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Analytic scattering theory
of quantum mechanical three-body systems

Erik BALSLEV

Matematisk Institut Aarhus Universitet

Ann. Inst. Henri Poincare

Vol. XXXII, n° 2, 1980,

Section A :

Physique ’ theorique. ’

ABSTRACT. - We consider a three-body Schrodinger operator

H = Ho + V in L 2(R 2"), where V = Y,, and each Va. is a dilation-

a

analytic two-body interaction decreasing faster than where {3 &#x3E; 1
for negative energies and 03B2 &#x3E; 2 for positive energies. Together with H
we consider the associated self-adj oint analytic family of operator given
in momentum space by H(z) = z2H0 + V(z), | Arg z  a.
We develop the stationary scattering theory for the pair 

for each ~p E ( - a, a) and each threshold ~, of the System. The local inverse
wave operators are constructed and asymptotic completeness proved.
The full S-matrix ~(~u) and for cp =r= 0 the channel S-matrices

are expressed in terms of boundary values of the resolvent. It is proved
that for each ~, the function is an analytic continuation into the
lower half-plane of the diagonal element ~~~,;~ (~, + p2/2na)~* with poles
at most at resolvent resonances and, under some reasonable assumptions,
precisely at these resonances.

INTRODUCTION

During recent years there has been a significant development in the
mathematical theory of the quantum-mechanical three-body problem.
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126 E. BALSLEV

Based on symmetrized versions of Faddeev’s equations, Ginibre and
Moulin [14 ], Thomas [34 ], Howland [18 ], Kato [2~] ] and Yajima [38] ]
through various approaches using Hilbert space techniques greatly
simplified the original work of Faddeev [13 ]. The assumptions on the
potentials were more explicit and somewhat weaker, but essentially with
the same r- 2 -E decay. Mourre [29] ] obtained certain generalizations to
potentials decaying as r-1-E. Hagedorn [7J] ] has treated the four-body
problem, using a modified version of Yakubovski’s equations. The general
n-body problem has been discussed first by Hepp [17 ], and recently
Sigal [~7] ] has treated this problem, using Berezin’s equations.
On the other hand, the dilation-analytic theory of many-body Schro-

dinger operators ([3], [3], [30 ], [35 ]) suggests the possibility of getting
a deeper insight into the analytic structure of the wave- and scattering
operators. Works of Hagedorn [16 ], Sigal [~2] and van Winter [~7] are
contributions in this direction. A dilation-analytic scattering theory for
the two-body problem was developed in [8 ], where an analytic continua-
tion of the S-matrix with poles at resonances was obtained. A more detailed
exposition of the results on the three-body problem contained in this paper
has been given in [10 ]. The results have been extended to many-body
systems below the smallest three-body threshold, using the Weinberg-
van Winter equation [77]. -

The present work is aimed at understanding the analytic structure of
the three-body problem, which gets its clearest expression in the analytic
continuation properties of certain diagonal elements of the S-matrix. This
is achieved through a combination of the abstract stationary theory
developed by Howland, Kato and Yajima with the dilation-analytic
theory. Yajima’s approach, utilizing Kuroda’s spectral trace formalism,
is particularly suited for this purpose, since there is a simple connection
between the trace and dilation operators. This leads to an explicit expres-
sion for the analytically continued diagonal elements of the S-matrix
(Theorem 7.4).
We work with two classes of dilation-analytic potentials. For scattering

at negative energies we allow not necessarily local potentials decaying
faster than r -1- E and for scattering at positive energies local potentials
decaying faster than r - 2 - E.

It is convenient in the present context to work in momentum represen-
tation. We consider the analytic family of operators H(z) introduced in [5 ],
where z = is a complex dilation parameter varying in an angle
C~ _ ~ z =  a } . As shown in [5 ], the essential

spectrum of H(z) consists of a set of « + starting at
thresholds ~,«, and the discrete spectrum consists of eigenvalues of Hand
non-real eigenvalues, called resonances.
The basic resolvent equations described in section 2 are extensions of

the equations of [38] to the dilated operators, allowing for the possibility
Henri Poincaré-Section A



127ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

of an infinite number of thresholds. A central feature is the construction
of an analytic, operator-valued function A(z, ~) with compact square and
singular points at discrete eigenvalues of H(z).
We proceed to establish a limiting absorption principle for the ope-

rator H(z) for each fixed z in (9. For this purpose we introduce different

topologies for negative and positive energy and treat separately these two
cases in sections 3 and 4. In this connection we identify the singular points
of the boundary values A + (z, Å) for ~p  0 with resonances and for ~p = 0
with eigenvalues of H. The basic analyticity properties of the boundary
values of the resolvent are derived as well as the connection between
these operators for ~p 4= 0 and ~p = 0.

