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Conformal geometry
and spatially homogeneous cosmology

Robert T. JANTZEN

Institute of Field Physics. Department of Physics and Astronomy,
University of North Carolina, Chapel Hill, N. C. 27514

Ann. Inst. Henri Poincaré

Vol. XXXIII, n° 2, 1980,

Section A :

Physique ’ théorique.

ABSTRACT. - York’s splitting of the tangent spaces to the space of
Riemannian metrics over a 3-manifold is examined in the context of

spatially homogeneous cosmology where it is generally found to have
two distinct analogues in the noncompact case. This requires a modification
of the theory of minimal distortion shifts as it applies to noncompact
cosmology and clarifies the roles played by the « kinematical » and
« dynamical » degrees of freedom in the evolution of spatially homogeneous
Cauchy data.

I INTRODUCTION

In a previous paper [1 ], the « kinematical » and « dynamical » degrees
of freedom of the gravitational field as described by Smarr and York [2] ]
were identified for spatially homogeneous spacetimes. Taking the point
of view that the spacetime is given, one may use the freedom of choice of
the shift vector field compatible with the symmetry to simplify the time
evolution of the conformal metric induced on the family of spatially homo-
geneous slices. In particular, the shift vector field can be chosen so that
the only changes occurring in the conformal metric represent a change
in the conformal 3-geometry. Such a shift vector field was shown in refe-
rence [1] ] to be a solution of the minimal distortion equation of York
and Smarr [2] ] [3] but not necessarily a unique solution, even apart from
the trivial nonuniqueness associated with the spatial Killing vector fields.
However, if one takes the point of view that the spacetime is to be constructed
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122 R. T. JANTZEN

using the three-plus-one evolution approach, it was essentially found in
reference [7] ] that in those cases where the nonuniqueness is nontrivial,
one cannot use the minimal distortion shift equation to eliminate att of
the kinematical degrees of freedom. That is, one is forced to evolve some
of the kinematical degrees of freedom.

This breakdown in the notion of kinematical and dynamical degrees
of freedom arises because the geometry underlying the York-Smarr defini-
tions in the compact and asymptotically flat cases does not carry over in
general to the noncompact spatially homogeneous case. Instead, York’s
decomposition of symmetric tracefree tensors [4-6 ], which is fundamental
to his conformal approach to the initial value problem and the theory
of minimal distortion shifts, splits into two separate decompositions when
the spatial homogeneity symmetry group is not semisimple. One decompo-
sition is adapted to the initial value problem while the other is associated
with the true analogues of minimal distortion shifts which are unique
modulo spatial Killing vector fields. The distinction between the two

decompositions has the effect of destroying the complementary relationship
between kinematics and dynamics that occurs in the compact and asympto-
tically flat cases.

II DECOMPOSITIONS OF SYMMETRIC TENSORS

Both the minimal distortion equation and the conformal treatment of
the initial value problem depend on the well known geometry involved
in the action of diffeomorphisms and conformal scalings on the space
.A = RIEM(M) of Riemannian metrics on a given 3-manifold M. This
has been studied for compact M [7] ] and for M = R3 on the subspace
of A corresponding to asymptotically flat metrics [8 ]. For comparison
with the spatially homogeneous case, a brief sketch of this material will
be given ignoring the appropriate functional restrictions required in each
case.

The tangent space TAg at a point may be identified with the

space S 2 of symmetric ( tensors on M (~). This space decomposes into
a pointwise orthogonal direct sum of tracefree elements and multiples
of g : ,

e) The distinction between these " spaces will usually be ignored here. "
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123CONFORMAL GEOMETRY AND SPATIALLY HOMOGENEOUS COSMOLOGY

S2 is the subspace tangent to the orbit through g of the action on ~l of
the group of conformal scalings while S2F is tangent to a local slice for
that action :

Let the superscript « TF » stand for the projection of an element of S2
into the tracefree subspace S2F :

~l has a natural metric ~ (2) :

f1 is the volume element 3-form of the metric g and hand k are thought
of as elements of S2 and S2F are trivially orthogonal with respect
to ~.

Let 2014 (5 : 82 -~ X*(M) be the 1-form valued divergence operator
for S2 for the metric g, Kill : ~(M) -~ S2 the Killing derivative operator
on vector fields over M and L : 3E(M) -~ S2F the conformal Killing deri-
vative operator :

D is the covariant derivative associated with g. Assuming square-integra-
bility of all the fields in the following equations, one has :

where the second equality defines the global scalar product of a 1-form
and a vector field. ðTF is the restriction of 03B4 to S2F and by the first equality
is seen to be the covariant form of the formal L2-adjoint of the operator L.
Ran L is the tracefree projection of the tangent space to the orbit through g
of the action on of the diffeomorphism group £ð(M), while ker ðTF is
the subspace of S2F orthogonal to Ran L :

Introduce the space if/ of conformal metrics on M and the space ð: of
positive scalar densities of weight 1. There is a natural diffeomorphism
between ~ and ð: x ~’ which may be stated in terms of the components

(2) More precisely, a weak Riemannian structure.

Vol. XXXIII, n° 2-1980.



124 R. T. JANTZEN

of these tensors and tensor densities in any given local frame {~} on M
as follows :

g E ~ is a tensor density of weight - 2/3 which is invariant under the
conformal scaling (11.2):

Let P : ~ ~ ~ be the natural projection map defined by P(g) = g
Its differential has SZ c T Mg as its kernel and acts as a diffeomorphism
between S2F and T~g such that the local inner product of elements of S2F
equals the local inner product associated with the conformal metric of
the image elements in 

However, the global inner product ~ does not project to a metric on if/
since one needs a volume element to integrate the local inner product
against and no such object can be constructed from a conformal metric.
One is therefore forced to work with the tracefree projection of T A if
one wants to have a metric available.
The action of the diffeomorphism group £ð(M) on if/ by dragging along

is just the projection of its action on A. A tangent £xg to the orbit through g
projects to £Xg which is tangent to the projected orbit through g :

Thus LX is the element of S2F which corresponds to £xg E Similarly
if gt is a curve in A with tangent ht = d/dtgt = gt, then hTF corresponds
to the tangent to the projected curve :

The orthogonal decomposition (II.7) projects to a direct sum of T1Fg
adapted to the orbits of the action of £ð(M) on ~’ but there is no metric
with respect to which it is orthogonal.
Suppose M is diffeomorphic to a spacelike Cauchy hyper surface No

in a spacetime {4M, 4g), with No = ho(M). By specifying the time dependent
lapse function 03B1t and shift vector field 03B2t on M, one determines a foliation
of spacelike hypersurfaces Nt, a diffeomorphism ht : M ~ Nr and a curve
(gt, KJ in ~/’ x S2 "" where gt and Kt are the pullbacks to M via ht
of the induced metric and extrinsic curvature tensor of N~. The extrinsic
curvature is related to the tangent gt to the curve gt by the formula :

