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The large-scale limit of Dyson’s hierarchical
vector-valued model at low temperatures.

The non-Gaussian case

PART II: DESCRIPTION

OF THE LARGE-SCALE LIMIT

P. M. BLEHER P. MAJOR

Poincaré,

Vol. 49, n° 1, 1988 Physique , théorique ,

1. INTRODUCTION

In this paper we investigate the large-scale limit of the equilibrium state
of Dyson’s hierarchical vector valued p dimensional, /? &#x3E; 2, model with
parameter c, 1  c  ~/2, at low temperatures. More precisely, in Theo-
rem 1 we construct a probability measure = (T) on (Rp)Z with Z = { 1,2,...}
which is an equilibrium state of the model. In Theorem 2 we determine
the large-scale limit of a ~u distributed random field together with the
right scaling, i. e. we prove that if
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88 P. M. BLEHER AND P. MAJOR

is distributed random field then the finite dimensional distributions
of the random fields

tend to those of a limit random field, and describe the finite dimensional
distributions of this limit field.
The distributions of the fields Rn03C3 defined in (1.1)-(1.3) are called the

renormalizations of the distribution  of the underlying field 03C3. More

precisely, they are its renormalization with p arameters a = , log 
c . 

in

the first coordinate and a = 1 - - - in the coordinates s = 2, ..., p,
because we multiplied by 2 - n(X in ( 1. 2), by 2 - n(X in ( 1. 3), and the number
of summands is 2" in these formulas. If the finite dimensional distributions

of the fields Rn03C3 converge to those of a limit field then this limit field, more

precisely its distribution, is called the large-scale limit of the measure ~u.
Given some 0, and positive integer N let the Gibbs measure

/1~ = t) be defined on with density function

where

is the grand partition function, and p(x, t) is defined in (1.3) of Part I.

denote the density function of the average 2 - N E ~ N 16( j) of the /1~
distributed random vector (~(1), ..., 6(2n)). Put /1N = /1~,

in the case h = 0.
In Part I we have described the asymptotic behaviour of the above defined

Annales de l’Institut Henri Poincare - Physique theorique



89LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART II

density function The result of Theorem A formulated below are
contained in Theorems 1, 2 and Lemma 13 of Part I. Let us consider the
integral equation

x, u~R1, v~Rp-1 ,

where v2 denotes scalar product. In Part I we have proved that equation (1. 5)
has a unique non-trivial (i. e. not identically zero) solution in the class of

functions A =  oo if t  to(g) &#x3E; 0 . In this

work we consider this function as the solution of equation (1.5). It is a
density function which is positive for all x. Since the function t)
depends on x only through x ~ we can define a function = t, T),
zeRB such that for all Now we formulate the
following.

THEOREM A. - I f 1  c  ~/2 then there exist some thresholds
To = To(c) &#x3E; 0 such that for all 0  T  To, 0  t  to, to = to( c), (t is the
parameter of p(x, t) in formula (1 .3) of Part I) the following relations hold :

_ There are some M = M(c, T, t) &#x3E; 0 and no = T, t) &#x3E; 0 such that
&#x3E; no

for - qnc-"  x ~ - M  with some B= B(c, T, t) &#x3E; 0, ri = ~(c, T, t) &#x3E; 0,
and the error term rn(x) satisfies the inequality

with some K &#x3E; 0 and 0  q  1 depending on c, T and t. In formula (1. .6) g(x)
is the solution o the equation (1.5), a - o 2 and a - log 2 .2 - c lo~ c

with some ~ &#x3E; 0, K &#x3E; 0 and L &#x3E; 1 which depend on c, T and t. The , solution
of the equation (1.6) satisfies the inequality

with some C &#x3E; 0, A &#x3E; 0. We have

Vol. 49, n° 1-1988.



90 P. M. BLEHER AND P. MAJOR

with some C 1 &#x3E; 0, c2 &#x3E; 0 depending on c, T and t. We also have

with some ~ T) I s const., and such that R( t, T) --&#x3E; 0 and T -+ 0.

Given some integers N ~ k ~ 0 we define the probability measure hk,N
as the projection of the measure /1~ to the first 2k coordinates, i. e. is
a probability measure on and for all measurable

Our first result is the following £

THEOREM 1. - Let the conditions of T heorem A be satisfied. Consider
an arbitrary sequence of real numbers hN, N = 0,1, 2, ... such that

2 M
with some oo &#x3E; D &#x3E; 

- -, 
where M and T are the same as in Theorem A.

Then the measures tend to a probability measure  = T, c) on (Rp)Z.
More precisely, for all k &#x3E;_ 0 the measures converge to the projection
of  to thefirst 2k coordinates in variational metric as N ~ ~. The measure ,u
does not depend on the choice of sequences hN .
Then we prove the following

THEOREM 2. - 6(n) _ (6~ 1 ~(n), ... , ~~ p~(n)) E Rp, n E Z } be a ~u
distributed random field with the distribution  defined in Theorem 1. Then
the finite dimensional distributions of the random fields Rn03C3 defined in (1.1 ),
(1. .2), (1. .3) tend to those of a randomfield Y = (Y(n) _ (Y~1 ~(n), ..., Rp,
n E Z). For all k &#x3E;_ 0 the density function hk(xl, ..., x2k), x~ =(x~l~, ..., x~p~) E Rp,
of the random vector (Y(l), ... , Y(2k)) is given b y the formula

where the function g is defined in (1.5), the constant M is the same as in
Theorem A, and C(k) is an appropriate norming constant.

In Appendix E we prove the following

Annales de l’Institut Henri Poincare - Physique theorique



91LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART II

THEOREM B. - The measure ~ _ ~u(T, t, c) constructed in T heorem 1
Gibbs state with Hamiltonian H and free measure v defined in for-

mulas ~7.7~-~7.3~ of Part I at temperature T.

Theorem B is very plausible. Its proof depends on a rather standard
limiting procedure in statistical physics literature. Nevertheless, we have
found no result which could have been directly applied in our case. We
present the proof of Theorem B in Appendix E.

Let us discuss the role of condition (1.11) in Theorem 1. The lower bound

is essential in Theorem 1, it is needed to get a pure state with magnetization
in the direction ~==(1,0,..., 0) for the limit measure ~u. If it were violated
we would get a Gibbs state with Hamiltonian jf again for the limit, but
this Gibbs state would be a mixture of Gibbs states with different directions
of magnetization, and it is not natural to renormalize such a mixture.
On the other hand the upper bound for hN in (1.11) seems not to be essential.
We believe that the same limit measure /1 would be obtained for any
sequence hN, hN &#x3E; 0 satisfying ( 1.11’) or with the help of the double
limiting procedure h = limN~~ hN, h &#x3E; 0,  = This second

way was chosen to construct the equilibrium state in the case ~/2  c  2
in paper [J]. However, to prove these statements we would need a large
deviation result on the behaviour which is stronger than Theo-
rem A. Since we are not able to prove such a result we have proved Theo-
rem 1 under the condition (1.11), but we think that this is not an essential
restriction.

