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ABSTRACT. — We investigate the connection between the space OpV
of all operators on a partial inner product space V and the weak sequential
completion of the =*-algebra L*(V*) of all operators X such that
V# <= D(X) n D(X*) and both X and its adjoint X* leave V* invariant.
This connection allows us to describe quantized fields at a point as mappings
from the Minkowski space-time into OpV.

REsuME. — Nous analysons la relation entre 'espace OpV de tous les
opérateurs sur un espace a produit interne partiel V et la complétion séquen-
ciellement faible de I'+-algébre L*(V*) de tous les opérateurs X tels que
V# < D(X) n D(X*) et tels que X et son adjoint X* laissent V* invariant.
Cette relation nous permet de décrire des champs quantiques en un point
comme des applications de I'espace-temps de Minkowski dans OpV.

1. INTRODUCTION

The fundamental concept of Wightman axiomatics is the concept of
quantized field A(x) at a point x, which is usually defined [/] as an ope-
rator-valued distribution on some space of test functions (x is the four-
dimensional coordinate of space-time).

(*) On leave of absence from the University of Burundi, Department of Mathematics,
B. P. 2700 Bujumbura, Burundi.
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98 J. SHABANI

Let 2 be a dense linear manifold of a Hilbert space # and denote by
L*(2) the *-algebra of all operators X such that 2 = D(X) n D(X*) and
both X and its adjoint X* leave & invariant. It has been first proposed
by Haag [2] that a quantized field A(x) at any point x should be described
in terms of sesquilinear forms on 2 x 9, corresponding to the heuristically
defined mapping (f, g) — (A(x)f, g). This idea has been particularized
by Ascoli, Epifanio and Restivo [3] in such a way that these sesquilinear
forms may be considered as elements of the weak sequential completion
L*(V#)* of L*(V#¥).

On the other hand, it is well known that if V is an arbitrary partial inner
product (PIP) space [4], which is quasi complete in its canonical Mackey
topology t(V, V*), then the space L*(V*) is isomorphic to the *-algebra
Reg V of all regular operatorson V [5].

In this note, after a brief recall in Section 2 of basic facts on PIP spaces
and operators on them [4-7] we investigate in Section 3 the connection
between the space OpV of all operators on a PIP space V, and the weak
sequential completion of L*(V*). In particular, we show that if V is an
arbitrary PIP space, and { V*, V) is a reflexive dual pair, then OpV is

isomorphic to L*(V*)*, which means that a quantized field at a point
may be considered as a mapping from the Minkowski space-time M into
OpV. This corresponds to the idea that a field at a point is a limit of obser-
vables localized in a shrinking sequence of space-time regions [8] i.e.
Ax)=w — nlilg A(f,) where f, — &, (Dirac delta at the point xe M)

in the topology of the dual %’(M) of the Schwartz space ¥(M) of fast
decreasing C*-functions on M.

At this stage we should mention some related works on the mathemati-
cal formulation of point like fields as operators on some PIP space. In [9],
extending the machinery of Fock space (a symmetric tensor algebra over
a Hilbert space), Grossmann defines the unsmeared free field at a point
as an operator on some nested Hilbert space [10]. Grossmann’s approach
is summarized in [4]. In [11], Nelson defines a Euclidian free field as an
operator on the PIP space corresponding to the scale built from the Hamil-
tonian. This fact was already noticed by Antoine and Karwowski [/2] and
extensively used by Fredenhagen and Hertel [8].

Consider on 2 (a dense linear subspace of #) a topology ¢t finer than
the norm-topology and let 2’ [t'] be the topological dual of 9, equipped
with the strong dual topology ¢’. Let £(2, 2’) be the set of all continuous
operators from 2[t] into 2’[¢']. It has been shown [I3] that if

2 = 2=T) = \D(T")

n>0

(where T is any self-adjoint operator in #) and 9 is equipped with the
tr-topology defined by the family of seminorms ¢ — || T"¢ ||, neN,
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then £(2, 2’) is a topological quasi *-algebra with distinguished algebra
L*(V*) (This result has been generalized in [I4] to the case of arbitrary
domains 92).

Recently, in their study of point-like fields, Epifanio and Trapani [/5]
have exploited systematically the quasi *-algebra structure of #(2, 2’).
This approach is in fact in the spirit of operators on a PIP space V, since
OpV is isomorphic to Z(V*,V) [4].