Annales de l’Institut Henri Poincaré-Section A



125CONFORMAL GEOMETRY AND SPATIALLY HOMOGENEOUS COSMOLOGY

Define the function K, a, /3) on A x S2 x ð(M) x X(M) by :

Et is just the tracefree part of the tangent g~. For fixed (g, K, ex), one may
pick 03B2 so that 03A3 is orthogonal to the projected orbits of the diffeomorphism

This is the minimal distortion shift equation of York and Smarr [2] ] [3] ] [6 ].
Modulo conformal Killing fields of g (elements of ker L), the « unique »
solution ~3 is the one for which Lj8 cancels the component of - 
belonging to Ran L. Since varying ~3 changes E along the directions tangent
to the projected orbits of £ð(M), clearly those values of ~3 which make E
orthogonal to those directions also minimize the length of E :

S is a minimum for a solution of the minimal distortion equation. Its

variation at such a solution 03B2MD is zero :

A time dependent shift vector field /3r is a minimal distortion shift if it

satisfies the minimal distortion equation at each t. A minimal distortion
shift vector field minimizes the global time rate of change of the conformal
metric as discussed in reference [2 ].
The orthogonal decomposition of S2F is also fundamental in York’s

conformal treatment of the initial value problem [4] ] [6 ]. The metric and
the tracefree part of the extrinsic curvature KTF are conformally trans-
fo rmed to g and KTF and then KTF is decomposed according to the barred
version of (II. 7):

The conformal transformation of KTF is determined by the requirement
that also undergo a simple scaling transformation :

York’s vector potential equation is simply :

When = 0 this becomes :

Vol. XXXIII, n° 2-1980.



126 R. T. JANTZEN

If da = 0 also, then the vector potential equation reduces to the minimal
distortion shift equation for 6 = 2rJ. - 6W :

This occurs in spatially homogeneous cosmology.
A is the freely specifiable part of K while the vector potential W is

determined to within elements of ker L (conformal Killing vectors of g)
by (11.20), usually rewritten in terms of the supermomentum constraint :

where j = 03C6- b j is the 1-form current of the source. Using this constraint
and (II 19), the vector potential equation takes the form :

The super-Hamiltonian constraint uniquely determines the conformal

factor (~ :

Here p = ~ - g p is the energy density of the source.
The variable Tr K is not conformally transformed but is considered a

kinematical variable whose choice is related to picking the initial value
slice. The condition d Tr K = 0 simplifies the solution of (11.23)-(11.25).
For example, (11.24) and (11.25) decouple, while (11.24) and (11.23) each
have the form ;

A slicing of a spacetime by spacelike hypersurfaces on each of which the
trace of the extrinsic curvature tensor is constant will be called an extrinsic
time slicing [10 ].
One should not overlook the orthogonal decomposition of the full

space S adapted to the orbits of(M) f771:

Because of the formula :

(ker does not coincide with ker ðTF except on the subspace of S2 for
which d Tr h = 0, so this decomposition does not project to the decompo-
sition (11.7) [5 ]. In analogy with the minimal distortion shift vector fields,
one can introduce minimal strain shift vector fields which make g~ ortho-
gonal to the orbits of ~(M). These minimize the norm of gr rather than 
leading to the minimal strain shift equation [2 ] :

Annales de Henri Poincare-Section A



127CONFORMAL GEOMETRY AND SPATIALLY HOMOGENEOUS COSMOLOGY

III THE SPATIALLY HOMOGENEOUS CASE

In spatially homogeneous cosmology, M is a 3-dimensional simply
connected Lie group G with Lie algebra g, the 3-dimensional Lie algebra
of left invariant vector fields on G. Let g be the Lie algebra of right invariant
vector fields and ~ : 9 ~ g the natural map such that X E g and X E g
have the same value at the identity of G. g and g commute as Lie sub-
algebras of X(G) and X ~ - X is a Lie algebra isomorphism from g
onto g. The Lie algebra

generates the action on G of the adjoint group AD(G) = IAut(G) or group
of inner automorphisms of G. This is a normal subgroup of the group Aut(G)
of automorphisms of G and is canonically isomorphic to the linear adjoint
group Ad(G) = IAut(g) c GL(g) or group of inner automorphisms of g.
Its Lie subalsebra

is called the adjoint Lie algebra and consists of the inner derivations of g.
The Lie algebra der(g) c gl(g) of derivations of g contains ad(g) as an
ideal and is the Lie algebra of the group Aut(g) c GL(g) of automorphisms
of g. Since IAut(g) is also a normal subgroup of Aut(g), both

are also groups called the group of outer automorphisms of G and g
respectively. The restriction to simply connected Lie groups G is sufficient
to guarantee that the natural homomorphism from OAut(G) into OAut(g)
be an isomorphism and hence Aut(g) [12 ]. Let aut(G) be the
generating Lie algebra for the action of Aut(G) on G ; it contains iaut(G)
as an ideal. In the simply connected case considered here, the derivations
of 9 are obtained by Lie bracketing g by elements of aut(G). The derivation
of g determined by ~, E aut(G) will be denoted by ad(~). Note that

ad(X - X) = ad(X) for X E g. Similarly aut(G) ~ der(g ) and one can easily
show that = for ç E aut(G), where in the left member of the
equality ade is the matrix representation of the map ad : aut(G) -~ der(g)
with respect to the basis e of g.

Let e == { be a basis of g with dual basi~ { of the dual space g*
of left invariant 1-forms on G and with structure constant tensor compo-
nents

Vol. XXXIII, n° 2-1980.



128 R. T. JANTZEN

As in reference [7], a subscript e will indicate the matrix representation
with respect to e of a Lie subalgebra of gl(g) or  Lie subgroup of GL(g)
or of some homomorphism into these spaces, i. e. ade(g), Aute(g) or
ade : aut(G) ~ dere(g). Let { be the natural basis ofgt(3,R) as described
in reference [7 ]. Then the matrices {ka} generate the matrix adjoint Lie
algebra 

When the adjoint representation ad : g -~ ad(g) is an isomorphism,
{ is a basis of ade(g).
The configuration space A = RIEM(G) is now replaced by its left

invariant subspace A(g), naturally thought of as the space of positive
definite inner products on the Lie algebra g :

J/3 is the submanifold of GL(3,R) consisting of the matrices of positive
definite inner products on R3. This correspondence between and ~3
in a given basis e is very useful.
The Lie subgroup of £Ø(G) which maps into itself is the semi-direct

product group

where L(G) [respectively R(G)] ] is the group of left [respectively right] ]
translations of G into itself. The equality of these semi-direct product
groups follows from the fact that Aut(G) contains the inner automorphisms :

For the same reason one has equality of the corresponding generating
Lie algebras (3) : -

The shift vector field must be restricted to this subspace of X(G) in order
to restrict A to and £ð(G) to !Ø(g).