In formula ( 1.12) we have a quadratic form inside the exponent. This
means that the random variables l = 2, ..., ~ appearing in Theo-
rem 2 are jointly Gaussian. We describe the structure of this limit field
in more detail. The random ~=2,...,/?, and

{ + _ S- 2 ~Z} tend to independent random fields
as n -+ oo . The limit of the random is the (dis-
regarding a multiplying factor) unique Gaussian self-similar field with

self similarity p arameter 1 - 
1 log c 

whose d.. b.... d

all permutations of the index set Z which preserves the hierarchical dis-

tance d(i, 7). The random fields + 1 2 ~p- s 2 e Z } tend
to a random field consisting of independent random variables with the

Vol. 49, n° 1-1988.



92 P. M. BLEHER AND P. MAJOR

density function 4 - c x This is a quadratic functional ofy 
(4 - c)T B(2-c)T / 

q

a Gaussian field (see Lemma 12 in Part I).
The above result can also be interpreted in the following way : Given a ~u

distributed random field ~(n), nEZ, define the absolute value of the appropria-
tely normalized partial sums 1- M),
j E Z. Then the random fields = 2, ..., p, and the random fields
! Rn tend in distribution to independent random fields. The limit
of = 2, ..., p is Gaussian, and the limit of RJ consists of

independent random variables. This follows immediately from the above
description of the limit behaviour of the fields Rn~ together with the obser-

vation that |Rn|03C3(j)-(Rn03C3(1)(j)+1 2M03A3ps=2 Rn03C3(s)(j)2) ~ 0 stochasti-

cally ~.
We believe that the above property is a special case of a more general

law. Let us remark that an analogous statement also holds in the case

~/2  c  2, but this is a degenerate case. It follows from the results of [5]
that ~/2  c  2 distributed random field
with the equilibrium state  constructed in [5] ] then the random fields

have the same limit as the random fields

as n --+ oo, since in this case 6( j) - ==&#x3E; 0. This limit consists

of independent (Gaussian) random variables which is also independent
of the limit of the random fields s = 2, ... , p.
The method of this paper is very similar to that of [5]. The two main

steps in the proofs consist of the description of the limit behaviour of the
function done in Part I, and a good asymptotic formula for the Radon-

duhN
Nikodym derivatives ~n’ N . Then an appropriate limiting procedure supplies

d n
the proof of Theorems 1 and 2. The investigation of the Radon-Nikodym
derivatives can be considered as an adaptation of the method of [5] ] to
the present case. The main difference between the two cases is that now 

is not asymptotically Gaussian. But although the Radon-Nikodym deri-
du

vative depends on its asymptotic behaviour does not. As we
dlun

Annales de l’Institut Henri Poincaré - Physique theorique



93LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART II

shall see, in the investigation of the asymptotic behaviour of the above
Radon-Nikodym derivative we only need some estimates on the tail
behaviour but not its explicit form. This is the reason why we can
adapt the method of [5 ].

2. ON THE BASIC ESTIMATES NEEDED IN THE PROOF.
REDUCTION TO INTEGRAL EQUATIONS

We need a good asymptotic formula for the Radon-Nikodym deri-

vative . It can be expressed exactly with the help of the following

formulas :

where K(n, N, hN) are appropriate norming factors, xy denotes scalar
product, and /?~ is the density function appearing in Theorem A. For scalar
valued models formulas (2 .1)-(2 . 3’) are proved in the main formula in [4 ].
The proof for the vector valued case is the same, but since the proof in [4]
is a bit complicated we present it in Appendix C.

Let us define the sequences gn = gn(N, hN) and An = hN) by the
recursive relations

Vol. 49, n° 1-1988.



94 P. M. BLEHER AND P. MAJOR 
’

where M and T are the same as in Theorem A. In Section 7 of [6] we have
claimed that

and have given a heuristic explanation. In the following Proposition 1

we formulate this result in a more precise form. For the sake of simpler
notation we assume that Rp = R2. From now on C, C1, K, L, etc. denote

appropriate constants. The same letter may denote different constants in
different formulas. Let us define the domains

Clearly Q~ = R2. Now we formulate the following

PROPOSITION 1. - For all q, c-°°2  q  1, there is some n° = M,
c, D, q) such that if (1.11 ) holds and N 2 n 2 n° then the Radon-Nikodym
derivative fn(x) = appearing in (2.1) satisfies the following relations:

a) I n the domain 

with

, , I n the domain Q~

c) 1 n the domain Q~

where the numbers An and g" are defined in (2 . 4) - (2 . 5’), and Ln = Ln(N, hN)
is an appropriate norming constant.

We also prove the following result which is a slight modification of
Lemma 1 in [5 ].

LEMMA 1. - Let us choose some integer Nand hN &#x3E; 0. Define the

sequences gn and An, 0 s n s N,by formulas (2.4)-(2.5’) and put gn=c-ngn,
An = C - "An . I_ f ’ hN satisfies relation ( 1.11 ) then gN-1 ~ ... ? g0 ~ g

- - 
- - 2 M - 2-c

-and 0 = AN -  AN-1 - ...  Ao  A with g- = 2-c T , 
and A = cT 

.

Annales de l’Institut Henri Poincare - Physique theorique
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I f the relations N &#x3E; No and N &#x3E; nB also hold with som_e app_ropriate

Proposition 1 together with the characterization of the asymptotic
behaviour of the sequences gn and An made in Lemma 1 supplies a good
asymptotic formula for the Radon-Nikodym derivative fn. Here Q~ is
the typical region, where we have a good asymptotic formula, in SZn and Q~
we have only given an upper bound. Actually we are interested in the
density function

of the measure The tail behaviour of the functions and fn(x)
together show that is contained in SZn with a negligible small

probability. It is contained in SZn also with a small probability, since
in this domain f"(x) is small. To see it, let us observe that by Lemma 1

hence the term - g" - An in the exponent of (2 . 8), makes this
2M

upper bound (2.8) sufficiently small for our purposes.
In Section 7 of [6] we have given a heuristic argument for formula (2 . 7).

The following remark explains the content of the estimate (2. 8).

REMARK. If aC E Q~ then

hence

The above calculation shows that on the boundary of the domains Q~
and S2n the right-hand side of formulas (2.7) and (2.8) have the same
magnitude. The estimate (2 . 8) expresses the fact that this is the worst region,
where the weakest upper bound can be given for in 
With the help of Proposition 1, Lemma 1 and Theorem A we are able to

carry out a limiting procedure which supplies Theorem 1. Moreover, it

yields the following Proposition 2. Let n denote the projection of the

Vol. 49, n° 1-1988.
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measure  constructed in Theorem 1 to the first 2" coordinates, i. e. let n
be the measure on (R2)2n defined by the relation x (R 2)00)
for all measurable sets A ci (R2)2n. The following result holds true :

PROPOSITION 2. - For c - ° ~ 2  q  1, there is some no = T,
M, q) such that for no the measure n is absolute continuous with
respect to the measure and its Radon-Nikodym derivative satisfies the
relations : .’

