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Behaviour of the Wilson parameter
in U(1) lattice gauge theory

with long range gauge invariant interactions

Jean RUIZ

Centre de Physique Theorique, C. N. R. S., Luminy, Case 907,
13288 Marseille Cedex 9, France

Ann. Inst. Henri Poincaré,

Vol. 41, n° 1, 1984, Physique theorique

ABSTRACT. - The U( 1) lattice gauge model with fermions can be

expressed after integration over the fermionic variables as a « long range
gauge model » : the effective action is a sum over all possible gauge field
loops with corresponding weight factors. Different behaviors of the Wil-
son parameter are shown according to the hypothesis on the weight factors.

RESUME. - Le modele de theorie de jauge sur reseau avec fermions
peut etre exprime apres integration sur les variables fermioniques comme
un modele de jauge avec interactions a longue portee : 1’action effective
est une somme sur chaque boucle, du produit des variables de champ de
jauge associees aux liens de la boucle, chaque terme etant affecté d’un
facteur de poids. Differents comportements du parametre de Wilson sont
exhibes suivant les hypotheses sur les facteurs de poids.

1. INTRODUCTION

The purpose of this paper is to study the behavior of the Wilson para-
meter [7] ] in U( 1 ) lattice gauge theory with long range gauge invariant
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64 J. RUIZ

interactions occuring in particular in lattice gauge theories with fermions [2].
These theories have been intensively studied analytically and recently
also numerically by the Monte-Carlo method. The usual groups consi-
dered in a gauge invariant field theory are U( 1 ), SU(N). One way to study
the models consists in doing the « integration out » over the fermionic
variables proposed by Matthews and Salam [3] ] [4] ] [5 ] ; this « integra-
tion out » leads to an effective action which can be expressed as a sum
over all possible gauge field loops affected with weight factors [2 ]. In
the U( 1 ) case the result is simple. For example in two-space-time dimension
and for Susskind fermions [6 ], the lattice fermionic action coupled to a
gauge field is given by (see [7 ] :

03C8 and 03C8 are Grassman variables representing the fermion field. The couple
( i, j ) of integers represents the sites of the lattice. The one component
variable with i + j even or odd can be taken to represent respectively
the field U~+1 are the gaugejield variables belonging
to U( 1 ) and indexed by links. They verify Ua,b = SG is the usual Wil-
son’s lattice action.

p represents an elementary square (plaquette) of the lattice and U(p) is
the product of the link variables associated to the plaquette p. To inte-
grate out over the Grassman variables one uses the well known formulae

(see [5 ])

Expanding det G(U) = exp tr log G(U) by random walk techniques [8] ] [9],
one obtains an effective action of the form

where Dr is the product of the link variables associated to the closed path r.
The corresponding weight factors Jr(m) depend on m and on r: _
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65WILSON PARAMETER IN LATTICE GAUGE THEORY

I representing the length of the path and = ± 1 according to the
geometry of r. For « naive » fermions the result is similar.
The purpose of this paper is to study the behavior of the Wilson para-

meter for this kind of action according to different hypothesis on the
interaction Jr(m) in particular the interaction obtained from the Matthews-
Salam expansion. The pure lattice gauge theory with action given by (2)
is known to have a linear confinement in two dimension [70] ] a loga-
rithmic confinement if three dimension [77] and is not confining at low
temperature in four dimension [12 ]. We shall show that if the interaction
does not decrease sufficiently with I r the model can have a non confining
behavior at all temperature : this occurs for ferromagnetic interactions,
where Jr ~ 0 for all r. In the converse case we show that if the interaction
decreases rapidly enough with I r then the model has a confining behavior
at all temperature in dimensions two and three. These results are stated

precisely in Section II, the proofs are given in Section III.