Let S2(g) be the left invariant subspace of S2, namely symmetric G) )
tensors over g. The metric (II. 4) is the pointwise inner product of elements
of S~ integrated against the volume element of g. When evaluated on

(~) 9 and 9 are the generating Lie algebras for the left and right translations respectively.
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129CONFORMAL GEOMETRY AND SPATIALLY HOMOGENEOUS COSMOLOGY

elements of S2(g) for g E A(g), the pointwise inner product is constant
and hence (II.4) factors into the product of that constant and the volume
of the group G which will be infinite for noncompact groups. One must
therefore use instead the pointwise inner product itself as the appropriate
analogue of (11.4) on .A (4) :

This corresponds to a familiar Riemannian metric on the finite dimensional
manifold whose tangent spaces are isomorphic to 82(g). Each 
induces the orthogonal decomposition (II . 7) of 82(9):

The distinction between and S2(9) and various subspaces of these
spaces will usually be overlooked in this discussion.
The metric induced on J/3 by the correspondence (III . 5) will be denoted

by the same symbol ~ :

Here gab = gba are interpreted as the natural component functions on 
Let be the unimodular submanifold of J/3 (5) and let gab = 
where g = det g. The correspondence (III. 5) projects to a similar corres-
pondence between the left invariant subspace of W and W3. Since cg
is now just the local inner product, it does project to a metric ~ on ~’(g).
The corresponding metric on is just the restriction of cg to that sub-
manifold, again denoted by cg:

Here gab = gba are interpreted as the restrictions to of functions on ~3.
The decomposition (III .10) now projects to an orthogonal decomposition
of However, this discussion will continue in terms of as in
the general setting.

Since L(G) acts as the identity on under dragging along, it is suffi-
cient to consider the action of Aut(G) on A(g). This coincides with the
natural action on /#(g) of the isomorphic group Aut(g). The elements
of S2 corresponding to the generators of this action at g E were

shown in reference [1] ] to be :

(4) In the compact case, this differs from (II . 4) only by a constant for a given g E A(g)
and h, k E S2(g).

e) .~3 and ~3 were denoted by Wr and [7].

Vol. XXXIII, n° 2-1980.



130 R. T. JANTZEN

In other words the subspace of S2(g) ’" tangent to the orbit

through g of the action of either Aut(G) or Aut(g) is the image of the
map # : der(g) ~ S2(g). The operator L acts as a linear transformation
from X(g) into S2(g)TF with 9 c ker Land Lç = - 2A #TF for ç E aut(G).
Note that Kill and L are related by the formula :

In the semisimple case [Bianchi types VIII and IX ],

Aut(g) = IAut(g) = SAut(g) and der(g) = ad(g) = 
is tracefree, so Kill and L coincide on aut(G) and hence on since 9
is in the kernel of both operators. ,

The kernels of Kill and L within for always contain g,
the « spatial homogeneity » Killing Lie algebra :
(15) ker Kill n 3E(g) = (ker Kill n aut(G)) C 9

ker L n X(g) = (ker L n aut(G)) C 9 .
Let Ig c Aut(g) be the isotropy group at g E of the action of Aut(g)
on that space and let ig c der(g) be its Lie algebra. [Similarly let I9 = 
and i9 = (ig)e be their matrix representations with respect to a basis e,
namely the isotropy group and its Lie algebra at g E .~3 for the action
of Aute(g) on ~3.] ad is an isomorphism from ker Kill n aut(G) onto ig.
The first space is the space of Killing vector fields of g contained in aut(G).
In reference [7] ] it was shown that the isotropy group Ig is generically
nontrivial only for Bianchi types I, II and V where the generic dimension
of this group is 3, 1 and 1 respectively. When g = 1 in the type I [abelian] ]
case, I9 = SO(3,R). When g is proportional to 1 in the other two cases,
I9 is the subgroup of SO(3,R) corresponding to rotations about the third
axis.
The elements of ker L u aut(G) are homothetic Killing vector fields of

Since Lç = A #TF = 0 implies A # E S2(g)C, the

space der(g)# n must be nonempty for a nontrivial homothetic

Killing vector field (6) to exist. In reference [1] ] this space was shown to
be nonempty only in the abelian case where a single nontrivial linearly
independent homothetic Killing vector field ç exists which generates pure
dilations in the cartesian coordinates associated with a basis e for which

g = 1; in this basis one may pick = 1. That only one nontrivial
homothetic Killing vector field belongs to ker L in the abelian case is a
reflection of the fact that a Lie algebra of homothetic Killing vector fields
can contain at most one linearly independent nontrivial element [13 ].
In all other cases ker L n = ker Kill n X(g).

(6) A homothetic Killing vector field which is not also a Killing vector field.
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The operator ~ acts as a linear transformation from S2(g) into g*. Since
d Tr h = 0 for all  e S2(g), is contained in ker 5. If h E S2(g), the
components of its divergence with respect to a basis e of 9 are given by the
formula.

Thus ker ðTF is the subspace of orthogonal to span { ~ }.
Except in the semisimple case [Bianchi types VIII and IX ], the analogue

of the decomposition (II. 7) is not valid, nor is there any analogue of (II. 6)
or of the second equality in (11.17) except in the compact case [Bianchi
type IX ]. Instead one has two separate orthogonal decompositions :

The first might be called the minimal distortion shift (MDS) decomposition
and the second the initial value problem (IVP) decomposition. The equa-
lities in the third line hold only in the semisimple case. Similarly one has a
minimal strain shift (MSS) decomposition of the whole space :

The equality holds only in the semisimple case where the situation is

analogous to (11.27). In this case the MDS and IVP decompositions
coincide and are compatible with the MSS decomposition in the sense
that the tracefree projection of the latter yields the former. In the abelian
case, Ran L = 82(9) and Ran Kill = S2(g) so (Ran 

Let (4M, 4g) be a spatially homogeneous spacetime with G as an isometry
group acting simply transitively on spacelike hypersurfaces and let
Nt = ht(G) be a foliation whose elements are these hypersurfaces, each
diffeomorphic to G (’). The lapse function at for this foliation must be a
constant function G for each ~ and in order to restrict (gt, KJ to x S2(g),
the shift vector field ~3t must be confined to 

Consider E(g, K, a, ~3) of (II.14) as a function on x S2(g) x ð(9) x X(g),
where ~(g) is the space of constant functions on G. For fixed (g, K, a),
the function

is a quadratic function on the vector space X(g) constant along the direc-
tions corresponding to ker L, i. e. it projects to a quadratic function on
the quotient space L. It is a minimum for those /3 such that ~(~3)

(’) This is an extrinsic time slicing.

