "
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II. THE ACTION FUNCTIONAL

From now on, we will restrict ourselves to random perturbations of
equations of the following type:

where f : is given by

We suppose that F:~"x~-~~ and g : ~n ---~ f~n are bounded C1 1

functions with bounded derivatives and that a : [0, 1] 2014~ !? is of class C2.
The perturbed equation is

The corresponding action functional is

We want to minimize S on the following class:

where " (p and 0 (p are " given functions.
It is clear that we have to assume T ~ 1.

11.1. PROPOSITION. 2014 4 necessary condition for 03B3~M to , minimize S on
that y satisfies the following ? Euler-Lagrange equation:

where

(the star indicates the matrix transposition).
Recall that tp and 03B3T= cp and observe that the equation above which

is retarded and advanced in time, is, as a matter of fact, a second order
integro-differential equation. In spite of the fact that we do not know a
priori that y has first and second derivatives in [0, T -1], we remark that

Vol. 55, n° 2-1991.
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the function H(y)(~) is absolutely continuous in [0,T-1] and

~ H (y (.)) E L2 [0, T - 1]. Later on we will show that y is C2 in [0, T - 1].
~

Let [0, T - 1] such that A (0) = /! (T - 1) = 0 and put /! (6) = 0,
8E[ -1,0], and h(t)=0, t~[T-1, T]. We know that if 03B3~M is a local

minimum for S then for all /! as above.
cIA

Let us make explicit this condition:

Since ho == hT = 0 and after using integration by parts and inverting the
integrals we obtain the following expression:

Since /! is arbitrary, the result follows from Du-Bois-Reymond’s lemma
[A]) which says that if 0: [a, ~] -~ M" is continuous and if

P
D* (t) /! (/) dt= 0 for all C1 functions /!: [a, ~] -~ f~n such that

Ja

then C is constant on [a, b].
We have then, for all T -1 ] :

Since the integrand belongs to T - 1], it follows that H* (y) (t) is
absolutely continuous on [0, T -1]. If we transpose the expression obtained
after computing the derivative of the last equality we get the following
Euler-Lagrange equation which holds for y, almost everywhere in

l’Institut Henri Poincaré - Physique theorique
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as claimed.
Let us now consider the existence of an absolute minimum for S in the

class which will imply the existence of solution for the equation (2. 4)
with boundary condition and 

Let and a minimizing sequence of
elements in that is, S (y m) as m  oo . Without loss of generality
we may assume 

11.2. PROPOSITION. - There subsequence, also denoted by
which converges uniformly in [0, T -1] to a function 03B3~M such

that S (y) == ~.
Proof . - The idea is to show that ~~l is compact in C [0, T] and that S

is lower semi-continuous on ~.

We start observing that there exist constants a and P such that a &#x3E; 0

and

This implies that

and then

By the Arzela-Ascoli’s Theorem, there exists a subsequence of (yj which

converges uniformly to a function yeC[0, T -1]; extend y to [-1, T] by

yo =(p and YT==9. It is easy to show that y is absolutely continuous in

[0,T-1]. ..
To prove YEL2[0,T-l] ] take ~e(0,T-l) and choose /!&#x3E;0 small

enough such that [t, ~+/!]c:[0, T -1 ] .
Using again Cauchy-Schwarz inequality we have

Vol. 55, n° 2-1991.
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If we integrate between 0 and (T - 1 2014 ~) and by inversion in the order
of integration one obtains

and since the last term is bounded by B2, we pass to the limit as m  00
and see that, for all T  T -" 1 and h &#x3E; 0 sufficiently small, we have

Since y is absolutely continuous in [0,T20141], we use Fatou’s theorem
and obtain

But 1;  T - 1 arbitrary implies and 
A standard argument shows now that ~m converges weakly to y on

[0, T - 1], in the sense that, for each we have lim 

where

It is easy now to prove that the absolute minimum ~ of S is achieved
iny.

III. EXAMPLE

Let us apply the foregoing results to the problem of exit from a domain
attracted to 0, in the case of the dynamical system defined by the scalar
linear retarded differential difference equation:

We know [Ha] that the condition 0~- is a necessary and sufficient
condition to ensure that 0 is an asymptotically stable equilibrium of
equation (3.0); in fact, this condition is equivalent to assume that all
roots of the characteristic equation

verify Re~0.