After giving some facts on trace operators in section 5, we develop in
section 6 the scattering theory of the dilated operators as well as
that of H itself. For cp 4= 0 this involves the construction of a local spectral
measure for The local inverse wave operators FÀ.0153::t(qJ, iB) are then
defined in terms of the boundary values of the resolvent for bounded Borel
subsets of the + associated with each threshold ~,a, and
their basic properties are established. For ~p = 0 we construct the inverse
wave operators and prove asymptotic completeness (Theorem 6.9).
Without the analyticity assumptions this yields a generalisation of results
of [38 ], however in this generality the singular points are only known to
lie in a closed set of measure 0.

In section 7 we discuss the scattering matrix and its analyticity pro-
perties. For ~p = 0 the S-matrix is a unitary matrix of operators ~~,~,~,y(E),
where ~,~, Åy vary over all thresholds below E. For cp =)= 0 we define for

each ~,« the S-matrix 9~(~, ,u) associated with the scattering operators
F~,«+(~p, 4)F~,« 1 (~p, 4). It is proved in Theorem 7 . 4, that the function

J03BB03B1(03C1ei03C6) = J03BB03B1(03C6, 03C12/2n03B1) is a meromorphic function of z = 03C1ei03C6 in (!)-
with poles at most at resonances, and that has as its boundary
value for ~p -+- 0 + the diagonal element [5~(~ + p2/2na) ]{~,a,~a~ of the

S-matrix, provided 03BB03B1 + 03C12/2n03B1 is smaller than the next threshold. A
similar result holds for the S-matrix associated with the 0-channel.
We finally investigate the question, whether every resolvent resonance

is a pole of the analytically continued diagonal elements of the S-matrix.
For the lowest threshold the answer is positive, as for the two-body problem,
and there are no embedded eigenvalues on the corresponding cut. For
the higher thresholds the problem is complicated by the possibility of
embedded eigenvalues of the dilated operators, and the possibility that
the S-matrix is regular at a resolvent resonance cannot be ruled out.

However, if a resonance appears only on one side of the cut, in which
case it does not turn into an embedded eigenvalue, then it is a pole of
the S-matrix (Theorems 7. 7, 7.11). There is also the possibility of a degene-
rate resolvent resonance with part of the null space corresponding to an
embedded eigenvalue (and the resonance appearing on the other side of

Vol. XXXII, n° 2-1980.



128 E. BALSLEV

the cut) and part of the null space giving rise to a pole of the S-matrix.
This situation is dealt with in Theorems 7.9 and 7.11.

Throughout this work we have assumed that non-zero thresholds are
simple eigenvalues of two-body subsystems. In [70] we have indicated the
extension to the important case when they are degenerate, as it occurs
when a potential is rotation-symmetric or when two particles are identical
(cf. [6 ]).

1. DEFINITIONS, ASSUMPTIONS AND BASIC RESULTS

We consider a system of three particles, denoted by 1, 2, 3, in n-dimen-
sional space R". The mass, position and momentum of particle i are
denoted by mt, x= and ki. The pairs (ij) are denoted by 0152, ~, etc. We use the
notation R + = (0, 00), it + = [0, 00).
For any permutation (ijk) of (1 2 3) with a = (ij) we set

The free Hamiltonian in the center-of-mass frame is given for any a in
momentum representation by

and in position representation by the substitution

We set

We shall work mainly in momentum representation and only occasionally
in position representation. Any definition or statement containing the
index a is meant to hold for a = (12), (23), (31). We distinguish the spaces
of vectors etc. by the notation Rxa, Rya, etc. The basic Hilbert space

is denoted by W. The weighted Sobolev spaces with weight 5 and
differentiability parameter s is denoted by etc., and ? = 

For a discussion of the basic properties of Sobolev spaces we refer
to [26 ].
For any pair of Hilbert spaces we denote by :~LP2) the

space of all bounded linear operators from ~fi into ~2 and by :~2)
the subspace of all compact operators.
We denote by the unit sphere in Rm and identify with

L2(R+, writing /(p, ’) for 
For f E we set = .).

Annales de /’ Institut Henri Poincaré-Section A



129ANALYTIC SCATERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

The dilation operator U(p) is defined for pER +, s, 5eR, on 
b .

Considered as operators on ~f the U(p) form a unitary representation
Similarly we define the operators on by

For any operator A in .~ we set

The operators U(p) and y(p) are connected by

For 0  a  -, let O = Oa denote the angular region

We use the notation

whenever the right hand side is defined, and

Assumptions on the interactions

We shall consider the following two sets of conditions on the inter-
actions Va.
A I i~. There exists s &#x3E; t such that

where is a symmetric operator in with the property

A I ii). The function Wa(p) has an analytic extension to C, consi-
dered as a function with values in as well as in

A II i). The interaction V« is convolution with a function whose
inverse Fourier transform is a real valued function on Rxa such
that for some s &#x3E; 1

where

for some p &#x3E; n if n ~ 4 and for p = 4 if n = 3.

Vol. XXXII, n° 2-1980.
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A II ii). The and valued functions 
and have analytic extensions Mjz) and wat(z) to ? for i = 1, 2.