Vol. XXXIII, n° 2-1980.



132 R. T. JANTZEN

lies in (Ran L)1. Although this determines {3 only modulo ker L, ~(~) is
uniquely determined. Let TMDS(g, K, IX) c X(g) be the equivalence class
of such {3’s, projecting onto a unique point in X(g)/ker L. Since

(Ran L)1 ~ ker TMDS(g, K, oc) is contained in the solution space of
the minimal distortion equation (11.15). Elements of 
might be called true minimal distortion shift vector fields, since it is only
this class of minimal distortion shift vector fields which are the analogues
of such vector fields in the compact and asymptotically flat cases. Similarly
true minimal strain shift vector fields are those which make gt orthogonal
to Ran Kill and minimize the norm of gr. These are defined modulo
ker Kill.

In the semisimple case where Kill and L coincide on X(g), the true minimal
strain and minimal distortion shift vector fields coincide and are in fact
determined by the minimal distortion/minimal strain equation. In the
abelian case, the true minimal distortion shifts make 0 and the

true minimal strain shifts make gr = 0, hence the latter class of shifts
automatically belongs to the first class. This is due entirely to the existence
of a nontrivial homothetic Killing vector field. The additional freedom
in the minimal distortion shifts relative to the minimal strain shifts is

associated with the dilation freedom accompanying the existence of this
vector field. It seems reasonable to fix this freedom by choosing the minimal
strain condition in this case, leaving the remaining freedom in the true
minimal distortion shift entirely in ker Kill as in the other Bianchi types (g).
This condition will be assumed in further discussion of minimal distortion

shifts when referring to the abelian case. In those cases where G is neither
abelian nor semisimple, the true minimal distortion shifts and true minimal
strain shifts do not intersect.

In reference [7] ] a local slice for the action of Aut(g) on was

described for each Bianchi type Lie group G in terms of the action of

Aute(g) on A3 for a canonical basis e of g [defined in that reference ].
At a point g in the diagonal submanifold AD of ~3? the subs pace of the
tangent space corresponding to off-diagonal symmetric matrices is

contained in the span of the generating vector fields for the action of

Aute(g) on ~3. A local slice for this action was chosen to be a submanifold
of AD such that the tracefree projections of its tangent spaces were ortho-
gonal to the diagonal part of the tracefree projection of the orbit of Aute(g)
through each point of that submanifold and hence to the entire tracefree
projection of that orbit (9). In other words the tracefree projection of the

(8) Smarr and York impose this condition in their treatment of an abelian spatially
homogeneous spacetime as an example in reference [3 ].

(9) Diagonal and off-diagonal symmetric. matrices thought of as belonging to 
are orthogonal for g E so the tangent space to the slice is automatically orthogonal to
the off-diagonal subspace of the full tangent space.

Poincaré-Section A
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tangent space of this local slice is exactly (Ran L)1 [almost everywhere ].
Using the action of Aute(g), one can drag this local slice over and deter-
mine a local slice through every point of M3 which has the property that
the tracefree projection of its tangent space is (Ran [almost every-
where] ] ( 1 °). This property is not destroyed under dragging along by
Aute(g) since it is necessarily a subgroup of the full group GL(3,R) of
isometries of (~3, ~). For given initial data (go, Ko), solving the super-
Hamiltonian and supermomentum constraints, a choice of shift vector
field ~3t which keeps gt in the local slice through go is therefore a true minimal
distortion shift vector field. Of course it is sufficient.to consider initial data
such that go lies in the diagonal local slice since initial data differing by
an automorphism generates an isometric spacetime. The minimal distortion
shift vector field described in reference [7] ] is therefore a true minimal
distortion shift vector field.

The IVP decomposition of is also related to the orbits of the
action of a group on In the class A case where ab vanishes, 03B4a = ka
and so (ker ~TF)1 _ is the tangent space to the orbits of the
linear adjoint group Ad(G) = IAut(g) which is a unimodular group. In
the class B case where ab does not vanish, the tracefree matrices { 8p ~ also
generate a Lie algebra, say dade(g), since the following relation holds :

Thus (ker is the tangent space to the orbits of the unimodular group
generated by 
The structure constant tensor components dcab differ from Ccab by the

transformation ~ -~ 3a f or h ~ 1/9 h, where h is the invariant defined
in the class B case when the rank of n = nabeba is two by the relation :

The only class B type whose adjoint representation is degenerate not
an isomorphism] is type III = for which span {ka} has dimension
two ( 11 ). It therefore follows that the adjoint representation of dad(g) has
dimension two for type VI-1/9; in fact dad(g) is itself 2-dimensional in
this case. This is easily seen by inspection of the expressions 

Namely on the open submanifold of M3 on which (Ran assumes its maximal
dimension, the remainder of being a set of measure zero. On this open submanifold
the above discussion essentially shows that 0 (Ran is a completely integrable
or involutive distribution, having a family of integral submanifolds which are slices for the
action of Aute(g) on that open submanifold, except in the abelian case where

= GL(3,R) acts transitively on ~3.
e 1) The subscript or. the Roman numeral is the value of h.

Vol. XXXIII, n° 2-1980.



134 R. T. JANTZEN

and { 8a ~ when the structure constant tensor components are " in standard o
diagonal form, i. e. when n = n~2 ~, n~ 3 }), ab = 

Except for types III and VI-1/9, span { bb ~2 }. For the
first type, span {k1, A 2 } is 1-dimensional as is span {03B41, 03B42} for the
second type. In all class B cases these belong to an abelian 2-dimensional
Lie subalgebra of the special automorphism matrix Lie algebra 
The matrices ~3 and ~3 differ only in their diagonal components :

k3 is the off-diagonal part of k3. 03B43 is the matrix of a « projective auto-
morphism » of g, since the subgroup it generates acts on Cabc as a uniform
scaling.
Thus (ker is generically 3-dimensional for all class B types except

type VI-1/9 where it is 2-dimensional. The class A types with degenerate
adjoint representations are types I and II. The adjoint Lie algebra has
dimension zero and two respectively in these cases. Therefore (ker 
is 3-dimensional for all Bianchi types except I, II and VI-1/9 and
~ : (ker ~TF)1 ~ g* is a vector space isomorphism which can be inverted.
Since ðTF is always a 1-1 linear map when restricted to (ker it can
also be inverted from its 2-dimensional image in g* to the space (ker 
for the exceptional types II and VI-1/9. In the type I case, = ker ~
and (ker fV = {0 }.
The supermomentum constraint (11.26) is said to be integrable in the

vacuum case if ker b = O ker is an involutive distribution

[almost everywhere] ] on A(g). Then the vacuum constraint 
for zero shift vector field simply requires that each solution curve g~ of the
dynamical Einstein equations be contained in an integral submanifold
of the distribution in question. In the nonvacuum case, the motion ortho-
gonal to these submanifolds is determined by the supermomentum
constraint and is excited only by a nonzero source current. Since