II DEFINITIONS AND RESULTS

We consider an infinite d-dimensional hypercubic lattice of unit spacing
A == ~d (d ~ 2). The basic objects on the lattice are the sites

the links x, x’~ where x and x’ are nearest neighbours and the plaquettes p
(elementary squares).
A walk on the lattice is an ordered set of oriented links

A closed walk is a walk such that xk = xl. We divide the set of closed
walks into equivalent classes by letting 03C92 be equivalent whenever

03C92 have the same links and the order of the links in 03C91 is a cyclic per-
mutation of the order of the links in co2. We call the equivalent classes
« loops » and denotes by A(r) the set of the loops.
To a loop r we associate a loop y(r) obtained from r by eliminating

two by two the terms ( ~, ~+1 ), ( xn, such that : x" = and

x" + 1 = We denote by A(y) the set of these loops. I r denotes
the number of links of r (resp. y).
A connected surface S is a connected set of plaquettes. S denotes the

number of plaquettes of Sand A(S) the set of connected surfaces.
Let f£ be the set of links of A. To each link l = ~ x, x’ ~ of r we asso-

ciate a random variable A(l) with value in [ - 7r, 7r] and such that

We denote by Ar the sum of the link variables of the loop r and by Bs

Vol. 41, n° 1-1984.



66 J. RUIZ

the sum over the plaquettes p of S of B(p) where B(p) = being the
boundary operator.
We now consider the following actions

where Jr and Bs are real parameters.

Remark. - H 1 and H2 can be rewritten as

with

The Wilson parameter is given by

where is the invariant measure on S(I). The formulae (7) are to
be interpreted as the thermodynamic limit A’ -+ ~d of the corresponding
finite volume quantities ( eiAc )A,({3) defined by the same expressions
but with links restricted to a finite box A’. Let C be a rectangular loop of
sides of length Land T, for pure gauge model given by (2) we consider

E(L) = lim - - Log as the energy between static quarks separated( ) 
T 

g ~( ) gY q p

by a distance L.
We denote by n(l) the number of loops of length l containing a given

link. It is known that n(1 )  (2d)~. If N(s) denotes the number of connected
surfaces of area s containing a given plaquettes then N(s)  vd, where vd
is a positive number depending on the dimension d of the lattice. This
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67WILSON PARAMETER IN LATTICE GAUGE THEORY

follows by drawing the graphs whose edges connect the centers of the

plaquettes containing a same link and by using the following fact : on every
connected graph there is a path that passes through every edge at most
twice [7~].
We will now consider the following conditions.

CONDITION 3. - At large S Ks ~ ~ e-"~3151 with &#x3E; Log vd.
The condition 3 implies that Iy decreases as exp { - cste minimal area

with boundary’}’ }.
The conditions 1, 2, 3 imply the existence of the thermodynamic limit

and give sufficient conditions of the Matthews-Salam expansion. The condi-
tion n &#x3E; 2d is a sufficient condition for the existence of the Matthews-

Salam expansion.

THEOREM 1. - Let C be any loop. Consider the action given by (4)
and assume that Jr verifies the condition 1, then :

a) ~ ({3) ~ for any positive /3
k 1 is a positive constant and at large 03B2, k1 ~ k’1/03B2 (k’1 being a positive
constant).
M If moreover : 0 for all r then

for any positive (3o sufficiently small and any 03B2 such that /3 &#x3E; 03B20.

THEOREM 2. - Let C be a rectangular loop of sides of length Land T.
Consider the action given by (4) and assume that Jr verifies the condi-
tion 2, then for any positive 03B2

k2, k3 and k4 are positive constants and at large /3 ~8, k~ being posi-
tive constants.

d ) If moreover : 0 for all r, then

for any positive 03B20 sufficiently small and any 03B2 such that 03B2  03B20.

Vol. 41, n° 1-1984.



68 J. RUIZ

THEOREM 3. - Let C be a rectangular loop of sides of length Land T.
Consider the action given by (5) and assume that Kg verifies the condition 3.
Then for any positive [3,

k5, k6 and k7 are positive constants and at large 03B2, ki ~ k’i/03B2, ki being posi-
tive constants

d ) if moreover : 0 for all S then

for any positive 03B20 sufficiently small and any 03B2 such that /3 &#x3E; /30.

Remarks. 2014 We can see that the upper bounds obtained in Theorem 1

for d = 4, in part band c of Theorem 2 and in part a, b, c of Theorem 3
are of the same kind than those obtained for the U( 1 ) pure lattice gauge
theory with action given by (2).