REMARK . It is well known that for 8 &#x3E; 0 the function

where ual, satisfy the conditions of A II i), defines a multiplication
operator in and hence in so
A II i) implies A I i) and A II ii) implies A I ii).
We shall make use of the following factorizations of VJz):

where in case I

and in case II

where and are the operators of convolution and
i = 1, 2.

The two-body case

The free Hamiltonian h003B1 is the self-adjoint operator in defined
by

The assumption A I i) implies that Va is h003B1-~-bounded, and hence
the total Hamiltonian ha. defined by

is self-adjoint by the Rellich-Kato criterion, see [23 ].
Moreover, by A I ii) a self-adjoint analytic family ha(z) is defined for

- 

_

For the basic results on the operators ha(z) we refer to [3 ], [5 ], [8] and [12 ].
We shall make the following simplifying assumption in both case I

and II :

A I iii) and A II iii). For z E (!) all discrete eigenvalues of ha(z) are simple,
and ha(z) and have no common eigenvalue for C( =F /3.

In case II we shall need some further assumptions. Let

By a result of Kato [22 ], under assumption II i) the 
function qa(~,) has a limit qa(o) for ~, -+- 0.
We now make the assumptions

Annales de /’Institut Henri Poincare-Section A



131ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

A II v) ha has no positive eigenvalues.
Condition A II iv) is satisfied « generically », and Condition A II v)

is satisfied under weak regularity conditions on the potential, see [1 ].

2. BASIC EQUATIONS FOR THE THREE-BODY PROBLEM

It follows from the assumption A I i), that V = Va is Ho-e-bounded,
a

and by the Rellich-Kato criterion the total Hamiltonian

is self-adjoint on ’@(H) = .@(Ho) = 
Moreover, by assumption A I ii) a self-adjoint analytic family H(z) is

defined for z by .

For the spectral properties of H(z) we refer to [5]. We only recall here
that the non-real discrete spectrum of H(z), denoted by 03C3cd(03C6), is z-inde-

pendent unless « absorbed » by the essential spectrum which consists
of a set of parallel half-lines with directions starting from thresholds,
i. e. points 

DEFINITION 2.1. 2014 For we define the set Ri03B1 of three-body
resonances Ri03B1 related to the threshold 03BBi03B1 by

Ri03B1 = U {03BB E is between 03BBi03B1 + e2i03C6R+ and 03BBi’03B1 + e2i03C6R+}

where 03BBi’03B1 = min 03BBj03B4 &#x3E; 03BBi03B1}.
The conjugate set Ri03B1 is given by the same expression with - a  03C6  0

replaced by 0  ~p  a. 
’

The set .JII},x of three-body resonances related to the « resonance threshold »
is defined in a similar way.
Similarly we define Ri’03B1 and R’03BB03B1 as the union over qJ of the set of resonances

lying on the negative side + and 03BB03B1 + respectively.
The set R0 of resonances related to the free channel is defined by

~ = U E is between R + and e2 i~R + ~

We shall now describe a decomposition formula for the resolvent

Vol. XXXII, n° 2-1980.
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R(~ ~ = (H(z) - ,) -1 extending the procedure of Yajima [38] to the

present situation. We set

and decompose RJz, () as follows.

Let be fixed, and let

be the eigenvalues of , below E with the corresponding eigenfunctions
of h z

chosen in accordance with a result of [3 ] such that is analytic in ~.
and such that

We use the shorthand notation

and for a quantity X depending = ~,a we write X~ = If 
is finite for all a, in particular in case II also E = 0 is allowed, in which
case we let {~ ~na 1 = We choose moreover ~a~z) as above for
4 analytic for and

0. Let

Then

Let 0 be the + 1) x + 1) matrix of operators defined by

Annales de l’Institut Henri Poincare-Section A
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The matrix of operators A(z, Q is defined for’ E C by

Let

The elements of are denoted by

and we set

It follows from Lemma 3.2 below, that

Moreover it is easy to see that

Since is analytic it follows that ( 1 + A(z, ,))-1 exists
except for a discrete set s. The following result shows that

s = 

LEMMA 2 . 2. A point is an eigenvalue of H(z) if and only
if - 1 is an eigenvalue of A(z, ~), and the null spaces % (H(z) - ~,) and
~V’( 1 + A(z, ~)) are isomorphic via the maps K(z, ~,) and its inverse L(z, ~)
defined by

for

for f (H(z) - ;L).

Vol. XXXII, n° 2-1980.
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Proof. 2014 This follows by a straightforward algebraic verification, using
the 2nd resolvent equations.

Then it is clear from (2 .1 ), that

The following basic formula is derived in the same way as Theorem 3 . 2
of Yajima [38 ], see also [70] for details.

LEMMA 2. 3. - Under the assumptions A I i)-iii) we have for zeC,

where

Under the assumptions A II i)-iv) the above decomposition is also
valid for E = 0, in which case we let

DEFINITION 2.4.
elements

Annales de l’lnstitut Henri Poincaré-Section A
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for

for

for

Thus

We have the following identities.

