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Magnetic monopoles in
curved spacetimes

A. COMTET

Division de Physique Theorique (*),
Institut de Physique Nucleaire, F-91406 Orsay Cedex

Ann. Inst. Henri Poincaré,

Vol. XXXII, n° 3, 1980,

Section A :

Physique theorique.

ABSTRACT. - Spherically symmetric solutions of the coupled Yang-
Mills-Higgs system in a background metric are studied. We present several
explicit solutions and comment briefly on their stability.

RESUME. Nous etudions certaines solutions des equations de Yang-
Mills en presence d’un champ de matiere dans une metrique externe.
Generalisant les conditions de Bogomolny pour des metriques a symetrie
spherique nous ramenons les equations du mouvement a un systeme
d’équations du premier ordre, ceci nous permet de construire certaines
solutions explicites dont nous etudions la stabilite (au sens de Poincare).

The search for classical solutions of Yang-Mills equations for gauge
fields coupled to Higgs fields [7] ] is widely simplified by the following
observation due to Bogomolny [2 ]. Consider gauge fields coupled
to scalar fields 0(jc) belonging to the adjoint representation of the group.
In the static case the hamiltonian reads :

(*) Laboratoire associe au C. N. R. S.
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284 A. COMTET

where B is the magnetic field, V(0) is the self-interaction term of the Higgs
field and

its covariant derivative. Then in the limit ~, -~ 0 any solution of the first
order equation

is a solution of the equations of motion. The converse not being necessa-
rily true [3 ].

It is well known [4] that the above equation can be considered as a self
duality constraint provided we reinterpret 03A6 as the time component of
the static gauge field. In a previous paper [5] we have formulated the self
duality constraints for gauge fields in static spherically symmetric metrics.

In this note we show that in curved spaces, the correspondence Ao ~ 0
turns out to be no longer true. However one can generalize in a quite simple
fashion the usual Bogomolny conditions (1). Using these constraints in
a systematic way we are led for external metrics to some new explicit
solutions of the magnetic monopole type. Next we speculate about the
possibility of coupling these equations with the gravitational field [6 ], .

we finally argue that in the Prasad-Sommerfield limit [7] the mass of the
monopole comes out to be of the order of the Planck mass.
We consider the SU(2) Yang-Mills-Higgs model with the lagrangian

where

is the field strength and

is the covariant derivative of an isotriplet scalar field.
We look for static spherically symmetric solutions of the Wu-Yang

form [8 ] :

where is the three dimensional radius.

Furthermore we assume a spherically symmetric static metric

Annales de 1’Institut Henri Section A



285MAGNETIC MONOPOLES IN CURVED SPACETIMES

The equations of motion turn out to be the following ones :

where prime denote the derivative with respect to r.
Throughout this paper we shall restrict ourselves to the particular

case ~, == 0 which is the Prasad-Sommerfield limit [7]. In order to construct
explicit finite energy solutions our strategy is to convert the above equations
(which are of second order and non-linear) into a pair of first order non-
linear equations.

In flat space eq. ( 1 ) reads explicitly :

(Both upper or both lower sign are to be taken).
Now the simplest generalization of those equations would be :

where (x, {3, y are unknown functions of r.
Eqs. (4) are consistent with the equations of motion (2) if and only if

The last equation represents a constraint on the metric and it is trivially

solved: . either A = 1 and B is arbitrary or A = e03C6, B = (2014) r403B12 (a is
a constant and cp(r) is an arbitrary function of r).
We discuss below these two cases.

CASE I. The metric is of the form

Vol. XXXII, n° 3-1980.



286 A. COMTET

and eqs. (4) read

(the + sign has been chosen for convenience).
Defining K == e’’ and

we obtain

Let

Then the above equation reduces to

For an arbitrary metric the solution cannot in general be obtained simply
by quadrature.
The requirement of explicit solvability

leads to

We have to distinguish two possibilities: 03BB == :t a2.
For positive ~, == a~

describes a space of constant negative curvature.
We get

Eq. (7) then takes the form

The general solution

Annales de 1’Institut Henri Poincare - Section A



287MAGNETIC MONOPOLES IN CURVED SPACETIMES

depends on two parameters C, ~ ; however the condition /3 = 0 turns out
to be necessary in order to get a finite energy.