Annales de Henri Poincare - Physique . théorique .
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The action functional corresponding to equation (3.0) is given by

and the Euler-Lagrange equations for the extremals of S are given by

We will compute the quasipotential of equation (3.1) with respect to
the origin.
As noted before, we may suppose that 
Equation (3.2.2) is an advanced difference-differential equation, which

becomes a retarded equation by performing the change of independent
variable t ~-t. Therefore, by [B-T], given 03C8 e L2 [ - b, 0], and 03BE~ [R, we can
solve (3.2.2) to find a unique function H : (2014 oo, b] -+ IR which satisfies:
1) H (~ + 9) = B)/ (8) for almost all e e [ - b, 0]; 2) H (0) = ~; 3) H is absolutely
continuous on (2014 oo, 0], and, 4) for almost all t in (2014 oo, 0], H (t) = H ~t + b).
With H = H (t, ~, t~r~ so determined, we solve equation (3.2.1) in

(-oo,0] with initial condition y~=0. We get a function

y:(2014oo,+~]-~[R which is absolutely continuous on (- oo, 0].
Of course, y depends upon B)/ and ~; the relations

allow us determine B)/ and ç uniquely as functions of po In fact, from the
variation of constants formula [Ha], we have

where X is the fundamental solution:

Given 03C8~L2, let J (t) be the solution of

where BJ/ is defined by ~ (o) _ ~ ( - b - 8) for all Oe[-~0].
It is easy to see that ([Ha], p. 22, formula 6.2):

and that

Vol. 55, n° 2-1991.
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By equation (3 . 2 . 1) we have for t E [ - b, 0]:

or

Define the function ~(8), 6e[-~0], by

Then, we can write equation (3.4) as

Letting t = 0 in equation (3 . 4), we get

Since a (0) &#x3E; 0, we can solve equation (3 . 7) for ç so that equation (3 . 6)
can be written as

where

We now compute the function ~(8).
It follows from the definition that

Therefore, ~(8)= 2014~(9). Since ~(-~)= 1/2, we have

Annales de l’Institut Henri Poincare - Physique theorique .
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Also, the kernel K (8, u) has the expression

Equation (3 . 8) now becomes the Volterra equation

Which has a unique solution for each 

We now compute the quasipotential relative to the origin.
From what has been proved above, the quasipotential V (cp) is given by

where y (t) = x ( - t), x (t) being the solution of

In fact, Yb = cp and y - 00 = 0 and y satisfies the variational equations (3 . 2 . 1 )
and (3.2.2).
We have

Vol.55,n°2-1991.
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Let j~: W1,2 --+ W1,2 be the linear operator defined by

for all 8 E [ - b, 0] .
It is clear that

and

Recall that the inner product in W1,2 is given by

for all (p, B)/ in W1,2.
A straitforward 0 computation shows that:

PROPOSITION III. 1. - The operator d defined above is symmetric and

for all (p in W1,2.
Let m be the infimum of V (cp) over the unit sphere ~ 03C6~1,2 = 1. Then

for all cp E W1,2.

THEOREM III . 2. - 7/~e(0,7T/2), the 

Proo~ f : - We know that m belongs to the spectrum (J (A) of A; therefore,
it suffices to prove that o(A) is contained in (0, oo) or, equivalently, that
the resolvent set p (A) of A contains the interval ( - oo,0].

Let À be a real number, ~, -_ 0, and let us solve the equation

for tp in W 1 ~ 2, where ~ is an~ given element in W 1 ~2.

Let us write 1- 2 À = I where J.l E 0 1 and make the change of variableN~ ~ ~ ~ g

p W2 ~2~+~)~

Annales de l’Institut Henri Poincare - Physique theorique
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Then, the above equation is equivalent to the system

Since

we have, by the variation of parameters method:

~ (8) _ (cl + c (9)) cos ~, (8 + b) + (c2 + d (8)) (3.11)
where c 1 and c2 are constants to be determined and c (8) and d (9) are
functions given by

and

Taking (3. 11) into (3.10) we arrive to the system in c1 and c2 given by

Let D be the determinant of the coefficients of C1 and C2.
Then, D=D( )=2 2+(1- 2) cos b-( + 3) sin b.

Let us prove that for any D&#x3E;O. Since then

cos b &#x3E; cosb &#x3E; 0 and 0  sin &#x26;  sin &#x26;; therefore

Letting 1: be the tangent we can write D ~~, where
2 1 + "(2

and it is easy to see that g (i) = (1- i2)2 and

Since 0  i  1, we see immediately that for any 
Therefore, we can solve (3.12) uniquely for c 1 and c2 and, with ç given

by (3 .11 ), we get a unique solution cp of (~ - ~, I) cp = cp, for any B)/ E W1,2,
and any ~~0, depending linearly and continuously on B)/, which proves
that p(j~)~(2014 oo, 0]. This finishes the proof.

Vol. 55, n° 2-1991.
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From Theorem III. 2, we conclude that /V is a hilbertian norm in
W1,2, which is equivalent to the previous one.

If we take D as the open ball with respect to the norm JV, with center
c and radius R, where c and R are positive constants, c  R, then
Theorem 1.3 can be applied to the perturbed system .

if0~7c/2.
To show that fact, we must prove that the absolute minimum of

/V((p) on is achieved only at one point,

namely, 

In fact, we have:

then

where ( , )&#x3E;y denotes the inner product associated to V; therefore

and the inequality is strict if which proves that the minimum of

jV on aD occurs only at(po.
As a final remark, we note that the method we have used can be applied

to many other systems, for example, to the scalar linear integro-differential
equation

with a (t) = e - ~r 
- r~ -1, t E [0, r].
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