LEMMA 2.5.

Proof - (2.13) holds by definition, and (2 .15) is a restatement of
Lemma 2.3. A simple verification using the 2’nd resolvent equation
shows (2.14), and (2.16) follows from (2.14) and (2.15).

V ol . XXXI I, n° 2-1980.
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3. LIMITS ON THE CONTINUOUS SPECTRUM
FOR NEGATIVE ENERGIES

In this section we make the assumptions A I i)-iii) and investigate in
suitable topologies the limits of the operators H(z, Q, A(z, Q and Y(z, Q
on the part of the continuous spectrum given by

and

The variable z E d is written as z = For 03BB03B1 E we set
~. = Àcz + 
The statement

means that the operator-valued functions X(z, + with values
in ~;f2), where Jfi and W2 are Hilbert spaces, converges as 
in the uniform operator topology .~2) to limits, which are denoted
by + The convergence is always uniform on compact
subsets of the set of real numbers  for which the limits exist.
The following results are proved in [10 ].

Moreover, for 1 2  s’  s, A2±(z, 03BB)~l(H-s’,2).
The following result is established in [10 ], using the idea of the proof

of [8 ], Lemma 2 . 4.

if and only if 03BBi03B1 + e2i03C6 E Ri03B1 U 7p(H) u Ri’03B1(Ri’03B1 U 7p(H) U Ri03B1). Moreover,
for 0  8 ~ 80

Annales de l’Institut Henri Poincaré-Section A



137ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

The analogous results hold for ~ e ~ with ~, ~, ~ replaced by
~ ~ ~..
From Lemmas 3.1-3.3 we obtain

LEMMA 3 .4. 2014 Let 03BBi03B1~03C303B4(h03B1), ~R+, and assume that 03BB = 03BBi03B1 + e2i03C6
satisfies

Then for all = 1, ..., n~,

We shall now establish the existence of limits on the continuous spec-
trum for rp =F 0 of the various operators discussed above in a different
topology, based on the concept of smoothness. These limits will be utilized
for the construction of a spectral measure of H(z) for rp 4= 0. We denote
by 0394 a Borel set, such that 0394 is a compact subset of R+. We refer to [10]
for the proof of the following Lemma, which utilizes results of [22 ], [27].

LEMMA 3.5. For 03BBi03B1 E  s’ ~ s, the following limits exists

The same holds with ~ replaced by ~.a ~ ~da~~P).
From Lemmas 3.2, 3. 3 and 3.5 we obtain

LEMMA 3 . 6. 2014 Let /~ E ~~(ha~, and assume that

Then the following limits exist for all = 1, ..., n~,

We shall now derive the limits in suitable topologies of the opera-
tors G(z, Q and extend the basic equations given by Lemma 2.5 to the
boundary values of the operators G(r, Q, Y(z, Q and R 1 (z, Q on the continu-
ous spectrum.

Vol. XXXII, n° 2-1980.
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LEMMA 3.7.2014 For ~,« E ~a(h«~, ~,« E and all {3, j = 1, ..., n~,

Proof. 2014 This follows immediately from [2] Theorem 4, [72] Theorem 1
and the fact that G o(z, 0 is regular for ( = /L
On the basis of definition 2 . 4, [2 ] Theorem 4 .1 and Lemmas 3 . 4 and 3 . 7

we have the following result

LEMMA 3 . 8. 2014 Let 03BB = 03BBi03B1 + where  E R + for ({J 4= 0, ~(0, 03BBi’03B1 -03BBi03B10
for cp = 0. Then

Assuming furthermore that ~, ~ ~a ~ (~ u and for ~,a &#x3E; /~
also ~, ~ ~~’ (34!~’), we have

In both cases we obtain the following basic identities from Lemmas 2. 5
and 3 . 8.

LEMMA 3 . 9. 2014 Let 03BB = 03BBi03B1 + where ~R+ for cp 4= 0, ~(0, 03BBi03B1 - 03BBi03B1)
for ~p = 0. Then

Assuming furthermore that 6p(H) (~ u 6p(H)) and for ~,« &#x3E; ~,~
also ~, ~ ~a~(J~a~), we have

We shall now investigate the basic analyticity properties of the opera-
tors À) and À) and their limits for ~p -+- 0. Utilizing [2] Theo-
rem 4.1, it is straightforward to derive the basic analyticity and limiting

properties of the operators ~+2014i. . Moreover, from [8 ]
B 

Lemma 2 . 8 and a convolution representation it is easy to show (cf. [7~])

that 4 + 2n z 2 is an analytic PJ(Yf, func-

tion of z E (9" ~(2n«(E - ~))~, oo). This leads to

LEMMA 3.10. - the functions

Henri Poincaré-Section A



139ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

03BBi03B1 + 2014 are analytic for Z E (!) " R +, and for 03BBi03B1 = 03BBe analytic for