(ker 5)~ c Ran Kill, one can pick a nonzero shift vector field to remove
this motion orthogonal to the given family of submanifolds. Such a shift
vector field might be called a dynamical shift vector field and is entirely

Annales de l’Institut Henri Poincaré-Section A



135CONFORMAL GEOMETRY AND SPATIALLY HOMOGENEOUS COSMOLOGY

determined by the supermomentum constraint as discussed in a following
paragraph. Using the local coordinates of reference [7 ], one can easily
see that ker 03B4 is an involutive distribution only in the class A case. For
all class A Bianchi types except I and II, ~D is an integral submanifold
of the corresponding distribution on J/3 [assuming the correspondence
between and J/3 is determined by a canonical basis e of g ] and the
others may be obtained from it under the action of the 3-dimensional

special automorphism group. The dynamical shifts are those which diago-
nalize gt modulo constant automorphisms. In the semisimple case, all of
the special shifts considered in this paper coincide. For Bianchi type II,

is such an integral submanifold (12) and the others may be obtained
from it under the action of the 2-dimensional group of inner automorphisms.
In the type I case, ker 03B4 is the whole tangent space.
The conformal approach to the initial value problem described in sec-

tion II is in fact unnecessary in the spatially homogeneous case. For constant
conformal factors ~, the super-Hamiltonian constraint (11.25) reduces to
a polynomial equation in 03C6 which is equivalent to a cubic equation in the
variable ~4 that has received much attention in the study of the solutions
of that constraint [14 ]. However, in the spatially homogeneous case this
constraint can be trivially solved for the variable Tr K without introducing
a conformal transformation, namely (11.25) with ~ = 1. This does not
mean that the conformal approach is not dynamically important. Often
the Einstein equations are rewritten in terms of the variables (gt, gj which
is equivalent to setting ~t12 - gt and gt = it in a given frame on G. This
approach is usually accompanied by a choice of intrinsic time which the
super-Hamiltonian constraint makes preferable to the extrinsic time

variable r = - 3 Tr K 10 . For example, Misner’s choice 15 S2 = - 1 ln = t
determines the lapse function in terms of the divergence of the shift vector
field [often zero] and Tr Kt, the latter of which is itself determined by the
super-Hamiltonian constraint :

This effectively removes the conformal scaling degree of freedom associated
with gr and Tr Kr from the dynamics by incorporating it into the choice
of time. Of course the equations of motion then become explicitly time
dependent.

Similarly the conformal transformation is superfluous in the solution
of the supermomentum constraint (11.26) (13)- which amounts to inverting

e 2) See reference [1 ].
(13) However, the choice of variables (gt, gj reintroduces the conformal transformation

into this constraint.
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the 1-1 map ðTF from (ker onto its image in g* to which the source
current must be confined. The freely specifiable part of KTF is its component
in ker 

The decomposition of KTF into a divergence free part and the conformal
Killing derivative of a vector potential W is no longer particularly relevant
in the nonsemisimple case since this does not correspond to the, IVP
decomposition. Since (ker ~TF)1 ~ Ran L, one can find a subspace of X(g)
of solutions of the vector potential equation whose image by the map L
is (ker but this step is unnecessary. As with the nearly identical
minimal distortion shift equation, the solution space is simply too large
in general. However, as pointed out in the previous section for the class A
case, the component B of KTF can be taken as the image by L of a vector
potential W E iaut(G) which is related to a dynamical shift vector 03B2 = 203B1W.
For all class A Bianchi types except I and II, the special and inner auto-

morphism groups coincide and (ker is tangent to the orbits of

SAut(g) = IAut(g). In the semisimple case these groups coincide with
Aut(g). Let LS be the restriction of L to g EB eaut(G) = 9 0153 g. For these
Bianchi types one has the orthogonal decomposition :

These two subspaces are almost everywhere tangent to submanifolds of
(14), except where the dimension of the isotropy group of the action

of SAut(g) on J/(g) does not assume its minimum value. Using a canonical
basis e of g, this discussion can be projected onto ~3. In reference [1 ], an
obvious parametrization of J/3 adapted to these two complementary
families of submanifolds was introduced and the supermomentum constraint
was explicitly solved as indicated above. In fact, the variables associated
with the orbits of SAute(g) were completely eliminated from the zero shift
dynamics, corresponding to the choice of a [not necessarily true ] minimal
distortion shift vector field ~3t which kept gt diagonal, i. e. a dynamical
shift vector field. The nonuniqueness of 03B2t can even be eliminated by
considering only left invariant shift vector fields in this case. For the semi-
simple Bianchi types the situation is analogous to that described in sec-
tion II and all of the automorphism degrees of freedom can be eliminated
from the zero shift dynamics, corresponding to the choice of the unique
left invariant true minimal distortion/strain dynamical shift vector field.
For Bianchi types VIo and VIIo, one automorphism degree of freedom

(14) This is clearly related to the integrability of the vacuum supermomentum constraint
in the class A case.
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associated with the 1-dimensional subspace Ran L n ker ðTF remains in
the dynamics as an effective dynamical degree of freedom. This occurs
since the supermomentum constraint fails to determine the true minimal
distortion shift vector fields for these two types.
For all the class B types except type V, a similar parametrization of A3

was introduced involving the 3-dimensional special automorphism group
SAute(g). The associated complementary families of submanifolds are

almost everywhere adapted to the orthogonal direct sum (1 s) :

where LS is the restriction of L to g EB saut(G) as before. Although Ran LS
is not orthogonal to ker ðTF here, can be decomposed into a direct
sum of these two subspaces and therefore ~TF : Ran g* is invertible
on its image. Thus if A + B with A E (Ran and B E Ran Ls,
one can determine B in terms of the source current and by inverting
the equation :

This enables one to eliminate the special automorphism degrees of freedom
from the zero shift dynamics using the supermomentum constraint, corres-
ponding to the choice of a shift vector field 03B2t such that Bt = 203B1tL03B2t which
keeps gt diagonal. This is not quite a minimal distortion shift vector field.
Again one must solve evolution type equations for the remaining auto-
morphism degree of freedom in order to determine the true minimal
distortion shift vector fields, i. e. the supermomentum constraint fails to
determine them completely. Bianchi type VI-1/9 is an exception to this

picture in that Ran n g* is only 2-dimensional and only two auto-
morphism degrees of freedom can be eliminated.
For the remaining Bianchi types I, II and V, the automorphism group

is too large and there is no unique choice of two complementary families
of submanifolds adapted to a useful decomposition of This is
discussed in reference [1 ].