2n

and

with

b) For x E Q~

wi h - - 2 2014, A = 20142014 and an norming constant L . Thist g 
22014c T cT 

pp p g

norming constant satisfies the relation

Theorem 2 can be deduced from Proposition 2 and Theorem A.
Let us finally remark that the function = clearly satisfies

Proposition 1 for n = N, since in this case = LN exp { gN(x(1)-M) }.
Hence Proposition 1 follows from Lemma 1 and the following

PROPOSITION F. 2014 For all q, c-°~2  ?  1, there exist some

n0 = n°(T, M, c, D, q) such &#x3E;_ n° the function /M satisfies the fol-

lowing relations with some gcn+1gn+1~Dcn+1,0~An+1~Acn+1,g=2 2-c M T,

Annales de l’Institut Henri Poincaré - Physique theorique
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a) 1

b) E Q; + 1

c) For 1

then the function Snf(x) defined by (2 . 3’) satisfies, with the constants gn
and ’ An defined b y ’ and (2.5’) with the ’ above gn + 1 and An+ 1, the
following £ relations with some ’ appropriate norming £ constant L~,:

a) In the domain Q~

with

b) In the domain S2n

~

c) 7~ the domain Q~

3. THE PROOF OF LEMMA 1

The proof is a modification of that given for Lemma 1 in [5]. Simple

calculation shows that = (c 2)N-n (gN - g). The statements of

Lemma 1 about the sequence gn follow from this identity. To investigate An
let us introduce the function

Clearly, An = On the other hand T(A, g) = A, and some

Vol. 49, n° 1-1988.



98 P. M. BLEHER AND P. MAJOR

calculation shows that T has the following monotonicity properties :
T(x, g)  T(x, g’) if 0  x  A and g &#x3E; g’ &#x3E; g ; and T (x’, g) &#x3E; T(x, g)
if 0  x  x’  A and g &#x3E; g. (These properties follow e. g. from the relations

and

and the fact that T(x, g) has no singularity in the domain f (x, g), 0  x  A,
g &#x3E; ~}.) We have 0   A, since .

Then we get by induction that 0 An+ 1  An A implies that 0 An  A.

Indeed, A,-1 = T(A,g)=A, and 
as we have claimed.
The conditions N &#x3E; No and N with sufficiently large No and B

imply that gl  10-n for all 0  l  and A - 5 - n  A*  A,
where A* is the smaller solution of the equation T(x, g*) = x withg* = 

Indeed, the last equation is a small perturbation of the equation T(x, g) = x,

which has two solutions Ai = A and A2 = 2014201420142014 &#x3E; A. Hence the solu-1 2 
(2 - c)T

tions of the equation T(x, g*) = x are very close to Al and A2. We claim
that the monotonicity properties of the sequences gn and An and the func-
tion T(x, g) imply that A &#x3E; where T~ denotes the k-th
iteration of the function T(x, g*) with fixed g* in the variable x. Indeed,

 A, and we get by induction that for all &#x3E;0 T~(0),
which implies the required statement with l = n.

To complete the proof of Lemma 1 it is enough to show that T~(0)
tends exponentially fast in n to the smaller solution A* of the equation

= x. Since T(x, g*) is a convex increasing function (in the variable x)

it is enough to show that ~T(x, g*) ~x ~ a  1 for x = A* if (A*, * is in

a small neighbourhood of the point (A, g). But this follows from the conti-

nUIty of the function 20142014’2014, and the fact that its value in the point (A, ’g)
ax

equal  1. Lemma 1 is proved.

l’Institut Henri Poincaré - Physique theorique
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4. SOME PREPARATORY REMARKS
TO THE PROOF OF PROPOSITION 1’

We shall prove the following estimates under the conditions of Propo-
sition 1’.

Put

Then we have with some appropriate B’ = ~’(c), B’ &#x3E; 0, and the same q
as in Proposition 1’ : In the domain x~03A91n

with

where K does not depend on n,

In the domain x E Q~

In the domain x E Q3n

We show that these estimates imply Proposition 1’. Indeed, for 

Vol. 49, n° 1-1988.



100 P. M. BLEHER AND P. MAJOR

with

suI? I I s sup I En(x)I I + sup I En(x) I + 2 exp ( - E’c°.Zn) + 2 exp _ _ 1 Cnl2x~03A91n x~03A91n x~03A91n 6

(Here we have exploited that et  1 + 2 t ~ I for small t.) Hence

sup|~n(x) I s q "+ 1 + + 2 ex - p( -~’c0.2n) + 2 exp - 1 6 cn/2) S g’x~03A91n

if c - ° ~ 2  q  1, and n :2:: n° (q, D, E’).
For x E Q; we have analogously .

as we have claimed in Proposition 1’. For x E Q~ (4 . 7) contains the needed
estimate.
The above estimates will be proved in the next Section. In this Section

we prove two lemmas which we need during the proof. Put

with

where ’ xy denotes scalar product.

LEMMA 2. - There is some ’ ~o = Bo(c) and ’ no = no(T, M, D, c, B) such
no, 0  B  I  gn+ 1  and ’

then

and

with gn = - + cn T M.

Annales de l’Institut Henri Poincare - Physique theorique
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LEMMA 3. - T here is some no = no(T, M, D, c) such that if no

then

with

and , some , K = K(T, M, D, c) &#x3E; 0.

Proof of Lemma ’ 2.

Part a). We have

Clearly, max|y|=rxy is taken in the point y = and it equals |x| r.

Similarly + y)2 - + r)2. Hence

Let us split up the integral into two parts, and . . Put
Jo M

It follows from ( 1.10) that

and from ( 1. 8), ( 1. 7) and ( 1. 9) that

with some appropriate C1 &#x3E; 0, ~2 &#x3E; 0 and ~3 &#x3E; 0. (Relations (1.7) and
( 1. 9) are needed in the domain 0  ~  r~n 1 ~"c - n.)

M

First we estimate the integral . For 0 ~ r  M we have
Jo

Vol. 49, n° 1-1988.



102 P. M. BLEHER AND P. MAJOR

Hence (4 .11 ) and (4.11’) imply that

Simple calculation yields the identity

Then, since C4M  we get that

Let us estimate ... dr. We make the change of variables r = M + c - nt,

introduce = c-npn(M + c-nt), gn = c-ngn and gn+1 - 
Since

Henri Poincaré - Physique theorique
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hence

with

Relation (4.II") implies that

Thus

Since +, gn+ 1 - C7 &#x3E; - and C6  Cnl2 for large n hence2T 8M - 6 g , ce

This inequality together with (4.12) imply that

as we have claimed.

Vol. 49, n° 1-1988.



104 P. M. BLEHER AND P. MAJOR

Part b). Let us introduce

and

Clearly, = + and by (4.10)

Moreover, similarly to part a), we get by using (4.13) and the observation

that

and by (4.13) and (4 .11 "), similarly to (4.14), (4.14’)

Annales de l’Institut Henri Poincaré - Physique théorique
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106 P. M. BLEHER AND P. MAJOR

This inequality together with (4 .17) imply that

2M 2M 2M 
-

if I S hence the last inequality implies that under the
conditions of Part b)

as we have claimed.

Proof of Lemma 3.

Since

hence

cn cn cn cn
Writing -M2+ we get,
that T T T T

The change of variables r = M + and the introduction 

yields that
~

l’Institut Henri Poincaré - Physique theorique
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Since 0  D, and ~ x| - M  relations (4.11’) and (4 .11 ")
imply that for large n

with some K &#x3E; 0 independent of n. Hence

as we have claimed.

5. THE PROOF OF PROPOSITION 1’

In this Section we prove the estimates (4.1)-(4.7) which imply Propo-
sition 1’.

a) The estimation of for 
It follows from (2.15) and (2.15’) that

Hence

with some

Let us rewrite the last expression in polar coordinate system. We get that

with -

Vol. 49, n° 1-1988.