" [(2n03B1-(03BB’e-03BBe))1 2, oo). Moreover, for 03BBi03B1 &#x3E; 03BBe

The analogous analyticity result holds for A:i: z, 03BB03B1 + z2 2n03B1), 03BB03B1~03C3cda(03C6).B 2~/

LEMMA 3.11. - For all ~g ..., ~ the 

functions Yj03B2(z, 03BBi03B1 + z2 2n03B1) and the functions

( 
. z2 2n03B1) are m

2n(X

YE+ ~ ~ + - are meromorphic for with poles at most

at points of

= ~,e these functions are meromorphic for

with poles at most at points of

2
Moreover, for À~ &#x3E; ’ and À~ + ~E ’ ’ ’ ’’

The analogous analyticity result holds for ~,« E 

Proof. From the analyticity and limiting properties of z, 03BBi03B1 + z2 2n03B1)
it follows that the operators H:t z, 03BBi03B1 + z2 2n03B1) are analytic for z E O " R +,

and for 2  s’  s, 03BBi03B1 + 
P 2 2n«

an d for "2 1  s 
I 

=  S, /La 1 i + - P E ( /La’ 1 i /La 1 i’)

i 2 . ( i Z2 
in ~-S-,2) (3.12)

l2n«) _ hm- H:t z, 03BBi03B1 + 2n03B1
Then the result follows from Lemmas 3.2, 3. 3, 3.10 and (3.12), using

analytic Fredholm theory (cf. [33 ]).

Vol. XXXII, n° 2-1980.
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4. LIMITS ON THE CONTINUOUS SPECTRUM
FOR POSITIVE ENERGIES

In this section we make the assumptions A II i)-v) and investigate in
certain topologies introduced by Yajima [3~] ] the limits of the opera-
tors H(z, 0, A(z, 0 and Y(z, () on the part of the continuous spectrum
given 

DEFINITION 4.1. - Let ~o = min ~~, R +

We shall use the following simple fact.

LEMMA 4 . 2. 2014 For and all a, i = 1, ..., na

Based on [19 ] Lemma 1.1, [2 ] Theorem 4.1, [72] ] Theorem 1, [8 ]
Lemma 2 . 8 and [38] Lemma 4 . 5 the following results are proved in [7~],
utilizing techniques of [38 ].

LEMMA 4.3. 2014 For all oc

Annales , de J’lnstitut Henri Poincare-Section A
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LEMMA 4 . 4. 2014 For 

and A~(z, E ~(~f’~). ’" ’"

For ~ =t= 0 the same holds with replaced by :/f°,z.
The next result is proved in the same way as [8] Lemma 2.4, details

are found in [70].
LEMMA 4.5. - For ~ = 0, ~ E R + and ~ =f= 0,~ E (0, /~)

if and only if

Moreover for 0  a ~ Eo

We utilize the following spaces introduced by Yajima [38 ].
DEFINITION 4.6. -

LEMMA 4 . 7. 2014 Assume that  E and

Then

For ~p ~ 0 (4. 5) and (4.6) hold with ~3 replaced by ~’~.

Proof 2014 By Lemmas 4.3-4.5

Vol. XXXII, n° 2-1980. 6
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and for 0 (4. 7) holds with !£3 replaced by ~o. Then the proof proceeds
as in [38 ], see also [1 D ].
The following limits of operators Y(z, Q for 03C6 + 0 in a topology related

to the smoothness technique are established in [70].
LEMMA 4.8. be a Borel set such that 0 is a compact subset

of R + . Then for ~p + 0

LEMMA 4.9. be a Borel set, such that Li is a compact subset
of and such that

Then for ~=)=0

We utilize the following limits of the operators G(z, 0 and extension
of the basic equations of Lemma 2. 5 to the boundary values of the opera-
tors G(z, 0, Y(z, 0 and Q, established in [10].
LEMMA 4.10. 2014 For 

and for 03C6 4= 0 (4.11) holds in 
From Lemmas 4.7 and 4.10 we obtain the following result, utilizing

definition 2.4.

LEMMA 4 . 11. 2014 For 

Annales de l’Institut Henri Poincaré-Section A



143ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

in ~3, ~’o) and for ~p ~ 0 in 

Using [79] Lemma 1.1 and a convolution representation, it is easy to
show that for all Ct, /3, z2/2m)Aa(z) is an analytic ~~(.~)-valued
function of z e ? ’B. U { r~t ~ 1 ~ t  oo } . This together with the

~)~/2M.=~(~)}
analyticity and limiting properties of z2/2m) yields

LEMMA 4 .12 - The -s)-valued functions z2/2m) are analytic
for

and for 03C1~R+

isjow Lemmas 4 . 3-4 . 5, 4 . 7, 4 .11 and 4.12 yield

LEMMA 4.13. 2014 For all a, i = 1, ..., nx, the ~(~3, ~)-valued functions

Yx + (z, z2/2m) and the B(H3, H0)-valued function Y0 + (z, z2/2m) are

meromorphic for

with poles at most at points of { z|z2/2m E R0 ~ R’0(R’0 ~ R0)}, and for
p2/2m E B ~p(H), 20 E R+

P~oof. 2014 The proof is similar to that of Lemma 3.11 and is based on
Lemmas 4. 3-4. 5, 4. 7, 4.11 and 4.12.