It is helpful to list the generic dimensions of the various spaces which
have been discussed for each Bianchi type (16). This is done in table 1. In
this table Land 03B4TF are understood to be restricted to X(g) and 
respectively.
The dimensions in the first column were referred to in reference [1] as

the number of dynamical degrees of freedom for each Bianchi type. The

(15) The vacuum supermomentum constraint is not integrable in the class B case, explain-
ing why the two complementary families are adapted to this decomposition rather than
one involving ker ~~.

(16) These dimensions change on a set of measure zero in ~(9) on which dim (ker 
does not assume its minimum value.
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TABLE 1.

(Ran L)1 Ran Ran 03B4TF Ran L~ker 03B4TF

IX, VIII I 2 

L)-L 

3 2 

ðTF 

3 0 

L)/~ 

3 

ðTF Ran 

0 

ðT~

VIIo, VIo
1 4 2 3 0 3 1

IV

VI-1/9 1 4 3 2 0 2 2

V 0 5 2 3 1 3 2

II 0 5 3 2 1 2 3

I 035040 5

sum of the dimension of Ran Land (ker L)/g equals the dimension of the
automorphism group, while the sum of the dimensions of (ker L)/g and
Ran L n ker ðTF equals the dimension of the subspace of aut(G) consisting
of solutions of the minimal distortion equation. The dimensions in the
fourth column are the number of degrees of freedom which can be eliminated
from the dynamics using the supermomentum constraint. The number of
dynamical degrees of freedom which remain after the super-Hamiltonian
constraint is then used to eliminate the conformal scaling degree of freedom
is given in the third column.
York and Smarr define dynamical degrees of freedom to be present in a

spacetime if the conformal 3-geometry changes along an extrinsic time
slicing of the spacetime [2 ]. It was this definition, motivated more by
kinematical considerations, that was used in reference [7] ] to determine
the number of dynamical degrees of freedom generically present in spatially
homogeneous spacetimes. However, section 7 of reference [6] contains a
nice discussion by York of dynamical degrees of freedom in terms of the
number of linearly independent velocity variables compatible with the
constraints, whether or not they are integrable. When the MDS and IVP
decompositions do not coincide, these two definitions no longer agree and
kinematics and dynamics are no longer complementary as in section II.

If the second definition were adopted, then the numbers in the third column
of table 1 would be the number of gravitational dynamical degrees of
freedom generically present in spatially homogeneous spacetimes.

This seems reasonable for all but the degenerate Bianchi types I, II

and V. For these types, when the source energy-momentum satisfies
certain conditions, fewer dynamical degrees of freedom are effectively
present. For example, in the vacuum case it was shown in reference [1] ]
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that any solutions (g, K) of the supermomentum constraint could be
reduced to diagonal initial data (17) using the automorphism group.
Furthermore, with zero shift vector field, this initial data remains diagonal
when evolved by the dynamical Einstein equations. For types I and II

the supermomentum constraint is identically satisfied by diagonal initial
data and hence only the super-Hamiltonian constraint remains, leaving
two effective dynamical degrees of freedom. For type V, the diagonal
initial data is still subject to one (integrable) condition by the super-
momentum constraint so only one effective dynamical degree of freedom
is present. The time evolution of nondiagonal initial data with zero shift
vector field is related to that of diagonal initial data by a time independent
automorphism and so represents a spacetime isometric to one having
diagonal initial data with respect to a fixed canonical basis. However,
nondiagonal degrees of freedom can be excited by certain sources leading
to the presence of the full number of dynamical degrees of freedom listed
in the third column of table 1 for these three types. A perfect fluid can
excite these modes in Bianchi types II and V, while an electromagnetic
field will accomplish this in the type I case, provided that the electric and
magnetic fields are not both eigenvectors of the extrinsic curvature tensor.

These three Bianchi types are distinguished from the rest by the fact
that the isotropy groups of the action of Aut(g) on are generically
nontrivial, with dimensions 2, 1 and 1 respectively for types I, II and V.
Given (g, K) which satisfy the vacuum constraints, one can transform
this initial data by elements of the isotropy group Ig while leaving g fixed
and generate initial data for an isometric spacetime. The degrees of freedom
associated with the orbits of {g } x S2(g) under the action of Ig are therefore
ignorable in the vacuum case. When a source is present, these isotropy
group degrees of freedom may be excited but under conditions which do
not permit a brief description.
These three Bianchi types are also an exception kinematically again

due to the generically nontrivial nature of the isotropy groups Ig. The
fact that the true minimal distortion shift vector field [minimal strain in
the abelian case] ] for a solution curve (gt, Kt) is only defined modulo
ker Kill with ker Kill n igt corresponds to the fact that we can
act on this solution by a time dependent automorphism At E Igt without
changing the curve gt. Of course the curve Kt will generally change.
To discuss this further one must introduce the operator J on vector

fields by defining :

e 7) That is, the matrices of components of g and K in a given canonical basis e of 9
are diagonal.
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If X~ker Kill, index raising commutes with the action of Lie derivation
and when d Tr K = 0 also holds, JX is tracefree. The operator J appears
in the dynamical Einstein equations when written in the form :

where S is the spatial stress tensor of the source [~ ]. In the spatially homo-
geneous case, with (g, K) E x S2(g), J acts as a linear transformation
from X(g) into S2(g) with g c ker J. Its value on aut(G) is given by the
following expression in terms of a basis e of g :

The true minimal distortion shifts [minimal strain in the abelian case] ]
are defined only modulo ker Kill, but varying these shift vector fields
along ker Kill will change Kr unless ker J ~ ker Kill. It seems reasonable,
therefore, to impose a condition to narrow this freedom to the subspace
ker Kill n ker J in- a way analogous to the minimal distortion shift choice,
leading to a unique curve (gt, Kt) for given initial data (18). Suppose the
true minimal distortion vector field is chosen to minimize the norm of K,
i. e. ~(K, K). Varying this function on the space of true minimal distortion
shifts shows that it is minimized when K is orthogonal to J (ker Kill).
One would therefore pick ~3~ so that cancels the component of Qt
along J (ker Kill).