If the interaction is ferromagnetic and in the 4-dimensional case one
can obtain better lower bounds (exp { - cste (T + L)}) than those obtained
under the conditions 2 and 3 by using Ginibre inequality [7~] and Guth’s
lower bound [12 ]:
The inequality a of Theorem 1 can be applied to the lattice gauge theory

with fermions since the weight factors are given by Nevertheless

the lower bounds are only obtained in the ferromagnetic case and cannot
be applied to this theory.

III. PROOF OF THEOREMS

In the proof of upper bounds the idea consists in a comparison with
Gaussian process. So we first use the method of complex translation of
Mac Bryan and Spencer [7~]. Our starting point is the following estimate
due to Mac Bryan and Spencer (see also Glimm and Jaffe [77] for Gauge
model).

LEMMA 1. - Let { }Ze9’ be some configuration of links. Then

Henri Poincaré - Physique theorique



69WILSON PARAMETER IN LATTICE GAUGE THEORY

where

We refer the reader to [7J], [77] for the proof of this lemma. For the
proof of the lower bounds one uses Ginibre’s inequality [14 ], [16 ]. In
terms of gauge model it can be rewritten as follows :

III.1. Proofs of the Lower Bounds in Theorems 1, 2, 3.

In formula (7), let Jr = 0 for all r excepted for r = y(C). Then by using
inequality (8), we obtain if the interaction is ferromagnetic

The right hand side of inequality (9) is equal to where the
modified Bessel function. 
Then one can show that

According to the different hypothesis on Jr we obtain the statement b
of Theorem 1 and the statement d of Theorem 2. The statement d of Theo-
rem 3 is obtained in the same way.

III.2. Proof part a) of Theorem 1 and part c) of Theorem 2.

Let C be an oriented loop. We consider a configuration { ~() }~~
verifying the following condition.

k is a positive constant chosen later.
Let 1 be some link such that y(C) contains 1. By using part a) of Lemma 1

we obtain

Vol. 41, n° 1-1984.
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For /3k large enough Cwe take 03B2 &#x3E; jSo with j8o we can write

Since Ap  ~ r //3k ; we can use for I r  /3k the estimate

For we use the estimate

Then under condition 1 we have

where Log 2~+x, with a &#x3E; 0. Since n(l)  (2d )~ we have

Let 03B21 such that 03B21k &#x3E; -. Then for 03B2  sup {j8o. we obtain

where A and A’ are positive constants. Therefore

we choose k &#x3E; 2A. Let /32 such that  1/2 .Then for /3 ~ 
/3l, /32 } we obtain statement A of Theorem 2 for large [3. By using inequa-
lity (8) one extends the proof to any positive /3. The same method is applied
to prove statement c of Theorem 2.

III.3. Proof of part a) of Theorem 3.

Let d = 2, and S 1 be the rectangle of vertices 0 = {0,0 } x 1 = { T, 0 },
x2 - ~ T, L }, x3 = { 0, L}. Let S2 be the symmetric of S1 with respect
to Ox1 axis and So = S 1 u S 2

Annales de l’Institut Henri Poincaré - Physique theorique



71WILSON PARAMETER IN LATTICE GAUGE THEORY

We now choose a configuration { verifying the following condi-
tions.

for the links l such that l E A/So we take a(l) = 0
for the links l such that l E ~S0 we take a(l) = 0
for the links parallel to the direction Ox2 we take = 0

for the links l parallel to the direction Oxl we take

k is a positive constant chosen later.
Under these conditions, for the b(p) variables we have I = 

1

if p ~ S0, b(p) = 0 otherwise.
Let p be some plaquettes of So. By using part b) of Lemma 1 we obtain

If ~3k is large enough (/3 &#x3E; /30 with /30 » D we can write

For I S we use the estimate

Vol. 41, n° 1-1984.
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Then under condition 3 we have :

where 3  Log 03BDd + (X, x &#x3E; O. Let 03B21 be such that 03B21k &#x3E; -.