5. TRACE OPERATORS

DEFINITION 5.1.

Vol. XXXII, n° 2-1980.
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and * for Å E [0, oo)

Moreover, for  E R+ we define in accordance with [28 ], p. 44 (see also [26] ]
prop. 2.1) and [7~] prop. 2 . 2

For ~, E (~ ~) we define the operators T~~,) by

In case II we define T(~,~ also for ~, E (0, oo) by

By ( 1.1 ) we have the following connection between trace operators and
dilation operators.

LEMMA 5.2. 2014 The following identity holds in 

T~)T~)==~~(2~)-’ {~+(~ ~.a ’~’ ~ce2 ~~~ _ r~a _ (~P~ ~a ~’ ~ue2 ~~~ ~ (5.10)
and in . _ .

Proof. 2014 This follows from (5.4), (5 . 5) and a well known representation
p2)+ 1 _ (k2 _ p2)-1 given in [2~] ] 4 . 4.

The following result is proved in [10 ].

LEMMA 5 . 3. Suppose that conditions A I i)-iii) are satisfied. Let 

and let It E (0, , , for 03C6 ’ = 0,  E R + for 1 =t= 0.
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Assume that for some fixed ~e(- ~ a) and ,u E R +

Then for ~p = 0 and

and for

For 03C6 =F 0 and 03C1~R+, T03B1( /03C12)03C4i03B1 = o.

In particular for p = = o.

LEMMA 5.4. - Suppose that A I f)-m) are satisfied and For

~=0~e(~~)B~(H)

For ~p =)= 0 and

in particular for p = 

Proo, f. 2014 By [2] Theorem 4.1 and Lemmas 2 . 5, 3 . 4 and 3 . 8

~(z, ~G~z, ~,)u = 

and the Lemma follows from Lemma 5.3.
The following analogue of Lemma 5 . 4 is proved in [10 ].

LEMMA 5 . 5. Suppose that A II i)-v) are satisfied. For ~p = 0 let u E ~’1,

~ E (Def. 4 .1 ), and for ~p + 0 let u E E R + . Assume that for some
fixed 03C6 and 

Then for ~p = 0 and p = 1,

and for ~p =)=(),

in particular for 03C1 = (2m )1 2, 03B30(1)u0 = o.

Then [2] Theorem 4.1 and Lemmas 2.5, 4.7 and 4.10 yield

LEMMA 5.6. - Suppose that A II f)-u) are satisfied. For ~ = 0,

~I03BB0 / 03C3p(H), u~1,
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in particular for p = 

6. CONSTRUCTION OF WAVE OPERATORS

LEMMA 6.1.2014 Suppose that A I i)-iii) are satisfied. Let 03BB03B1 = 
and let A be a Borel set such that ~ is a compact subset of R + for cp =t= 0
and of (0, ~,a - ~.a) for cp = 0, and such that in the respective cases

Then for and for f and/or g replaced by functions in L2(~, 
we have for cp =!= 0

For 03C6 = 0

The left hand side of (6.1) or (6.2) defines a bounded sesquilinear form
on ~f x ~f.
Under assumptions A II i)-v) the same result holds for positive energies,

obtained by replacing 9f~ by 9fo and a by 0 in (6.1), (6.2).

Proof 2014 This is proved for ~p = 0 in [24 ], [38 ]. For ~p =)= 0 the proof
is similar, see [lo].

DEFINITION 6 . 2. 2014 For cp =F 0 and 03BB03B1 = 03BBi03B1 E we denote by 
the set of all Borel sets ~ such that 0 is a compact subset of R + and
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Also, denotes the set of all Borel sets ~ such that A is a compact
subset of and

Under conditions A I the operators A) E are defined

for /L~ = ~~ E A E ~(~) in accordance with Lemma 6.1 by

Under assumptions A II i)-v) the operators A) E ~(Jf) are defined
for 0394 E accordance with Lemma 6 .1 by

_

LEMMA 6.3. - For fixed ~p =t= 0, the operators ð) satisfy the
following conditions :

(6 . 5)
For any finite }~= 1 of pairwise disjoint sets in ~~«(cp)

The properties (6.5)-(6.7) also hold with and/or replaced

Proof 2014 The additivity property (6.6) follows from that of the Lebesgue
integral in view of Lemma 6.1, and (6.7) follows easily from Definition 6.2.

Property (6.5) has been proved in [10 ], utilizing ideas of [21 ].

DEFINITION 6.4. 2014 Under the assumptions of Lemma 6.1 we set for

For cp = 0 we define
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In case I I the operators Fo ± (0), ð) and A) are
defined similarly, replacing Yi03B1 by Yo and 03BBi03B1 by 0.
We shall now establish the basic properties of the local inverse wave

operators ~) and ~) associated with each channel for ~p =t= 0
as given by Definition 6.4.