In Section IV we introduce the concept of OpV-valued fields and Wight-
man fields. OpV-valued fields may be used in order to give a precise mathe-
matical meaning to relations of the type

A(f) = fd“Xf @A), feSM).

In this Section, using some results of Ref [/5] we compare our approach
to that of Fredenhagen and Hertel [8].

2. PIP-SPACES AND OPERATORS ON THEM [4-7]

A PIP-space V is a complex vector space with the following structure:

i) # = {V, rel}isa collection of vector subspaces of V which covers V
and is an involutive lattice with respect to set intersection, vector sum and
lattice involution: V, < V.

Besides elements of .#, we consider the extreme spaces:

V#EmVr and VEUV,

rel rel
ii) A nondegenerate hermitian form (. |. > (the partial inner product)
is defined on U V, x Vi

rel

iii) There exists a unique element 0 = 0 in I such that Vo = Vg = #
is a Hilbert space with respect to { .| . ).

The nondegeneracy assumption (V*)* = {0} implies that every pair
{V,, V;>,aswellas { V*, V) is a dual pair with respect to the form { . | . ).
We may therefore equip each V, with its Mackey topology t(V,, V;) and
similarly for V#, V.

An operator A on a PIP space V is a map D(A) — V, where D(A) is the
largest union of V,’s such that the restriction of A to any of them is linear
and continuous into V.

The set of all operators on V, denoted by OpV is isomorphic to
L(V*#,V) = {linear continuous maps V¥ — V}. Equivalently OpV is
isomorphic to B(V*, V#) = { separately continuous sesquilinear forms on
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V#* x V* }. Thus, OpV is a vector space. Moreover, OpV carries an invo-
lution A «» A* (adjoint of A), but it is not an algebra since the multipli-
cation is not always defined. Such sets are called partial x-algebras [16].

An operator on a PIP-space V is called regular [5], if D(A)=D(A*)=V.
Equivalently, a regular operator is a linear continuous map of V* into
itself, which maps V into itself continuously. The set of all regular operators
on V, denoted by Reg V is a %-algebra.

We assume that V is quasi complete in its Mackey topology. Then Reg V
is isomorphic to the x-algebra L*(V*) of all closable operators on #
which, together with their (Hilbertian) adjoint leave V* invariant. Actually
almost all PIP-spaces are quasi complete in the t(V, V¥)-topology, the
only known exceptions being quite pathological [17].

We will endow OpV with the weak topology defined by the family of

seminorms : 4
A |[CAfig>l;  fgeV™.

On Reg V ~ L*(V*) we will consider the weak topology inherited from
OpV.

3. OpyV AND THE WEAK SEQUENTIAL COMPLETION
OF L*(V*)

Following [3] we denote by Sy« the space of all sesquilinear forms on
V# x V*_ It has been proved in [3] that the space Sy« endowed with the
topology of pointwise convergence given by the set of seminorms:

F— |F(fgl; fgeV*

is isomorphic to the weak completion of L*(V#), i. . in notations of [3]

— T —
Sys >~ LT(V#)".

On the other hand, it is clear that Sy« contains the space OpV which
is isomorphic to the space B(V* [t], V* [t]) of all Mackey separately conti-
nuous sesquilinear forms on V# x V#,

In what follows, we want to answer the following question: given a PIP
space V, when is OpV isomorphic to the weak sequential completion

m—
L*(V*)* of L*(V#)? If this isomorphism exists, then the sesquilinear forms
which describe quantized fields at points may be considered as elements
of OpV equipped with the weak topology.

In general, for a given PIP space V, whenever OpV is weakly sequentially

complete, we have the following relation between OpV and L*(V*)*:
L*(V*)* < OpV < LH(V*)” ~ Sy. .

We show that this relation holds if in particular { V¥,V ) is reflexive
dual pair. Indeed we have the following:
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PRrOPOSITION 3.1. — Let V be a PIP space. If ( V*, V) is a reflexive
dual pair, then OpV is weakly sequentially complete.

Proof. — Let {T,} be a weak Cauchy sequence in OpV, i.e. Vf e V¥,
{T,f } is a weak Cauchy sequence in V.

Since { V*, V) is reflexive, it follows that V* and V are quasi complete (i.e.
closed bounded sets are complete) with respect to the weak topology and
therefore V* and V are weakly sequentially complete i. e. w- 11m T.f =TfeV.
This shows that T is a map from V* into V.

