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ABSTRACT. - It is studied the classical limit of a quantum particle in
an external non-abelian gauge field. It is shown that the unitary group
describing the quantum fluctuations around any classic phase orbit has a
classical limit when h tends to zero under very general conditions on the
potentials. It is also proved the self-adjointness of the Hamilton’s operator
of the quantum theory for a large class of potentials. Some applications
of the theory are finally exposed.

RESUME. 2014 On etudie la limite classique d’une particule quantique dans
un champ exterieur non abelien. On demontre que 1’existence de la limite
classique du groupe unitaire qui decrit les fluctuations quantiques autour
d’une orbite classique quelconque est assuree par des conditions peu
restrictives sur les potentiels. On demontre aussi que Foperateur hamilton-
ien de la theorie quantique est auto-adjoint pour une large classe de

potentiels. On presente enfin quelques applications de cette theorie.

. 
I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Wong’s equations are known to be the classical evolution equations of
a particle moving in an external Yang-Mills field ([1], [2]); they were
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352 U. MOSCHELLA

obtained as the formal limit for h tending to zero of the corresponding
quantum equations of motion, where h is the Planck’s constant.
The aim of this paper is to give a rigorous proof of this correspondence

under very general hypotheses.
In this introduction the formulations of both the classical and quantum

theories are stated and the ideas underlying the classical limit procedure
are explained.

Let (5 be a semisimple and compact Lie group and 9 the associated Lie
algebra, with commutation rules

where {e03B1} is a basis for g (summation over repeated indices is assumed
hereafter unless otherwise specified).

In several previous papers on this and related subjects ([3], [4] and
references therein) the main idea to obtain the classical limit of the

quantum theory consists in letting the dimension m of the representation
of the group tend to infinity in such a way that m h = const, when h tends
to zero.

More precisely one chooses an irreducible representation 1t, parametrized
by its highest weight l and then to each natural number associates the

irreducible representation whose maximal weight is nl. The classical

limit may be obtained in this way by letting h tend to zero as n -1.
The classical Wong equations then include as a dynamical variable a

classical isospin, which is a point of r, the coadjoint orbit through l. This

approach has however the disadvantage that it is necessary to change at
each step of the limit procedure the Hilbert space of the quantum theory.
A different strategy is used here: the representation of g is chosen

infinite dimensional from the beginning; it is constructed in the most

convenient way for to perform the classical limit in the spirit of Hepp [6],
i. e. by making use of the bosonic creation and annihilation operators a +
and a.

Consider to this end the Jordan-Schwinger transformation [5]: let X be
an m x m matrix and let ~m be the Hilbert space corresponding to m
cinematically independent bosons; a bosonic operator L (X) representing
X on ~m is defined by

Let now {T} be a faithful representation of the algebra 9 on a

m-dimensional vector space V m’
{ L (T) } constitutes a representation of g on ~ because
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353CLASSICAL LIMIT OF A QUANTUM PARTICLE

It is obvious that {L(T)} is a reducible representation of 9 and that it

contains a lot of the finite dimensional irreducible representations of g.
To see this it suffices to note that ~ may be rewritten as the direct sum
of the eigenspaces of a quantum m-dimensional oscillator [see (4.3)]; by
construction { L(T) } leaves each of these spaces invariant and therefore
the restriction of {L(T)} to any of them defines a finite dimensional

representation which is either irreducible or completely reducible. To say
precisely which irreducible representations of g are contained in {L(T)}
further information about { T} is needed. For example consider the follow-
ing realization of a basis of (complex) su (2):

the previous construction yields an infinite dimensional representation
which contains each finite dimensional irreducible representation exactly
once [5].
Now it is possible to write the quantum Hamiltonian of a particle

moving in an external Yang-Mills field; to this end consider the following
potentials:

The minimal coupling prescription leads to the following Hamilton opera-
tor (the mass of the particle is taken equal to one):

where

means the representation of the potentials A on the space $~.
The operators q and p are the usual position and momentum operators.