LEMMA 6.5. 2014 The operators are in L 2(~, and
~) in rJI(Yt, L2(~, 

Proof 2014 This follows immediately from Lemma 3.6 and [2~], p. 44
in the case of A) and from Lemma 4 . 7, [14 ], prop. 2 . 2 in the case
of A).
The following Lemma is proved in [10 ].

LEMMA 6.6. - If f E ~f and

THEOREM 6.7. 2014 Under assumptions A I i)-iii) the operators A)
are 1 - 1 and bicontinuous from E03BB03B1(03C6, 0394) H onto L2(0, ha). Moreover,
for X ç; ð and hj we have

Under assumptions A II i)-v) the same holds with ha replaced by ho
and 03BB03B1 replaced by 0.

Proof. 2014 Let ~):~. Then by Lemma 6.1 and (6 . 8)

This proves that ~) is 1 - 1 and F~a 1(~p, A) is bounded. It then
suffices in order to prove that A) is onto L2(~ ; hj to show that
Øl(F;’0153:t(q&#x3E;, ~» is dense in this space. This follows in a straightforward
way from Lemma 6.6 and (5.13) (cf. [10 ]).

Finally (6.12) is equivalent to

on setting u = A)u.
By Lemma 6.6 the left hand side of (6.14) equals 3)EÅc(q&#x3E;, ~)u,

and the Theorem is proved for A). The proof for A) is
similar.
For ~p = 0 we have the following result on asymptotic completeness

for negative energies.
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THEOREM 6.8. - Under assumptions A I i)-iii) the operators 
defined by (6.10) and (6.11) are isometries from E(~,a + onto

There exist unique isometric operators F~(~, ~) from

onto

such that for all ð

The operators F(~,a, ~,a ) are defined by (b .10) and (6 .11) with ~,a + ~ replaced
bY (~«~ ~a ) v 6p(H).

For 0394 c (0, 03BBi’03B1 - 03BBi03B1) v 6p(H) and

we have

Moreover

The same result holds in case II for positive energies, with 03BBi03B1 replaced
by 0 and replaced by Fo:t.

Proof 2014 Since by [5 ] Lemma 1 accumulates at most at point

of { 0 } u it suffices to prove the first statement for any closed
o:

interval A. In this case (6.2) shows that Fa±(0) are isometries from E(~+A)

into ¿ 03 L2(~,a - ~,a + ~, ha). It is then proved as in [38 ],
a ~~d ~ ~a~

using (5.12), that 9l(F~:t(~)) is dense in and hence equal to this space.
The identity (6 .16) is proved in [38 ].

7. THE SCATTERING MATRIX

DEFINITION 7.1. 2014 Under assumptions A I i)-iii) we define for ~p =t= 0,
A E the local scattering operators A) E ~‘(L2(0, hj) by
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For p = 0 we define the scattering operators S(~, ~) by

Under assumptions A II i)-v) we define for ~p =t= 0, A E ~o(~) the local
scattering operators Ll) E ho)) in accordance with Theorem 6.8
by (7.1), where 03BB03B1 is replaced by 0. For 03C6 = 0 we define the scattering
operator S(O, oo) in accordance with Theorem 6.8 by (7.2), where ~,«
and 03BBi’03B1 are replaced by 0 and oo .

It follows from Theorem 6.8 that S(~,a, ~’) and S(O, oo) are unitary
operators on

and

respectively.
It follows from Theorem 6. 7 that A) is a bicontinuous isomor-

phism of L2(~, h«) which commutes with A, and A)
is a bicontinuous isomorphism of L2(~; ho) which commutes with 

A.
The following representation of the scattering operator is given in case II

for ~p = 0 in [38 ]. For the extension to case I and to ~p + 0 we refer to [10 ].

THEOREM 7 . 2. 2014 Under assumptions A I i)-iii) for 03C6 =t= 0 and 0394 E 

the local scattering operators A) and their inverses ~) have
the following representations for f E L2(~ ; ha) and a. e. ,u E A,

where ~~,a(~p, and its inverse ~ 1( qJ, are defined by

For fixed /?  0 the operators j03BB~(03C6. ) form a norm-continuous

function of B { + ~.1e2~~E~,~a(~~a) ~ with values in ~(~ and ~’ 
1

is a norm-continuous function of ,u E R+ ~. ~ ~c ~ ~,a ~- ,cle2t~ E ~~,a(~~a) ~
with values in ~(~). Moreover
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For ~p = 0 the scattering operators S(~ ~) and their inverses S -1 ~~,«, ~)
have the following representations for

and a. e. 

where the scattering matrix ~~a(~) and its inverse ~ 1 (,u) are defined by

Here

and

is the set of components related to scattering in the interval (~ ~).
We recall that E = ~,a and