108 P. M. BLEHER AND P. MAJOR

where = r cos 03C6, y(2) = r sin 03C6, - 7r  03C6  7r, y = (y(1), y(2)) and

jc) = 03C6x+y 2~03A91n+1 }. We shall express as an asymptotically

Gaussian integral with respect to For this aim we give some bounds,

on x(1), x(2), );o and y(2) if x~03A91n and We have

The second relation in (5.3) holds, since

Similarly,ifx+y~03A91n+1 then |x(2)+y(2) 2|c-0.4n, and 0 2c-0.4n.

Hence o

and

if and x+y~03A91n+1. In particular, (5.4") implies that

Furthermore,! 2 ! sin (~ =- ~ y~ ~ = 0(c’~")

and

Annales de l’Institut Henri Poincare - Physique ’ theorique "
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if ~p E x). Hence

Moreover, since + 0(c ~ ~"),

and

in our case (observe that gn+1 ~ Dcn+ 1 and An + 1  1 ), hence we make
an error of order by substituting x(1) and r by M in the last inte-

or equivalently

with

Vol. 49, n° 1-1988.



110 P. M. BLEHER AND P. MAJOR

By (2. 5’) we get from this relation that

Since

1 g A c(4 - c) ..with K = + c - c - - &#x3E; 0 relation (5 . 6) implies that2T 4M 4 4(2 - c)T

Moreover, we claim that

with some appropriate 8 &#x3E; 0. Because of (5.6) and (5. 7) to prove (5.9) it
is enough to show that there is some B = Eo(E) &#x3E; 0 such that

Since  and o &#x3E; 

and we prove (5.10) by showing that

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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if  and But in this case

if Eo &#x3E; 0 and ~ &#x3E; 0 are sufficiently small. We also get with the help of (5 . 3’)
that

if So &#x3E; 0 and B &#x3E; 0 are sufficiently small. The above estimates imply (5.10’)
hence also (5.10). Now we can estimate the term Rela-
tion (5 . 9) yields that Jo

with

with the function f defined in (4.11). On the other hand, by (5 . 8) and (5 . 5)

with
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Let us remark that = depends on x~ 1 ~. We show that this
dependence is very weak. Namely, since

by (4 .11’) and (4 .11 "), and for x~ 1 ~ = M the expression

satisfies the relation

because of (4 .11’), (4 .11 "), the inequality 0  D and the rela-
tion const. &#x3E; 0 for ~ t ~  1 that follows from Theorem A. Hence

Similarly,

The above relations imply that

The last formula together with (5.1) and (5.2) imply (4.1) with

Since - -  const.cn relation (5.11) and the last for-
2T 4M 4 /

mula imply (4.1~).
b) The estimation of for Q;.
We divide Q; to two subsets Q; and Q;, where we apply different argu-

ments. Put

and

Clearly, S2n - S2n . The domain is a slight enlargement of 
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It is not difficult to see by analizing the proof of relation (4.1) that for suffi-
ciently small ~ &#x3E; 0

if with some  q"+ 1 and  Since

the above relation implies that

in this case, what we had to show. For x E S2n we define

and

__ _ 
where V~n(x) is defined in (4 . 8’), and ~ &#x3E; 0 is appropriately chosen. The
function will be bounded with the help of Part b) of Lemma 2,
and similarly to in the case x E Q~. To apply Lemma 2 first
we show that under the conditions of Proposition 1’

For 

hence

and since -~1 2014 &#x3E; 0 hence
2M

This inequality together with the relation
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imply (5.12) for Similarly, for the relation

implies (5 .12), and this relation also holds for x E 1 bY relation (2 .17).

By (5 .12) part b) of Lemma 2 can be applied for 1 2 f (x), and it yields that

Since Ln ~ C - n exp (gn 2M - An)c-0.8n=O(c0.2n)~1 3cn/2, the
last inequality implies that

To estimate first we show that if y~V~n(x) and 
then 

.Y ~ ~ 
2 

n 1

Indeed, in this case (x, y) &#x3E; ! y ~ 2014 and

by (5 . 3). These ’ relations together with the definition of V(x) imply (5.14)
that enables us to estimate ’ similarly to for 
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We get that

with

where = r cos (~ y~2~ = r sin ~ y = ( y~ 1 ~, y~2~) and

Observe that by (5.14) ! r - M  

Let us make the change of variables z = sin (~ in the integral We
- 

( (2)2B1/2 ( ,;(2)2B ~have y(2)=rz, y(1)r(1-r2) =r( 1-2r2)+O(y(2)4), z~2c-0.2n,
hence |y(1) - r(1 - 2014) |~K~2c-0.8n with some K &#x3E; 0 independent ofs.

These relations imply that if ~ E r,,(r, ~c) then

. 

h 
. 

dz 1 
- 0 4 ..with some K &#x3E; O. Since - &#x3E; - and |r - M I  If rjr, x) IS not

~(~ 2

empty, the above inequality together with (5.16) imply that
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and

with

The expression In(r) can be calculated explicitly, and we get that for

with

Hence

Observe that and if x~2n y~V~n(x) and then
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hence (5.17’) implies that

if | r - M|~~c-0.4n. Since An &#x3E; 03B1cn with some a &#x3E; 0 and
2M

~~&#x3E;(1 +~)c~-~ 

if e &#x3E; 0 is chosen sufficiently small. This relation together with (5.18)
imply that

With the help of this inequality, the estimate we have on the functionpn(r)
and (5.17) we can bound the integral in (5.15) from above. We get that

Since  + the last inequality together with (5.13)
imply (4.14) for 
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c) The estimation of for x E Q~ and x E 
We have

It follows from Lemma 3 that for x E 03A92n

By Lemma 1 ~ &#x3E; i. e. ~+1 ~ c~ and
An+ 1. Hence

if 0  E  -1. Since E A c-0.8n&#x3E;~’c0.2n with some appro-2M 
n pp

priate E’(E) &#x3E; 0 we get that

Therefore

This is estimate (4, 5) (with "2 instead of e’). For x E 03A91n
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hence (5.19) implies that for 

/ ~B
and this is relation (4. 2) with 2014 .

B 4/
~) The estimation of for and 

Clearly

- where and V~ are defined in (4.8) and (4.8’). The term is

bounded in (5.13). On the other hand, we claim that there is some Eo = 

such that and x ~ 03A91n u S2n then the set y, 2 E S2n+ 1 n VM
is empty, hence the last integral is zero. We have to show that if

i. e. ~ y| - M I &#x26;C-0.4n and then x+y 2~03A93n+1, i. e.

- c-O.4(n+1) ~ I~I- M ~ c-O.4(n+1).
Estimation from above:

1 + s
if ~ ~ what holds for sufficiently small s.

Estimation from below:

Vol. 49, n° 1-1988.



120 P. M. BLEHER AND P. MAJOR

Hence

if 1 + ~(1 + 1 + Kc-0.4n ~ c-0.4, what we had to show.2 2B 2M/ + - ’

Hence = and (5 .13) implies (4 . 6). To prove (4 . 3) we still
have to remark that for x e S2n

e) The estimation of Snf(x) for 
We get from (5.12) and Part a) of Le’mma 2 that

For -(lxl2 - M2) &#x3E; 
20142014, hence (4.1") implies that

i. e. relation (4. 7) holds, as we have claimed. Proposition 1’ is proved.