The potentials Aj account for the "magnetic" part of the Yang-Mills
interaction while A o is responsible for the "electric" part. V describes an
interaction that does not involve the internal degrees of freedom of the
particle.
H operates on a Hilbert space of the form ,~S 0 ~. ~s corresponds to

the spatial degrees of freedom of the particle while ~m to the internal
ones.

Clearly q and p operate on s while a and a+ operate on m. The last
two operators should not be confused with

Vol. 51, n° 4-1989.



354 U. MOSCHELLA

The only non zero commutators are

Let z represent any of the operators q, p, a, a + . In order to perform the
classical limit one needs a representation of the canonical commutation
rules symmetric with respect to h; to this end define [6]

The following hamiltonian is obtained from ( 1. 5) by a unitary scale
transformation :

Let now çj, 1t j, ~k and 9~ be the classical variables corresponding to the
operators akh, and where the star means complex conjugation;
the symbol ç will be adopted to denote any of these classical variables.
Bohr’s correspondence principle implies that has the same form of

the classical Hamiltonian H (Q and so it follows that:

(here the correspondence principle has been so to say inverted).
The only nonzero Poisson’s brackets are:

The hamilton’s equations easily follow:

Equations analogous to these may be found in [7].
The definition of the classical isospin variable is given by

The equation of motion that one gets for the isospin variable are exactly
those given by Wong:

It has been displayed a richer structure underlying the Yang-Mills theory
(the variables 9); this structure will be explicitly used to perform the
classical limit in a way that avoids the use of the group-theoretical
properties that are so crucial in the previous treatments [3]. Clearly more
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355CLASSICAL LIMIT OF A QUANTUM PARTICLE

degrees of freedom have been used than those that are necessary to

describe the classical isospin; however it is possible to recover in a simple
way the minimal phase spaces where r is a certain coadjoint
orbit of the group G: indeed one may construct a map
l: 

(g* is the dual of the algebra g) whose definition is the following:

{ is the dual of the previously chosen basis of g. It is easy to check
that the Poisson brackets defined by ( 1. 14) are nothing but the pull-back

_ through 7 of the well-known Lie-Poisson brackets on g* [8]. _ The explicit
expression of the Hamiltonian then implies that it is possible to limit
oneself to consider as dynamical variables 03BE, 03C0 and (9). The construction
of Kirillov [9] finally gives R 2 n x r~ as the phase space in which one can
describe the classical system. In particular one derives directly equations
( 1.19) without having to pass through ( 1.17), which however remains
hidden in this way; this does not seem to be an advantage because the
use of the redundant degrees of freedom described by the 9 variables
greatly simplifies the classical limit procedure and may be useful in other
problems related to this.

It is time to explain briefly what is the meaning of the words "classical
limit" ( [3], [4], [6], [ 10], [ 11 ], [ 12]) . It is commonly said that classical
mechanics is the limit of quantum mechanics when h tends to zero but a
concrete mathematical definition of the limit procedure is needed. The
most significant one is the following: let Ah a h-dependent quantum
operator representing a certain observable whose classical expression is
the phase space function ~(Q. What one has to do is to select certain
quantum states ( h, ~ ~ depending on h such that

where the following definitions have been adopted:

The symbol  1 &#x3E; denotes as usual the Hilbert space scalar product.
The only approrpiate quantum states for doing this are known as

"coherent states", and are the states that minimize the uncertainity rela-
tions ( [ 13], [ 14]) .

Weyl’s operators are crucial in the construction of the coherent states;
their definition is the following:

Vol. 51, n° 4-1989.