Suppose 03B2t is a true minimal distortion shift such that gt belongs to the
diagonal slice for the action of the canonical automorphism group Aute(g)
on ~3 as described in reference [1 ]. In the type I case where gt = 1 and
11 = SO(3,R), one can always use 11 to diagonalize K~ The additional
condition simply requires that the freedom remaining in the true minimal
strain shift be used to see that Kt remains diagonal if it is initially so ( 19),
since J (ker Kill) in this case is generically equal to the subspace of 
corresponding to off-diagonal matrices. This prevents one from adding
an arbitrary time dependent rotation generator to the true minimal strain
shift ~r, once it is chosen to satisfy the additional condition. In the type II
and type V cases, gr is proportional to 1 and I9t = 11 is the subgroup of
SO(3,R) corresponding to rotations about the third axis of R3. One may
always use I1 to make = 0. The additional condition requires that

( 1 ~) Since raising and lowering indices does not commute with the time derivative,
there are many candidates for such a condition, depending on which valence form of the
extrinsic curvature or even of the canonical momentum 1t whose time derivative is to be

minimized with respect to the natural norm. Tracefree projections are no longer relevant
at the second derivative level so there is no motivation to use tracefree norms as in the

original true minimal distortion condition.
Or that it be diagonal modulo a time independent rotation.
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this be true at least modulo a time independent element of I i and once
satisfied, prevents the addition to the minimal distortion shift vector field
of an arbitrary time dependent generator of rotations about the third
canonical coordinate of a canonical coordinate system associated with
the canonical basis of this discussion (2 0).

In the generic case for all Bianchi types, the true minimal distortion
shift vector fields have been determined modulo the space

and have a unique projection on the quotient space The space
ker Kill n ker J is well known to be isomorphic to the Lie algebra of
spacetime Killing vector fields which are tangent to the initial value slice
in a spacetime generated by initial data (g, K) [7~]. In the spatially homo-
geneous case, these spacetime Killing vector fields remain tangent to the
spatially homogeneous slicing, although for some Bianchi types and very
special values of (g, K), ker Kill n ker J is not entirely contained in X(g).
Let 4Z be a spacetime Killing vector field tangent to the spatially homo-
geneous foliation Nt = ht(G) with n denoting the field of unit normals
to this foliation and let Zt E Fr be the time dependent vector field induced
on G by 4Z via the diffeomorphism hr. The condition jE -~ 4Z = 0 must
hold for all spacetime Killing vector fields. When rewritten in three-plus-
one language, this condition determines the time dependence of Zt :

F~ always contains g which is isomorphic to the Lie algebra of generators
of the spatial homogeneity isometry group of the spacetime. In the generic
case, Ft = g. Each Zt E 9 will be time independent only if g. As long
as 03B2t has a nonzero projection (21) into the quotient Lie algebra

each such Zt must be time dependent no matter how we use the remaining
freedom in the choice of However, the time dependence of Z~ arising
from inner automorphisms generated by the part of 03B2t « along » 9 can in a
sense be minimized by fixing this remaining freedom. This is accomplished
by finding a new semi-direct sum decomposition

In each of these cases the additional condition turns out to agree with any of those
discussed in a previous footnote. Let M be any valence form of K or 03C0 whose time derivative
is to be minimized and let /X = then M must be orthogonal to /(ker Kill). But
the covariant tensor image of ~(ker Kill) for all such M coincides with J(ker Kill) and the
covariant tensor images of the various M’s differ only on the subspace orthogonal to
J(ker Kill) so the various conditions yield the same results.

First project /3~ into aut(G) using, the vector space direct sum = 9 @ aut(G).

Vol. XXXIII. n° 2-1980.



142 R. T. JANTZEN

where is a Lie subalgebra of X(g) such that if 03B2~ iaut(G), its projec-
tion into commutes with g. Thus any true minimal distortion
shift ~3~ whose projection (22) into aut(G) lies entirely in iaut(G) will have a
representative in which will leave each Z~ time independent.

Let c c g be the center of g ; then ( = c = 9 n 9 is also the center
of g since the center is invariant under the action of the linear adjoint
group which maps g onto g anti-isomorphically (23). Let b c g be a Lie
subalgebra of g such that g = c EB 1) and 9 = c EB ~ ; then ad : 1) ~ 
is an isomorphism and 
Finally let out(G) c aut(G) be a Lie subalgebra such that

Together these direct sums imply the following result :

is itself a Lie algebra since out(G) maps 1) into itself
under bracketing ; it is in fact isomorphic to aut(G) which in turn is iso-
morphic to the quotient Lie algebra is the generating Lie
algebra for a Lie subgroup of £ð(g) which is isomorphic to Aut(G)
and which has the same action on left invariant tensor fields as Aut(G).
Moreover if X E 1), then X - X e iaut(G) has the projection X into 
and X commutes with g .

In the semisimple case, 9 = 1), c = {0} = out(G), iaut(G) = aut(G)
and g. Thus every true minimal distortion shift vector field
here has a unique left invariant representative for which all the spacetime
Killing field projections Zt E 9 are time independent. In the abelian case,
g = = {0 } = iaut(G) and out(G) = aut(G). Here the inner
automorphisms are trivial and every extended true minimal strain shift
vector field might as well be chosen to lie in aut(G). The only other cases
where c is nontrivial are Bianchi types III = VI - 1 and II. In the first case,
assuming a canonical basis e, c = span {e1 + e2} and one may take
t) = span {e1 - e2, e3}. In the second case, c = span { e3} but h = span {e1,e2}
is not a Lie subalgebra nor can one find any Lie subalgebra t) to complete c
to a direct sum of g since [g, g ] = c.

In the type II case it was shown in [1] ] that

(22) Use the projection of the previous footnote.
(Z3) A Lie algebra anti-isomorphism ;x : g -)- h is a vector space isomorphism whose

composition with the vector space inversion X e 9 -" - X is a Lie algebra isomorphism.
The matrix of the anti-isomorphism - : g ~ with respect to the bases e and  is just
the inverse matrix of the adjoint representation of G [1 ].
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where Se is the Lie algebra of the subgroup of SL(3,R) isomorphic to

SL(2,R) which leaves the third axis of R3 fixed when acting on that space
in the natural way. Let S c aut(G) be the corresponding Lie subalgebra
of aut(G) and let be the element such that = 1 + e3 3.
Then one may take out(G) = span { ç.} 0153 5. The type V case is similar
with dere(g) = ade(g) 0 Se, where Se and s have the same significance as
before and one may take out(G) = e. In the type III case,

dere(g) = ade(g) C span {e31 + e32, I(3)} = ade(g) C oute(g) ;
let out(G) be the Lie subalgebra of aut(G) which maps onto oute(g).