In order to show that T is continuous from V*[¢(V*, V)] to V[«(V, V#)],
one uses the dual mapping theory [I8]. dJ

REMARK 3.2. — For Reg V ~ L*(V¥) one could also try to perform
the same proof as in Proposition 3.1, but in general we do not have
D(T) = D(T*) = V. So, in general L*(V*) is not weakly sequentially
complete. Actually this fits with results of [3] where it is shown that L*(V#)¥
may contain elements which are not operators.

The condition of reflexivity of the dual pair ( V*, V ) is weak enough to
cover most spaces of practical interest, in particular, all spaces of distri-
butions.

Typical instances when the dual pair ( V*, V) is reflexive are [7]:

. V* is a Hilbert space; then so is V.

. V* is a reflexive Banach space; then so is V.

. V* is a reflexive Fréchet space; V is the a reflexive complete DF-
space [18].

. V* is a Montel space; then so is V.

—_

Now, given a PIP space V, when is OpV contained in L*(V)*? Let
A € OpV, V* separable, e, an orthonormal basisin V* and P, = | e, > (e, |
the orthogonal projection on e,. In the terminology of [5], P, is a very
regular operator.

Consider the operator P;AP;. Obviously this operator is regular, since
the operator itself as well as its adjoint leave V* invariant. Let B,,, be the

n m
J J

sequence in L*(V*) defined by B,, = Z PAP;

ji=1 j=1
Since { e, } is an orthonormal basis, for all f e V#* we have Z Pf =1
and consequently Vf, ge V¥ we get: .

j=1j=1 =1 j=1
= lim < ZAPj'ﬁg> = lim < ZPff,A*g> =< fA*) =(Afg)>
=1

= =1
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Thus, the arbitrary element A € OpV is the weak limit of a weakly convergent

(hence a weak Cauchy) sequence of L*(V*),i.e. Ae L*(V¥)*.
We summarize this analysis in the following:

——
PROPOSITION 3.3. — If V is a PIP space, then OpV < L*(V*)".
Now, putting together Propositions 3.1 and 3.3 we can state our main
result (which shows in particular that a quantized field at a point may. be
considered as an element of OpV).

PROPOSITION 3.4. — Let V be a PIP space. If ( V¥,V is a reflexive
dual pair then OpV is isomorphic to L*(V*)*.

4. OpV-VALUED FIELDS
AND WIGHTMAN FIELDS

In this section we discuss the concepts of OpV-valued and Wightman
fields and in particular using some results of Ref [/5] we compare our
approach to the work of Fredenhagen and Hertel [8].

DEFINITION 4.1. — We call OpV-valued field any mapping A from the
Minkowski space-time M into OpV, satisfying the following axioms:

1. Translation invariance: There exists in the central Hilbert space #
a strongly continuous unitary representation U of the group of translations
of M such that Yae M, U(@)V* = V* and

U@AX)U(@)"! = A(x + a); xeM.

2. Existence of a translation invariant vacuum: There exists a vector
Qe V* such that Yae M,
U@ = Q.

3. Spectral postulate: The eigenvalues of the energy-momentum ope-
rator P" do not lie outside the forward light cone.

DEeFINITION 4.2. — We call (scalar) Wightman field over V* a mapping A
from %(M) into L*(V*) such that V¢, y € V¥, the mapping from & (M)
into C defined by f +— {(A(f)¢, ¥ ) is a tempered distribution i.e. it
is continuous.

We assume that the Wightman field satisfies the following axioms:

W1: Translation invariance

W2: Existence of a translation invariant vacuum

W3: Cyclicity of the vacuum: Qis a cyclic vector for the algebra generated
by the set of operators { A(f)| f € (M) }.
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In [8]afield at a point is defined as being a sesquilinear formon V# x V#
satisfying a H-bound condition i. . it is assumed that there exists a natural
number k such that R¥A(x)R¥, with R = (1 + H)! (H = P° is the energy
operator in #) is a bounded operator in V¥,

DEFINITION 4. 3.— A point-like field A(x) is said to belong to the class F [8]
if for some k e N, the operator R*XA(0)R¥, with A(0)=U(—x)A(x)U(x), is a
bounded operator.

In order to compare our approach to the one developed in [§] we will
restrict ourselves to a special V*, namely

V* = g=(H) = | DH").

We will consider on V# the ty-topology defined by the seminorms:
¢ — IH"¢|l, neN.
Then, V*[ty] is a reflexive Fréchet space.
PROPOSITION 4.4, — If x — A(x) is an OpV-valued field with
V# = 9*(H), then A(x) satisfies a H-bound condition.
Proof. — See e. g. [15, Proposition 6].