356 U. MOSCHELLA

with 03C0q=03C0jqj etc. It is well known that

The coherent states that will be used in the following are given by

with 0/ any normalized quantum state. a

Let s -+ ss be a solution of the canonical equations with given initial
conditions. The quantum time evolution operator is given by

and the Heisenberg operators are

The mean value of the operator z~h (t, s) on the state I h, ~S ~ is then expected
to converge to the solution of the canonical equations with the given
initial conditions. Indeed one has that:

where

The operator is the main mathematical object of this paper. It

describes the evolution of the quantum fluctuations around the classical

phase orbit. It will be shown that:

where

The solution of the operator equations ( 1. 33), ( 1. 34) can be written

Define

The operator Rh (r) is a remainder of order h1~2.

Annales de l’Institut Henri Poincare - Physique " théorique "
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If the potentials are smooth enough it will happen that Rh --+&#x3E; 0 when
h --+&#x3E; 0. Indeed if one defines

then it follows that

and from ( 1. 28) and ( 1. 29) one obtains

The reader is referred to [6] and [10] for further material about the classical
limit. The main results of this paper are concerning the self adj ointness of
the operator ( 1.11) and the properties of the unitary group of operators
( 1. 32) . In particular the limit ( 1. 40) will be rigorously proved while the
proofs of ( 1. 41) and ( 1. 42) will not be reproduced here.

2. NOTATIONS AND GENERAL RESULTS

Let ~ be a Hilbert space with inner product ~ I ~ and norm II 
Let A be a linear operator in ~ and denote its domain with D (A).
If A is closable A denotes its closure. If A is densely defined A + denotes

the adjoint of A.
The set of bounded operators from ~ to another Hilbert space §’ is

denoted by the symbol B ($, §’) and the corresponding operator norm is
denoted by II 

Let A be a self-adjoint and positive operator; it is possible to associate
a scale of Hilbert spaces to A ( [ 15], [ 16], [ 17]) :

let t be a real number; one defines with the help of the spectral theorem
the operator

The Hilbert space

is defined by setting

If 03C41 ~ 03C42 then c densely.

Vol. 51, n° 4-1989.
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Consider now the Hilbert space and define formally the operators

J

These operators are self-adj oint on the domains

The operators b~ and b~ defined in ( 1. 7) are closed operators defined on
the domain n 

Fix the index j and define

This operator is self-adjoint and positive on the domain

Finally define

These operators are self-adjoint and positive on the domains

The scales of Hilbert spaces associated * with 1 and * N are - denoted *

Some remarkable properties of these scales are listed here:

with z any of the q, p, b, b + .

In the introduction all the interesting quantities were written in a mixed
form by making use of the operators position and momentum to describe
the spatial degrees of freedom of the particle and of the operators creation

Annales de /’Institut Henri Poincaré - Physique theorique
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and annihilation to describe the internal ones. Define now the (n + m)-
vector operators q and p by

with analogous definitions for their classical counterparts.
Everything can now be rephrased making use of these generalized

position and momentum operators q and p; analogously one could use
generalized creation and annihilation operators b and ’6+. The scales of
spaces that will be used in the following are those associated with ||, Iii (
and X; these operators are those of (2.11) (2 . 12) (2 . 13) with p = n + m.
Some well known facts about the Weyl operators are now listed; note

that ( 1. 23) is equivalent to the following expressions:

THEOREM 2. 1:

C (~, ~c) is L2-strongly continuous in the 2 n + 2 m arguments jointly (2 . 25)
C (~, ~) belongs to each of the sets B (XT, XT), B QT), B Pt);
besides it is jointly strongly continuous

on the spaces QT, Pt, Xt for each real i. (2. 26)
If 03C8 E X 1/2, and the function t ~ St is differentiable (in some real interval

I) then 
.

3. THE CLASSICAL LIMIT OF THE UNITARY GROUP Wh(t. s.)

Consider the canonical equations ( 1. 15), ( 1. 16), ( 1. 17). There exists a
local solution of these equations if the potentials fulfil the usual Lipschitz

Vol. 51, n° 4-1989.