6. THE PROOF OF THEOREM 1 AND PROPOSITION 2.

EXISTENCE OF THE THERMODYNAMICAL LIMIT

First we show with the help of Proposition 1, Lemma 1 and Theorem A
that for all q, c - ° ~ 2  q  1, there exist some thresholds no and 

no such that no and N &#x3E; q) then
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with

where

with some appropriate norming constant Ln which satisfies the relation

Indeed, Proposition 1 and Lemma 1 imply (6.1)-(6.4’) with some norming
constant Ln = L"(N, hN). (1~ the domain 52,3, we have divided the cases

and since here we apply that 
It remains to prove (6.5) and to show that Ln can be chosen independently
of N and hN. For this aim we observe that

By applying the change of variables r = M + and by using the func-
tion defined in (4 .11 ) we get that

Relations (4.11’) and (4.II") imply that
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Similarly,

B /

Define the number Tn,

It follows from Theorem A that

Indeed, since the expression in the exponent of (6.8) can be written in
the form

we get (6 . 9) by integrating (6. 8) first by the variable x~2~. Some calculation’
with the help of (6.2) and (6.2’) shows that

Relations (6.6), (6.7), (6.7’) and (6.10) imply that

The last relation implies that relations (6.1)-(6.4’) remain valid if we

choose Ln = and this Ln satisfies (6.5) by (6.9).
We prove Theorem 1 with the help of (6.1)-(6.5). Fix some integer

~ &#x3E; 0, and define for and measurable sets A c (R2)2k the cylin-
drical set A(n) = A x (R2)2n-2k C (R2)2y~ Put

with We claim that if

n &#x3E; no and 0 N &#x3E; No(n, q) then
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with some K &#x3E; 0 independent of the set A. Indeed,

It follows from (6.5), (6.7) and (6.7’) that

On the other hand we increase the term I2 by enlarging the domain of
integration to the ...~2~2’~~eQ~ ~. Hence

r

The last inequality together with (6.2) and (6.2’) imply that

The last inequality together with (6.12) imply (6.11). Since for 0
and measurable sets A E (R2)2k, k - n  N we have 
relation (6.11) implies that for all E &#x3E; 0 there is some No(E) such that for
N &#x3E; No(E) and N’ &#x3E; No(E) the relation ~.(A) ~  E holds true.
Let us emphasize that the threshold N(E) does not depend on the set A.
Hence the last relation means that the limit = exists,
and the convergence is uniform in A. This implies that -&#x3E; ,~k in varia-
tional metric. To complete the proof of Theorem 1 we have to show that
the measure k does not depend on the sequence hN. But it is not difficult
to see with the help of (6.11) that this statement holds, since

= ;u(A(n)), and the right hand side of the last expression
does not depend on hN. -

Proof of Proposition 2. - Let n &#x3E; no and N &#x3E; No(n, q). Relations
(6 .1)-(6 . 5) hold for such pairs n and N. By Theorem 1 the measures 
converge in variational metric to the projection n of the measure  to
(R2)2" as N ~ oo. Since all measures are absolute continuous with respect
to the measure ,un the above convergence is equivalent to the convergence

of the Radon-Nikodym derivatives to dlun = f in L 1 norm. 

dlun ’ ~n
in the space ((R2)2", ,un) as N ~ oo. Since all functions satisfy
(6.1)-(6.5) for N &#x3E; No(n, q), their limit f also has this property. Hence
Proposition 2 holds true.
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7. THE PROOF OF THEOREM 2.
EXISTENCE OF THE LARGE-SCALE LIMIT

First we need some results about the transformation Qn = Qn(k) of
probability measures on (R2)2n+’‘ to probability measures on (R2)2k to
be defined below. First we define a transformation Q" - Q"(k),
Qn : (R2)2n + k ~ (R2)2k in the following way: For all (x 1, ... , x2 n+ k),
x~ R2’ = 1 ... ~ 2n 

+ k

Xj E , ] = .""

This transformation induces the transformation Qn of probability measures
on (R2)2n +’‘ to probability measures on (R2)2k in a natural way. Namely,
if v is a probability measure on (R2)2" +’‘ and (~( 1 ), ...,~(2~)) is a v distri-
buted vector then is the distribution of the random vector

Qn(~( 1 ), ...,~(2"~~)). In Theorem 2 we have to study an appropriately
rescaled version of the measure It is not difficult to see that rela-
tion (2.10) implies that

We formulate below Theorem C which follows from the relatively simple
Theorem 1 in [4 ]. For the sake of completeness we present its proof in

Appendix B.

THEOREM C. - The above defined measure Q",un + k - t) has
a density function hk(xl, ..., x2k) of the form

Here Hk is the Hamiltonian function defined in (1.2’) of Part 1, p"(x) is

the function appearing in Theorem A, and L is an appropriate norming
constant.

Formula (7.1) and Theorem C enable us to express the density function
of the random 1 ~ j ~ 2k } with the help of
the functions pn(x) and fn(x), where the sequence { 6( j ), j E Z } is  distri-
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buted, and are defined in (1. 2) and (1. 3) of Part II. This density
equals to

with

Let us define the sets Wn c R2 and W" c R2 by the formulas

where 1] and a are the same constants as in Theorem A, and ac(x) is defined
in (7 . 2’). We shall show that there is some no &#x3E; 0 and 0  q  1 such that

for distributed random field o~/), ~ E Z, and give a good asymptotic
formula for the expression ..., x2k) defined in (7.2) if xj~Wn for
all 1  7  2k. First we prove (7.3).

We get similarly to the estimates (6.7) and (6.7’) that

The term 11 has to be estimated a little more carefully.
Define

and write
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We get, similarly to the estimation of 13 and 12 that 11,1 ~ exp ( - Kc 1 "),
and we can write by (2.11) and (2.11’) that

Then integrating first by x~2~ we get that

with the help of relations (1. 8) and (1.10) in Theorem A. Let us emphasize
that it was the multiplying term qn in (1. 8) that enabled us to give an expo-
nentially small bound for the second term in the last integral. The above
estimates imply (7.3).
To estimate the expression (7 . 2) in the case xj~Wn, j = 1, 2, ...,2k, we

make some preparatory remarks. Put

We have

because, as it is not difficult to see, x~2~ ~ I  ~-0.45n~ and

M - 2c-°.9n  M +  M + 2c’~ ~ if We show with the

help of Theorem A and (7.4) that

with some 0  q  1 for x E Wn if ~ &#x3E; 0 is chosen sufficiently small in
Theorem A. Indeed, by Theorem A
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by (7.4) and the boundedness of the function dg(x). (See Lemma 13 iny ( ) 
dx 

g( ) ( a 13

Part I.) On the other hand, by Lemma 17 of Part I the relation

which holds because of the definition of Wn, and the inequality

we have

if x E Wn, and ~ is chosen in Theorem A sufficiently small. Hence (7 . 6)
can be rewritten as

The above relations imply (7.5).
We also claim that

and

hence to prove (7 . 7) it is enough to remark that in the last expression the
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terms c - "xi 1 ~x~l ~ are negligibly small, since c - "xi 1 ~x~l ~ = 0(c ~ 8 ") if

xi e Wn and xj e Wn. _

To prove (7 . 8) we have to show that 2’~E~i~eQ~+~ if for

all j = 1, ... , 2k and then apply Proposition 2. We can write with the
notation X, = ac~2~) that 2-~i 1 x~2~  c-0.45n ~ c-’-~4-B and
~ 2’~iXJ~ - M ~ 2c’~-~~ ~ sufficiently large (k is
fixed, n ~ oo) and for j = 1, ..., 2k. These relations imply that

i j e 03A91n+k. We get, by putting (7 . 5), (7 . 7) and (7 . 8) into (7 . 2) that

with some 0  ~  1 I ~ E = , , ..., .