Therefore one obtains

Next, the standard boundary condition

leads to

where ~. is the vacuum expectation value of the Higgs field. Thus the solu-
tion (10) depends on two parameters a and ~u. However it turns out that
the mass of this configuration is independent of a. In order to calculate
the mass it is particularly convenient to observe that the hamiltonian
density is a total derivative [eqs. (6) are used in the course of the deri-
vation below ].
Thus one has

From eq. (11) it is obvious that the above feature is general as long as
the standard boundary conditions

hold.
For a -~ 0 we get back the Prasad-Sommerfield case :

Next we pass to the case where ~, _ - a2, the metric now describes
a space of constant positive curvature. The derivation of the solutions

Vol. XXXII, n° 3-1980.
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1
goes through the same steps as before. In the interior region r  - one is
led to a

1
where r*=a Arc sin ar.
Now C is to be regarded as a function of J1 defined implicitly by

Eq. (11) leads to a total energy

which is now metric dependent because the gauge field on the boundary
1

r = - has not the usual behaviour K --+ 0.
a

Indeed one has

CASE II. 2014 We now investigate the second case where 1. The first
order equations (4) become [9] ]

Defining dr and K = eX we get

If we further set

Annales de l’Institut Henri Poincare - Section A



289MAGNETIC MONOPOLES IN CURVED SPACETIMES

we obtain

As before the assumption of explicit solvability implies

It turns out that this condition is equivalent to the requirement of confor-
mal flatness at the level of the metric. Indeed by differentiating eq. (18)
twice we get

which expresses nothing but the vanishing of the Weyl tensor :

Among this class of conformally flat metrics we shall now keep the
subclass for which the constraint (5) is fulfilled. Let us recall that this is
a necessary condition ensuring that the equations of motion are satisfied.

In fact defining A and setting B = (’) r403B12 into eq. (19) oneobtains the general solution [7~] ] dr

where (x, oc’, a" are constants.
As an illustration, the choice a’ == x" = 403B12 yields

One finally obtains

Vol. XXXII, n° 3-1980.



290 A. COMTET

It is quite amusing to notice how the introduction of an external metric
1

manifests itself minimally, namely by a single translation 2a 
on the flat

space solution. However in that case the energy density diverges at the
origin.
The general discussion involves quite complicated expressions which are

not illuminating, thus we shall not pursue further in this direction. In the
following we briefly comment on some interesting properties of our solu-
tions. To explore their physical significance let us consider the energy
momentum tensor which is the response of the system to a change in the
metric.
For the stress tensor one finds

From eq. ( 15) we obtain

Consequently when A = 1 all components of the stress tensor vanish

identically. Such a feature has been analysed in detail by Bialynicki-
Birula [77] ] who called this property « Poincare stability ». The Higgs
field and the gauge field contribute to the stress tensor with opposite signs
and cancellation occurs if the first order equations (6) are satisfied. When
A 5~ 1 this stability condition is no longer fulfilled. However as we shall
discuss below the stresses can be counter-balanced by gravity.
For our purpose we shall need the following identity [See Appendix A] ]

Introducing again the coupling constant eq. ( 16) reads

The asymptotic behaviour of the field

Anna/es de 1’Institut Henri Poincare - Section A



291MAGNETIC MONOPOLES IN CURVED SPACETIMES

(in accordance with the Higgs mechanism m is the mass of the vector

field) is consistent with the metric

provided that oc = 2014.
The energy momentum tensor (eqs. 22, 23) is asymptotically such that

One recognizes the energy momentum tensor of a magnetic charge
1

g = - sitting at the origin.
e

Therefore the metric will be asymptotically of the Reissner-Nordstrom
form

The main feature is that now eqs. (24) are quite restrictive.
Indeed from eqs. (24), (25) we are led to a degenerate Reissner-Nordstrom

metric where all the parameters are now fixed

Obviously such a feature occurs only in the Prasad-Sommerfield limit
where the arbitrary scale ~ is now fixed by the gravitational constant.
Interpreting G as Newton’s constant the mass of the monopole M turns
out to be of the order of the Planck mass. Another alternative would be to
consider G as a strong gravitational coupling constant ; in this case eqs. (26)
might be relevant in the context of strong gravity [12 ].
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APPENDIX A

Proof of eq. (23)

Varying the lagrangian with respect to the metric yields the energy momentum tensor

After some calculation one finds

(note that Too is positive definite as it should be).
From eqs. (15), (16) one obtains

Therefore

Using eq. (5) the last term disappears. Thus one is led to formula (23)
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