For ~8 ~ sup ~i) we obtain: 
~

A and A’ are positive constants. The proof of inequality a) of Theorem 3
ends analogously to III.2. To prove statement c of Theorem 2, we use
the same method but in choosing the configuration given by ( 10).
We now consider the 3-dimensional case. The idea of the proof consists

in choosing a configuration {~)}~ to reduce it to a bidimensional

problem. We first introduce some notations.

III.4. Notations.

Let x = {jcB x2, x3 ~ be a site of A. We denote by the distance of x

to the Oxl axis

We define the projection of x on the half-plane {x3 = 0, x2  0}

where yl - xB y2 = d(x), Y3 - O.

FIG. 2.
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Let l = ~, y ) be a link. We define the projection of the link l on the
half-plane {x3 = 0, x2  0}

We consider the links l = (~ y) parallel to Ox 1 and introduce the
distance of l to Ox 1

Let p = x2, x3, x4) be some plaquettes such that

We define the projection of the plaquette p as

Proj [p ~ = (Proj [x4 J)

Fic.3.

Let p be a plaquette on the half-plane { x3 - 0, ~ ~ 0 }.
We define the « tube » Tp associated to the plaquette p by

Tp = { set of plaquettes q such that {Proj [?]=/?}
We define the distance of the plaquette p = x2, x3, x4) to Ox1

The distances of the tube 03C4p to Ox1 are given by

Vol. 41, n° 1-1984.
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Ill. 5. Proof of statement b) of Theorem 3.

We consider the rectangle S 1 of vertices 0 = {0, 0, 0}, x 1 == { T, 0,0 },
x2 - 

"

We choose a configuration {~)}~ verifying the following conditions:

for all links 1 perpendicular to Oxl direction we take = 0

for all links of ~LT and A/ALT we take a(l) = 0

for the links in ALT parallel to Oxl and oriented in the 0~
direction we take

k is a positive constant chosen later.

With this choice, for the b(p) variables we have

Using part b of Lemma  1 and o assuming j that the configuration verities
the " condition 12 we obtain _ _ _ _

with

We can write

We can decompose the sum Q’ as follows

Annales de Henri Physique - theorique -
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In the first term of the R. H. S. of ( 15) we use the estimate

In the second term of R. H. S. of ( 15) we use the estimate

Then under condition 3 on Ks

where 3  Log 03BDd + a, with a &#x3E; 0. For 03B2 &#x3E; we obtain

where A, A’ are positive constants. By choosing k &#x3E; A statement b of Theo-
rem 3 follows from ( 13), ( 14) and ( 16).

III.6. Proof of statement a) of Theorem 2.

We keep the notation of Sections 111.3 and III.4. We consider a confi-
guration {a(l)}l~ verifying the following conditions

for all links of aSo and A/So we take a(l) = 0
for all links parallel to Ox2 we take a(l) = 0
for all links l in So parallel to Oxl and oriented in the Oxl direc-

tion we take

We shall assume k = 1. Under these conditions for the b(p) variables we have

Using part a) of Lemma 1 for a configuration verifying the conditions (11)
we obtain

Vol. 41, n° 1-1984.
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Let

we can write

It is clear that

Let c a some positive constant larger than 3. For /3k large enough we make
the following decomposition of R.

Let Rt, R2, R3, R4 the first second third and fourth terms of the R. H. S.
of the inequality (20). We now use the estimates :

Under the condition 2 on Jr we obtain for large {3

Annales de l’Institut Henri Poincaré - Physique " theorique "
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Al, A2, A3 and A4 are positive constants. From these four inequalities
and from ( 18), ( 19), (20) follows the proof of statement a) of Theorem 2
at large ~3. Ginibre inequality extends the proof to any positive ~3.

III.7. Proof of Part b) of Theorem 2.

. 

In this case we choose a configuration {~) verifying the condi-
tion (12) as in 111.5. Using part a) of Lemma 1 for this configuration we
obtain

Let

We can write

It is clear that

We remark that R’ differs from R only by the factor 2(2j - 1). By using
the same decomposition and estimates as in Section III.6 we obtain

Vol. 41, n° 1-1984.
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with

where Ai, A2, A; and A4 are positive constants. By choosing ~ &#x3E; A;
we obtain part b) of Theorem 2.
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