Simple calculation shows that - 03A32ki= 1 j) = 1-(c/2)k 1-c/2, hence the
coefficient of x(1)j, (c/2)kg + M T03A32kj=1U(i,j) - a0M T equals zero, and

if x~ E Wn, j = 1, 2, ..., 2k, where hk is defined in ( 1.12) (with p = 2). It is
not difficult to see that (7 . 3) also holds with a random vector with density
function (1.12). Hence (7.3) and (7.9) imply Theorem 2.

8. SOME OPEN PROBLEMS AND CONJECTURES

Dyson [72] has defined a more general class of models than that consi-
dered in this work. He defined, with the help of a real function Z -~ R1,
models with the Hamiltonian function

where . , denotes the hierarchical distance 
" 

on Z given in formula . ( 1.1 )
of Part I. In this work we have 

. considered o models in the special case "
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with a = 2 - log c. One question we are going to discuss
log 2

here is that which are the functions ~p for which Dyson’s model with the
Hamiltonian (8.1) has a phase transition at low temperatures. In the

boundary case some more delicate phenomena appear which we also
want to discuss. The behaviour of vector and scalar-valued models is

different. First we discuss the vector-valued case.
The quantities Mn = considered in Part I can be defined in a

natural way in the general case. The arguments of Part I suggest that the
relation

holds true. The existence or non-existence of phase transition depends
on whether M = Mn equals to zero or not if T is small, i. e. if Mo
is large. Hence formula (8 . .2) suggests that a phase transition at low tempe-

ratures occurs if and only if E 1 is convergent. Dyson has formulated
the same conjecture in [13] and proved its convergent part in the special
case when 6(i ) E R3. He has also solved the problem for scalar-valued
models. He proved that there is a phase transition at low temperatures if

log log n ... n2
~p(n) ~ C 2 

with some C &#x3E; 0, and there is none if ~p(n) ~ 0.
n log log n

Moreover, m the bou ndar y case 03C6(n) = C log log n the followin g ThoulessMoreover, In the boundary case p(n) = C 
n 
2 

the following Thouless

effect occurs: There is some critical parameter such that

The quantity M(T) has a physical content, it is called the spontaneous
magnetization. The interesting feature of the above result is that it states
that the function M(T) has a discontinuity at T = This particular
behaviour of the spontaneous magnetization appears only in the boundary

case C n the other hand, the Thouless effect occurs in

some other models too, like in the one-dimensional Ising model with

1 2 interaction, in one-dimensional percolation models if the pro-
bability of the event that the points i and j are connected has the order

i - j ~ - 2, etc. In recent time several interesting papers appeared on
this subject, (see e. g. [1 ], [2], [77]). On the other hand, there are some
other interesting phenomena connected with the Thouless effect, like the
irregular behaviour of the correlation function, whose investigation requires
essentially new ideas. 

’
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The appearance of phase transitions and the Thouless effect in scalar-
valued models are connected with the behaviour of the sequence Mn.
The quantity Mn+ 1 can be expressed asymptotically in a simple way with
the help of Mn and the function ~p in scalar-valued models too. But this
formula is essentially different from his vector-valued counterpart, namely

In the particular case we have

Formula (8 . 3’) may help us to understand the cause of the Thouless effect,
at least at a heuristic level. If Mn(T)  ~/T for some n then relation (8. 3)
implies that M(T) = limn~~ Mn(T) = 0, hence either M(T) ~ T or
M(T) = 0. Since M(T) ~ 0 for small T, this relation implies the discontinuity
of the function M(T). In vector-valued models relation (8.2) does not
suggest such a behaviour. We expect however that some delicate effects
appear in this case too, and we are going to study them in the future.

Let us remark that the study of existence or non-existence of phase
transitions at low temperatures seems to be an essentially simpler problem
than the study of the Thouless effect and related questions. In the first
problem it is enough to consider sufficiently low temperatures, and in the
case of vector-valued models with Hamiltonian function of the form (8.1)
for instance the method of the present paper works without any essential
changes. In the second problem however, one has to study the behaviour
of the model near the critical temperature, and this requires more work
and new ideas.
Another problem we are going to discuss here is the description of the

large-scale limit of vector-valued equilibrium states with translation
invariant Hamiltonian function. We have discussed its scalar-valued coun-
terpart in Section 8 of our paper [6 ], and formulated our conjectures
about it.

Let us consider vector-valued models on the d-dimensional integer lattice
with Hamiltonian function

with
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and the Lebesgue measure on Rp with some p &#x3E;- 2 as the free measure of
the model. The expression in the above formulas denotes scalar
product.

... , be a random field with the distri-
bution of a (pure) equilibrium state with the above Hamiltonian function
at a certain temperature then there exists a spontaneous magne-
tization at sufficiently low temperatures. This is proved with the help of
the infrared bounds (see e. g. [7~]). In case of phase transition we consider
that pure state for which the direction of the spontaneous magnetization
is e 1 = ( 1, 0, ... , 0), i. e. EX(1)k = M &#x3E; 0, and EX(s)K = 0 for s = 2, ... , p.

Let us define the « renormalized » random fields

by the formulas

with

We are interested in the question that for which choice of A(N) and B(N)
the fields Yk(N) have a non-trivial limit, i. e. a limit which is not concen-
trated on a single configuration. We also want to describe the distribution
of the limit field.

Dyson’s hierarchical model with parameter c, 1  c  2 can be consi-
dered as an approximation of translation invariant models with nearest

2
neighbour interaction on the d-dimensional lattice Zd with d = .

1- log2 c

(See paper [21] ] for a discussion of this approximation.) It must be admitted
that the above approximation is made only at a heuristic level, but it helps
us to get a better understanding about the behaviour of the large-scale
limit. On the basis of the present work and [5] we can formulate the fol-
lowing conjectures about the large-scale limit of translation invariant
models at low temperatures.
The behaviour of the large-scale limit is different in the cases d &#x3E; 4,

d = 4 and d  4, and they correspond to the cases c &#x3E; ~/2, c = ~/2 and
c  ~/2 in Dyson’s hierarchical model. In accordance with [5] ] we expect
that for d &#x3E; 4 the large-scale limit exists at low temperatures with

and B(N) = N~d + 202. The limit 
is such that the fields ... , p are independent,
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E consists of independent identically distributed Gaussian
random variables with zero E Zd },s = 2, ..., p, are massless
free Gaussian fields, i. e. they have the same distribution as the field

with some C &#x3E; 0, where W(dx) is a complex-valued white noise field on Rd
with the conjugation property W(~)=W(-~-). (For the definition of W(x)
see e. g. [16 ].) The situation is similar in the case d = 4, i. e. the investiga-
tion of Dyson’s model suggests a similar behaviour with the only diffe-
rence that a logarithmic factor appears in the normalizing term A(n). More
precisely, for d = 4 the fields defined in (8.4) and (8.4’) with

A(N) = N2 log N and B(N) = N~d + 2)/2 = N3 have a Gaussian limit as
N --&#x3E; oo which consists of independent components s = 1, ... , p, simi-

larly to the case d &#x3E; 4. The limit of the fields = 2, ... , p, is a massless

free field.
The result of the present work motivates the following conjecture for

d=3.