COROLLARY 4.5. — If V = 9%(H), then every OpV-valued field belongs
to the class £#.

PROPOSITION 4.6. — Let V*=92*(H) and x — A(x) be an OpV-valued
field.
Then V¢, y € V* and f e (M), the integral

CASND, ¥ > = Jd“xf x) CAX)S, ¥ >

converges and defines a Wightman field i.e. A(f)e L*(V#).

Proof. — See e. g. [15, Proposition 7].
As a consequence of Proposition 4.6, our approach may be considered
as equivalent to that of Ref [§].

ACKNOWLEDGMENTS

It is a pleasure to thank Prof J.-P. Antoine, Dr F. Mathot and Dr C. Tra-
pani for fruitful discussions. I would also like to thank Prof Abdus Salam,
the International Atomic Energy Agency and UNESCO for hospitality
at the International Centre for Theoretical Physics, Trieste, where this
work was completed. Finally I thank the referee for constructive remarks
and for bringing to my knowledge some references.

Vol. 48, n° 2-1988.



104 J. SHABANI

REFERENCES

[7] R.F. STREATER and A. S. WIGHTMAN, PCT, Spin and Statistics and all that. Benjamin,
New York, 1964.
A. Jost, The General Theory of Quantized Fields. AMS, Providence, Rhode Island,
1965.
A. S. WIGHTMAN, Introduction to Some Aspects of the Relativistic Dynamics of
Quantized Fields. Lecture Notes, Bures-sur-Yvette, 1964.
[2] R. HAAG, Ann. Physik.,t. 11, 1963, p. 29.
[3]1 R. AscoL1, G. Epiranio and A. Restivo, Commun. Math. Phys., t. 18, 1970, p. 291.
Riv. Mat. University of Parma, t. 3, 1974, p. 21.
[4] J.-P. ANTOINE and A. GROSSMANN, J. Funct. Anal., t. 23, 1976, p. 369 and 379.
[5] J.-P. ANTOINE and F. MATHOT, Ann. Inst. H. Poincaré, t. 37,1982, p. 29.
[6] J.-P. ANTOINE, J. Math. Phys., t. 21, 1980, p. 268.
[7]1 J.-P. ANTOINE, J. Math. Phys., t. 21, 1980, p. 2067.
[8] K. FREDENHAGEN and J. HERTEL, Comm. Math. Phys., t. 80, 1981, p. 555.
[9]1 A. GROSSMANN, Comm. Math. Phys., t. 4, 1967, p. 203.
[10] A. GROSSMANN, Comm. Math. Phys., t. 2, 1966, p. 1.
[11] E. NELSON, J. Funct. Anal., t. 12, 1973, p. 97 and 221.
[12] J.-P. ANTOINE and W. KARWOWSKI, J. Math. Phys., t. 22, 1981, p. 2489.
[13] G. LASSNER, Physica, t. 124 A, 1984, p. 471.
[14] J. SHABANI, On some class of topological quasi x-algebra. Preprint, University of
Burundi, 1987.
[15] G. Epiranio and C. TRAPANI, Ann. Inst. Henri Poincaré, t. 46, 1987, p. 175.
[16] H. J. BORCHERS, in RCP 25 (Strasbourg), t. 22, 1975, p. 26 and also in Quantum Dyna-
mics: Models and Mathematics Ed. L. Streit, Acta Phys. Austr., Suppl. 16, 1976,
p. 15.
J.-P. ANTOINE and W. KARWOWSKI, Publ. RIM S, Kyoto University, t. 21, 1985, p. 205.
Addendum, ibid, t. 22, 1986, p. 507.
[17] M. FriepricH and G. LAssNer, Wiss. Z. Karl-Marx University, Leipzig. Math.
Naturwiss, t. R 27, 1978, p. 245.
K.-D. KURSTEN, On topological properties of domains of unbounded operator
algebras, in Proceedings of the II International Conference on Operator Algebras,
Ideals and their Applications in Theoretical Physics, Leipzig 1983, edited by H. Baum-
gartel, G. Lassner, A. Pietsch and A. Uhlmann (Teubner, Leipzig, 1984).
[18] G. KOTHE, Topological Vector Spaces I. Springer-Verlag, Berlin, 1969.

( Manuscrit regu le 16 décembre 1986)

(Version révisée regue le 28 octobre 1987)

Annales de I Institut Henri Poincaré - Physique théorique