360 U. MOSCHELLA

conditions. This solution is defined on a real interval I and is denoted by
çt (in the following the dependence of the solution of the canonical

equations on the initial conditions is left implicit).
HYPOTHESES 3. 1 (on the potentials).
For each t~I it is given a positive number pt; it is required that

(b) The potentials ( . , t) and V ( . , t)
are differentiable twice in the set Ut = S (çt, pj, (3 . 2)

with 

(c) The functions V,

are continuous on the set Uj ( 3 . 3)

with I = closure of { U Ut{t}}.
tEl

It is easy to verify that the hypotheses 3.1 are equivalent to the

hypotheses 3. 1’ in the important case in which the potentials do not
depend explicitely on time:

HYPOTHESES 3. 1’.

(a) For each t~I it is given a positive number rt
such that the potentials and V ( . ) belong

to ~2 (S (~t, rt)), the class of twice continuously differentiable
functions of the set S (çt, rt) ( 3 . 4)

The reason for these hypotheses is that in order to prove the limit ( 1. 38)
it will be necessary to make a Taylor’s expansion of the potentials up to
the second order in a neighborhood of the classical ç-orbit. Define now

T)(a) is the operator of the dilations and is continuous.

The following hypotheses will ensure the existence of the quantum theory:

HYPOTHESES 3. 2 (on the operators).
It is given a family of self-adjoint operators

depending on the parameter h denoted with {Hh (zh, &#x3E; 0}. (3 . 7)
It is required that:

Annales de l’Institut Henri Poincare - Physique theorique
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(b) For each one has that

(c) There exists a L2-strongly continuous group of L2-unitary operators
denoted with Uh (t, s) such that

Let Wh (t, s) defined as in ( 1. 32) with t and s belonging to I and Uh (t, s)
defined in (3 .10) with /!&#x3E;0. It holds the following

THEOREM 3 . 3. - Wh (t, s) is a L 2-strongly continuous group ofL 2-unitary
operators.

Proof. - This is easily obtained from theorem 2.1, the continuity of
(t, s) and the hypothesis (3 .10). ##
Consider now the operator Kh (s) of ( 1. 36). Define its domain as follows:

On D (Kh (s)) one has:

The following definitions have been adopted:

LEMMA 3.4. - with s E I, then

Proof. - From theorem 2. 1 it follows that

The identity

Vol. 51, n° 4-1989.
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implies that

From this one easily gets the result by exploiting the hypotheses 3. 2 and
(2.27). ##

Consider now the operator H2 (s) introduced in ( 1. 38). Its explicit
expression is the following:

with

This is not an unworkable object; indeed it is simply a quadratic operator
in q, p, a and a+. Apart from details the situation is exactly the same as
in [12]; so it holds the following

THEOREM 3 . 5:

(a) For each real i, t E I, H2 (t) E B 1, Xt) (3 . 22)
(b) H2 (t) is essentialy self-adjoint on Xt, V i E [1, 00] (3 . 23)

Annales de I’Institut Henri Poincare - Physique theorique
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(c) It exists a L2-strongly continuous group of L2-unitary operators
called U2 (t, s) with t, s E I, such that

(d) For each compact K c I, it exists a constant 03B103C4, K such that

(e) U2 (t, s) is jointly strongly continuous in X ~
with respect to t and s, V t E R. (3 . 26)

(1) belong to ’ Xi; then

Proof. - S ee [ 10], theorems 4 . 2, 4 . 3. # # 1

The following £ is the fundamental theorem of this section:

THEOREM 3. 6. - Let K c I be a compact; if the , hypotheses 3. 1 and ,
3. 2 are verified then it follows that

uniformly for t and ’ s belonging to K.

Proof. - (3 .1) implies that pK&#x3E;0. Choose p such that define ’

Let x a cut-off function whose definition and properties are listed after
the end of the proof. If 03C8 ~ D1 one has:

The estimation of the first addendum gives:

because of the unitariety of s), the property (2.14) and the definition
of the cut-off x.