CONJECTURE. - For d = 3 the large-scale limit exists at low temperatures
with the ndrmalizations A(N) = N2 and B(N) = N5/2. The large-scale limit
has the same distribution as the random field {Yk = ..., 

defined by the formulas

and

where C &#x3E; 0 is an appropriate positive constant, and WS(dx), s = 1, ... , p
are independent complex valued white noise fields on R3 with the conjugation
property W(x) = W(- x). (For the definition of two-fold stochastic integrals
with respect to a Gaussian field see e. g. [16 ]. Such an integral appears in
the definition of 
The fields s = 2, ... , p defined in (8 . 5) are massless free fields, the

field defined in (8 .6) belongs to the class of self-similar fields constructed
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in Dobrushin’s paper [77]. It is a quadratic functional of a Gaussian field,
just as the corresponding field in Dyson’s model for 1  c  ~/2.
The large-scale limit of the equilibrium state in Dyson’s model described

in Theorem 2 of Part II has the following independence property : The

random variables +1 2M03A3ps=2Y(s)2k are independent for different k.

This independence property does not hold for their translation invariant
counterpart defined in (8.5) and (8.6). It cannot be preserved, because
translation invariant models have less symmetry. Nevertheless, the fol-

lowing non-rigorous argument shows some analogy between the behaviour
of the fields defined in (8. 5) and (8.6) and the above mentioned indepen-
dence property. In this non-rigorous argument we consider the limit field
appearing in the Conjecture as the discretization of a generalized field.

Let ~(t) denote the Dirac-delta function in the point t, and consider the
generalized field which at takes the value Y(b(t))= (Y~1 ~(~(t)~ ... , Y~))),

Actually this definition is not correct, since the above stochastic integrals
F dx

are meaningless because of the divergence of the integrals .2014.y and

. But the integral

and

are meaningful for nice functions ~p. In particular, they are meaningful
3

for the indicator functions of the unit cubes [k~, ki + 1) which we denote
i= 1

by ~pk if k = k2, k3). The random field appearing in the Conjecture
can be considered as the discretization of the above defined generalized
field if we identify Yk with 
A formal application of Ito’s formula (see e. g. [16 ]) would supply the
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relation Y(1)(03B4(t)) - 1 03A3ps=2Y(s)(03B4((t))2 = const., and this can be considered
as the analogue of the independence property of the large-scale limit of
Dyson’s model for the above defined generalized field Y(~(’)). On the other
hand by our Conjecture the discretization of this generalized field is the
large-scale limit of the three-dimensional translation invariant vector-
valued model at low temperatures.

Let us finally discuss the cases d = 1 and d = 2. The case d = 1 is rather
simple. In this case there is no phase transition, and k E Z 1 } is a
random field with the distribution function of an equilibrium state at any
temperature then it satisfies the central limit theorem with the usual nor-
malization. The case d = 2 is more delicate. In this case the dimension p,
(7(f) E Rp), also plays an important role. In this case there is no symmetry
breaking, but for d = 2, p = 2 a more delicate phenomenon, the so-called
Kosterlitz-Thouless effect occurs. (See [7~]). This means that at low

temperatures the correlation function decreases rather slowly, only power-
like. Hence a non-trivial large-scale limit should appear in this case. For
d = 2, ~ ~ 3 it is expected that the Kosterlitz-Thouless effect does not
occur, but for the time being it is proved only at a physical level (see [7~]).
Hence, it is expected that for d = 2, p &#x3E; 2 the large-scale limit has the
same (trivial) behaviour as for d = 1.
When typing the final version of this work the authors learned about

some recent results about the Kosterlitz-Thouless effect (see [22 ], [2~]).
The arguments of these works, also supported by computer simulation,
suggest that the situation in two-dimensional translation invariant models
is essentially different from what we had expected. In particular, the diffe-
rence between the cases p = 2 and p &#x3E; 2 in the models we have discussed
at the end of this Section does nevertheless not occur.
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APPENDIX B

THE PROOF OF THEOREM C

Since the measure has the density function

the density function of the measure the function ..., j:2’c) equals to

where n~5(2 "~"~-i)2"+i ~ 2014 xl) in the integral (B1) means that integration is taken
on the hyperplane defined by the relations 2""E~_~~~ = ~, ~ = 1, ..., 2k, with
respect to the Lebesgue measure. The special structure of the hierarchical distance implies
that

Hence relation (Bl) can be rewritten as

as we have claimed.
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APPENDIX C

THE CALCULATION
OF THE RADON-NIKODYM DERIVATIVES.

THE PROOF OF FORMULAS (2.1)-(2.3’) IN PART II

For n = N relations (2.1) and (2.2) of Part II immediately follow from formula (1.4)
in Part II. Hence it is enough to prove our relations by induction from n + 1 to n. Clearly,

with some norming constant Cn. Given some measurable set A c define the cylin-
drical set A c 1 as A = A x By our inductive hypothesis for n + 1

Let us calculate the last integral by first integrating on the hypcrplanes where xl, ..., x2n

and y = 2n 03A32n+1j=2n+1 xj are fixed. Since Pn(jC2"+1, ... , x2n + 1) is the only term in the integrand

which is not constant on such a hyperplane, and its integral equals /?~( ~) on it, we get that

Hence we get, by integrating first by the variable y that

Since this relation holds for all measurable sets A c (RP)2", it implies our inductive ’ hypo-
thesis for n.
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APPENDIX D

ON LIMIT GIBBS STATES

Here we briefly describe the definition of limit Gibbs states (also called equilibrium
states in the literature) and discuss some important questions related to this definition.
Limit Gibbs states are defined with the help of a Hamiltonian (often called energy) function,
a free measure and a physical parameter, the temperature T. The Hamiltonian function
is a formal series. Let us have a subset Z c Zd of the d-dimensional integer lattice and a
closed set K c Rp in the p-dimensional Euclidean space. We consider a Hamiltonian
function of the form

where U(-,-) is a given function, U : Z x Z -+ R1, and denotes scalar product.
(There is a more general definition of Hamiltonian functions, but this special class is suffi-
ciently large for our purposes.) Given some finite set V c Z, we define the energy func-
tion as

and the conditional energy in V with respect to a configuration 03C3 in Z - V as

provided that the last sum is convergent. Given some hE Rp, we also introduce the energy
of a configuration 6 in the volume V with respect to the external field h as

Given some finite set V c Z, a configuration ~ = E Z - V } outside V, a Hamil-
tonian function and a free measure P(dx) on K, we define the Gibbs measure in
volume V with respect to the external field ~ at temperature T as the probability measure

on KV given by the formula

where A E Kv is an arbitrary measurable set, 6 = {7(/)Je V and Z(V, T, o~) is an appro-
priate norming constant, provided that the above expression is meaningful. Now we for-
mulate the following

DEFINITION OF GIBBS STATES. - A probability measure  is a Gibbs state with 
tonian function and free measure P at temperature distributed random field 7(/’),
j E Z satisfzes the following relation : For any finite set V and measurable set A c Kv the

Vol. 49, n° 1-1988.