All that remains is to choose out(G) for all those Bianchi types for which c
is trivial and the automorphism group is 4-dimensional. Here the group
of outer automorphism is 1-dimensional and one may take any ~_ E aut(G)
not belonging to iaut(G) and set out(G) = span ~ ~ ~ . For example, if e is
a canonical basis of g, one may choose ç E aut(G) such that = 

The true minimal distortion shifts have a unique representative in the
subspace and this representative induces as little time dependence
in the spacetime Killing vector field projections Zt E g due to the inner
automorphisms as qualitatively possible. The Lie subalgebra h is defined
only modulo c but since c commutes with g, the nonuniqueness in ~ has
no effect on the time dependence of each g. However, since out(G)
is defined only modulo iaut(G), different choices lead each Z~ to differ
by a time dependent inner automorphism unless 03B2t projects to the zero
element of oaut(G) = aut(G)/mut(G), in which case ~3t has a representative
in the subspace of which commutes with g and for this representa-
tive each Z~ Egis time independent. This seems to be the best one can do.
In any case uniqueness has been restored to the minimal distortion shift
vector fields in spatially homogeneous cosmology, although in the non-
abelian nonsemisimple case, the choice that accomplishes this is some-
what arbitrary (24).

IV . ADDITIONAL SYMMETRY :
THE NONGENERIC CASE

The complete group GC c £ð(G) of isometries of a left invariant Rieman-
nian manifold (G, g) may be larger than L(G). Since left translation is a
simply transitive action of G on itself, the quotient group is

isomorphic to the isotropy group at any point of G of the action of GC
on G. This in turn is isomorphic to the linear isotropy group at any point
of G. Since the matrix representation of the latter group with respect to
an orthonormal basis is a subgroup of SO(3,R), the dimension of 
must equal the dimension of one of these subgroups, namely 0, 1 or 3. The

(24) Bianchi type II is the sole exception to these statements.
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same dimensional restrictions hold for any subgroup ofGc containing L(G).
The semi-direct product group L(G) x Ig = GC n £ð(g) is the isometry

subgroup of (G, g) within £ð(g). Since ker Kill n 19, the function
r = dim (ker Kill n aut(G)) on ~(9) can at most assume the values 0,1 or 3 ;
its value at g is just the dimension of the isotropy group Ig of the action
of Aut(g) on Let r-1(ro) c be the submanifold on which r
assumes the value ro. When r assumes more than one value on ~(g), it
stratifies the space [17]. Each stratum consists of all left invariant
metrics which have an ro-dimensional isometry subgroup of Aut(G) ; the
isotropy groups at all points of r-1(ro) are conjugate subgroups of Aut(g).
Table 2 lists the values which r actually assumes for each Bianchi type [7 ]:

TABLE 2.

0 1 3

IX X X X

VIII X X

VIIo, VIIh~0 X X

VIo, IV X

V X

II -t- X

I X

r assumes more than one value only for Bianchi types VIIo, VIII

and IX. Let rmax and be the maximum and minimum values of r for
each Bianchi type.

In the type V case there are always two additional linearly independent
Killing vector fields not belonging to X(g) since (G, g) is a Riemannian
manifold of constant negative curvature for every and Gc is

always 6-dimensional. The same is true for Bianchi types VIIh~0 and VIIo
for g E r -1 ( 1 ) except that (G, g) is flat in the latter case rather than having
constant negative curvature as in the former case. In the type VI-1 = III
case, GC is always 4-dimensional so there is always a single linearly inde-
pendent Killing vector field not belonging to X(g). For the remaining
types Gc is always contained in £ð(g).
The additional spatial symmetries which are also spacetime symmetries

are associated with the function s = dim (ker Kill n ker J n aut(G)) on
S2(g). Let c x S2(g) contain those (g, K) for which s

assumes the value so. For a given Bianchi type, s assumes all the values 0,1,3
such that s ~ Y’max. Any solutions of the super-Hamiltonian and super-
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momentum constraints in will generate a spacetime having an
so-dimensional subgroup of Aut(G) as an isometry subgroup ; these are
all conjugate subgroups of Aut(G). For Bianchi types V, and VIIo,
the additional Killing fields not in X(g) are spacetime Killing vector fields
only for Friedmann initial data. The single such additional Killing vector
field in the type III case is a spacetime Killing vector field only for initial
data corresponding to the negative curvature analogues of the Kantowski-
Sachs spacetimes [1 ].
The term « generic » has been used to refer to c ~(~) and

~(0) c x S2(g) depending on the context. The first is relevant to

purely spatial matters as in table 1, while the second is relevant to spacetime
matters as in shift vector field considerations. Except for Bianchi types

VIIo, VIII and IX, the values given in table 1 always hold. For
type only the kinematical values change, namely those values
involving L, and the change in value to within an obvious sign is r - 
For types VIIo, VIII and IX, all of the values in table 1 change by this
amount.

For these three Bianchi types, the dimension of the distribution ker 03B4
increases by the amount rmin on the submanifold r-1(ro) with ro &#x3E; rmin,
i. e. it has singularities on the nongeneric subspace of A(g). Viewed as a
subspace of x S2(g), ker b is the solution space of the vacuum super-
momentum constraint. The singularities in the distribution ker 03B4 corres-
pond exactly to the bifurcation of this constraint space which occurs each
time the function s increases in value on ker ~. This bifurcation is described
for the general spatially compact case by Fischer and Marsden [18 ].
Recall that (ker (5)~ is tangent to the orbits of the group Dad(g) c GL(g)
generated by the Lie algebra dad(g) c gl(g). The dimension of ker 5 will
therefore increase when these orbits decrease in dimension. This only
occurs for the three Bianchi types VIIo, VIII and IX where Dad(g) = IAut(g).
These are the only types for which Dad(g) is compact or has a compact
subgroup and the bifurcations occur when the orbits of the compact
subgroups decrease in dimension.
True minimal distortion shift vector fields were discussed in section III

for the generic case where s assumes the value 0 on a solution curve (gt, Kt)
of the Einstein equations. These vector fields were fixed modulo the space
ker Kill n ker J n X(g) which generically equals g and then intersected
with a Lie subalgebra aut(G) to provide a unique representa-
tive (2 5). When 8 has a value 80 &#x3E; 0, the degeneracy space

.. v v n

becomes nontrivial and the true minimal distortion shift representative
in loses its uniqueness.

This scheme failed for Bianchi type II.
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