Vol. 51,n° 4-1989.
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The second addendum is majorized thanks to (3. 25):

Now the estimation of the third term in (3. 30) has to be faced; observe
that

It is possible to use the lemma 3. 4:

From ( 3 . 12) and ( 3 . 20) one gets:

The following definitions have been adopted:

Annales de l’lnstitut Henri Poincare - Physique ’ theorique ’
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The strong continuity of the group and the expression (3 . 35)
allow one to write

and so it follows that:

Now the expression (3.35) must be used to estimate the norm in the
integral. The prototypes of the terms contained in this estimate are the
following: from the first term one gets the majorization:

from the second term one obtains:

The estimate of the last term gives

where the hypotheses 3. 2 have been used; from the compactness of ÛK it
follows that it exists a function f(p) such that /(p) -~ 0 when p ~ 0 + and
for which one has:

The procedure for the estimate of the other terms is the same as in the
previous three; note that it is necessary to use ~03C8~2 to control the terms
of the expression (3. 35) that are quartic in the operators z’s. From these
estimates, the density of the set D 1 in L2 and the unitarity of U2 (t, s) and
Wh (t, s), the result may be finally obtained.

Vol. 51, n° 4-1989.
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Appendix
Properties of cut-off functions

The function x used during the previous proof has the following defini-
tion :

Let x ERn; define

It follows that

4. SELF-ADJOINTNESS OF THE HAMILTONIAN OPERATOR

Consider the formal Hamiltonian

defined on some dense set of

[There is no difference in using this space instead of L2 ( Rn + m) because of
the natural isomorphism connecting these two spaces.]

There are some well known facts that allow a great simplification in
the study of the problem of the self-adjointness of the operator (4.1) on
the space (4. 2). Indeed one has that:

where Kp is the eigenspace of a quantum m-dimensional oscillator relative
to the eigenvalue p.
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as follows from the antihermiticity of the matrices T.

These observations allow one to decompose the present problem in two
successive steps: the first one is the study of the self-adjointness of (4.1)
on the space L 2 (R n, Kp).

This is essentialy the same as in the case of the Schrodinger operator
with electromagnetic potential.

Call H 1 the restriction of Hi to some subset of L~ ( Rn, Kp).
THEOREM 4.1. - If with 

then Hp1 is essentialy self-adjoint on 
Proof. - The proof of this theorem follows the same procedures of

[18]. The modifications that are necessary are based on the observations

(4. 3), (4.4), (4. 5) and (4. 6). ~#
Consider now the operator

where Vi O.

THEOREM 4 . 2. - S uppose that

with b  1

J.l =1, ... , dim g, c 1 arbitrarily small.
If the hypotheses of theorem 4. 1 are true then Hp is essentialy self-adjoint

on ~~ (Rn, Kp).
Proof. - The proof is obtained from lemma 6 of [14] and from the

Kato-Rellich theorem [ 16]. ~~
In the second step the complete Hamilton’s operator is reconstructed;

consider indeed the following operator:

defined on the space

The action of (4. 9) on (4.10) is given by

Vol. 51, n° 4-1989.
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In this second * and * conclusive ’ remark it is shown how to applicate ’ the
results that have ’ been obtained.

LEMMA 5 . 1. - Let f : R n -+ C a ’ measurable and bounded function which
is continuous in S (ç, p), pER, ç ERn. Then

Proof - Write the identity

Then one easily gets the proof by noting that q~h ~ 0 for h ~ 0 strongly
in the resolvent sense and that

THEOREM 5 . 2. - Let f : Rn -~ C a , measurable bounded ’ function, which is
continuous in a ’ neighborhood of (~t)t e I; if the hypotheses 3 . 1 and ’ 3 . 2 are ’

true then it follows that

With t, s E I, normalized to ’ 1.

Proof. - Observe " that ( 5 . 6) is equal to

and therefore equal to

_ Having in mind ( 5 . 5) and the theorem 3 . 6 one can conclude that
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