138 P. M. BLEHER AND P. MAJOR

conditional probability of the event 7 E A, o’ = { E V} with respect to the condition
{ ’ =~,~eZ2014V} with a configuration a ’ = E Z - V equals to

with 71 probability one, where defined in (D4).
The question arises whether Gibbs states on KZ exist, and whether they are unique.

A natural way to construct Gibbs states is to carry out the following procedure. Choose
an increasing family of sets V" C V" = Z, fix a configuration 7 = 6~"~ = 
for each Vm and consider the measures 0’) defined in (D4). Prove that under some
mild restrictions there is a convergent subsequence of this sequence, and the limit of this
subsequence is a Gibbs state. The problem about the uniqueness of Gibbs states is closely
related to the question whether, in dependence of the choice of the external configuration
o~"B different limits can appear in the above construction. A slightly different, and often
useful approach is to choose a sequence h" e R", h" -+ 0, and try to construct Gibbs states
as the limit of a sequence of measures of the form where we define the probability
measure as

If K is a compact subset of Rp then standard results in probability theory imply the com-
pactness of the measures 10’) or of in weak topology, i. e. the existence of a

convergent subsequence in this topology. (See e. g. [3 ].) Nevertheless, there are many
interesting models, where the set K is non-compact (e. g. K = Rp), and in such cases a
hard analysis is needed to prove the existence of such a convergent subsequence. (See
e. g. [10 or [20 as an example.) In order to prove that the limit of the sequence of measures

(or is really a Gibbs state it is worth while to rewrite the definition of

Gibbs states in an equivalent integral form. Let f = /(~ - - -~ and g = g(xll, ... , 
E Rp, x~i E Rp, be two bounded and continuous functions with finitely many arguments,

The measure 71 on KZ is a Gibbs state if and only if

for all functions f and g with the above properties, where

and is defined in (D4).
Let us consider an arbitrary sequence of sets V" c V" = Z, and numbers h" E Rp,

h" ~ 0. Some calculation shows that for sufficiently large n (if V c V", W c VJ

with
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If the sequence tends weakly to the measure ~ then the left-hand side of (D8) con-
verges to that of (D6). Hence to prove that the limit measure  is a Gibbs state it suffices
to establish the convergence of the right-hand side of (D8) to that of (D6). If the Hamilto-
nian function has a finite range interaction, i. e. there is some number r &#x3E; 0 such that
U(i,j) = 0 if |i - j| &#x3E; r then it is not difficult to see that -&#x3E; and the
required convergence can be proved with the help of this relation. In case of infinite range
interaction one must be more careful, especially if the state space K is non-compact. Dyson’s
model which we are investigating is such a model. In Theorem 1 of Part II we have proved
the weak convergence of the measures to /7. (Actually, we have proved a stronger form
of convergence.) In Appendix E we prove Theorem B, i. e. we show that the limit measure
is a Gibbs state. In the proof we approximate Dyson’s model with a model with finite
range interaction, and this enables us to carry out the required limiting procedure. In
Appendix E we restrict ourselves to Dyson’s model, although the argument also works
in more general cases.
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APPENDIX E

THE PROOF OF THEOREM B

We apply the argument of Appendix D. The proof of Theorem B can be completed by
showing that also in the case of Dyson’s model the right-hand side of (D8) tends to that
of (D6). We formulate this statement in more detail.

It is enough to consider the case when V = {1, 2, ..., 2"}, W = { 2k + 1, 2, ..., 2’"}
with some i. e. f ...,~2~ and VN = {1,2, ...,2~}.
(We apply the notation of Appendix D.) Introduce the functions

and

where the function U( , ) is defined in (1. 2) and p(x) in (1. 3) of Part I. Put

and

The convergence of the right hand side of (D8) to that of (D6) is equivalent to the relation

in our case, where and ~c are the same probability measures on and as in

Theorem 1 of Part I.

To prove this relation let us first introduce the sets A(K, k, n, N) and A(K, k, n), where
K E R 1, K &#x3E; 0, k, n, NEZ and k  n  N, defined by the formulas
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and

where a 3 1 log c

We claim that for all B &#x3E; 0 some n = and K = K(B, n) can be chosen in such a way
that

To prove relations (E4) and (E4’) let us first observe that there is a universal constant C,
C &#x3E; 0, such that if 03C3( j) is the j-th coordinate of a or  distributed random variable
then the inequality EQ2(j)  C holds for all j E Z and measures and /7. This can be
seen by observing that the argument of Section 6 in Part II actually implies that all moments
of the j-th coordinate Q( j) of a distributed random vector 6 converge to the corresponding
moment of the j-th coordinate of a ~c distributed random vector as N -+ oo. Then we get,
by exploiting that 1 - 2a &#x3E; 0 that

if first n and then K is chosen sufficiently large. The proof of (E4’) is the same. (We remark
that relations (E4) and (E4’) hold with arbitrary a &#x3E; 0 in the definition of the sets A(.,.,.).
To prove it we have to apply the stronger statement E03C32k  Ck for 1. This obser-
vation is needed if we want to prove Theorem B in the case ~2  c  2 too.)
We claim that for all E &#x3E; 0 there is some No = K, n) such that for N &#x3E; No

and

if (~+i....~2N)eA(K,~,N) and (x2k+ 1, ... ) E A(K, k, n). (The constants K and n
in formulas (E5) and (E5’) are the same as in the definition of the sets A(K, k, n, N).) First
we show that (E5) and (E5’) together with (E4) and (E4’) imply (E3), hence also Theorem B.
Indeed, since decreases at infinity faster than exp ( - x2/2) hence (E5) and (E5’) imply
that

and

if and then as a consequence 
Since this relation holds on a set of 1 - resp. 71 probability by (E4) and (E4’), the func-
tions f, g, and are bounded, hence an error less than const. e is committed
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if and is replaced by in formula (E3). After this replacement relation (E3)
holds, because the projections of the measures to converge to the projection
of  to the same subspace. Since 8 &#x3E; 0 can be chosen arbitrary small, relation (E3) holds
in its original form.
We prove only (E5) the proof of (E5’) being the same. Let us first observe that for any

~ &#x3E; 0 there is some No = ~) such that for N 2:: No and + 1, ... , A(K, k, n, N)

In the last relation we have applied the inequality |xx - 1 I s |x|e|x| together with

the relations hN  ~/2, I 03A32Nj=2N0+1 U(i,j)xj I ~ |03A3~j=N02j(03B1-1)(c 4)j I  ri/2 and
and No is sufficiently large. Integrating inequality (E6) with respect to the measure

03A02ki=1 p(xi)dxi we get that

where the const. may depend on K and n. In formulas (E6) and (E7) we have shown that
both the numerators and the denominators of the functions defined in (El) are close
to each other. The number 1] can be chosen arbitrary small in these estimates by fixing first n
then K = K(n) and finally No = No(K, n) in an appropriate way. Moreover, given some
appropriately chosen n and K the number 1] &#x3E; 0 can be taken arbitrary small if

No = No(K, n, 1]) is sufficiently large. Hence we prove (E5) by showing that

with some D &#x3E; 0 on the set A(K, k, n, No), i. e. the integral in (E8) is separated from zero.
Here the constant D may depend on K and n but not on No. Relation (E8) holds, since if

 1, j = 1, 2, ..., 2k and (~+1....,.~)~A(K,~,No) then the integrand in (E8)
is separated from zero.
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