The operator J03BBi03B1( ) is unitary on  h03B4 and . norm-continuous

for~6(0,~-~)~(H). 
Moreover, 

’ 
’

and

Under assumptions A II i)-v) the scattering operators A) have the
representations obtained by replacing a and 03BB03B1 by 0 in (7 . 3)-(7 . 6), and So(A)
have representations obtained by replacing T(~,a + ~u) by T, YE by Y and WE
by W in (7 . 8)-7 .11 ).
We proceed to study the analyticity properties and limits for ~p -+- 0

of and ~~,«(~p, p2/2na), establishing the connection of
these operators with the diagonal elements [~~(p~/2~)](~~~~ and

[~~~(p~/2~)]~ ~ of the S-matrix and its inverse in the corresponding
energy interval.
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DEFINITION 7. 3. 2014 For any set D(~) c C we use the notation

In case II, with ~,« replaced by 0,

THEOREM 7.4. - Under assumptions A I the B(h03B1)-valued func-
tions ~)=~(~/2~) and ~(~)=~(~/2~) are mero-
morphic for " R+ with poles at most at points of (~ u ~~’)- and
(~’ u ~~)- respectively.

Moreover.

and

in the uniform operator topology of f1I(h(X), uniformly for p in any compact
subset of {(~,~)B~(H)}".
There ’ exist closed 0 null sets N~ c , , B such that

is invertible for

and

in the uniform operator topology uniformly for p in any compact
subset of {(03BBi03B1, 03BBi’03B1 " N03BBi03B1)}~.
For 03BBi03B1 = 03BBe the functions J03BBe(z) and J-103BBe(z) are meromorphic for

" [(2~(~ - ~))~ oo) with poles at most at points of and ~
respectively.
The analogous result holds in case II under assumptions A II f)-!;).
Proof 2014 We consider case I, the proof for case II is similar, except for

for the last statement, which requires a different proof (see [70]) since
we have not proved that 1 - is compact. By (5.4) and the identity

we have, setting

Introducing (7 . 21) in (7 . 5) and (7 . 6) of Theorem 7 . 2, we obtain for 0,
taking adjoints and replacing ~p by - rp,
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and similarly

By Lemma 3.11, ~~,a( z ) and ~~,a 1 *( z ) are meromorphic for ze P " R +
with poles at most at points of ~ u ~ and ~a V ~a~ respectively, and

= 1 + + (7 . 24)

Jim ~~,a 1 *( Z ) = 1 - + (7 . 25)

By (7.10), (7.11) and (7.21), the right hand sides of (7.24) and (7.25)
coincide with ~~~a 1(p2/2na)’~~a~~a~ and [~(p~/2~)]~~~ respectively,
and we have established the analyticity properties of 9’À&#x26;(z) and 9’~ 
and proved (7.16) and (7.17).
The existence of [~(p’/2~)]~~ and [9’À~ l(p2/2na)](Ál,&#x26;) almost

everywhere and (7.18), (7.19) then follows from (7 . 7) of Theorem 7 . 2,
the analyticity properties and (7.16), (7.17) by a result of Kuroda [25 ].

= the analyticity properties of 9’Jz) and 9’~ follow from
those of + given in Lemma 3.11. 

_

Finally, the analyticity properties of ~~a(z) and 9’~ for E 

follow from those of + given in Lemma 3.11.
We finally turn to the question of the connection between resolvent

resonances and poles of the S-matrix. In view of theorem 7.4 the problem
here is, under what conditions a resolvent resonance is a pole of the analyti-
cally continued diagonal elements or the S-matrix. The treatment of this
problem is more complicated than in the two-body case (see [8 ]), partly
because of the possibility of embedded eigenvalues. We shall not give a
complete answer here, but prove the following results, which seem to
cover most cases.

DEFINITION 7.5. 2014 Assume that conditions A I are satisfied and

or

where

By Lemma 5 . 3 the operators for ~p = 0 and for ~p =t= 0
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map /),)) into 0 and thus induce operators denoted by T(~,)
and on %(G :t(z, ~)).
For ({J = 0 we set

and for ~p == 0

We make use of the following result proved in [1 D ].
To simplify notation, we consider A +, G +, etc.; the same holds for A _,

G -, etc.

LEMMA 7 . 6. - Let  E R +, 03C6 E ( - a, a), Å. _ 03BBi03B1 + e2i03C6 in case I and

,u E 03C6 E ( - a, a), 03BB _ e2i03C6 in case II, and let

where in case I by Lemmas 3.2 and 3.8

and in case II by Lemmas 4.4 and 4.11 for ~p = 0

and for ~p =t= 0

Let the operators p;. and Q be defined by = Q, where the compo-
nents of Q are given by

and = C, where the components of C are given by

Then P Å is an isomorphism from + A + (z, 2) to ~(G+(2, ~)) and QÅ
induces an isomorphism QÅ from J~(G+(z, 2») to ~(1 + A+(z, ~)) such that

Anna/es de /’ Institut Henri Poincare-Section A



155ANALYTIC SCATTERING THEORY OF QUANTUM MECHANICAL THREE-BODY SYSTEMS

THEOREM 7 . 7. 2014 Assume that A I i)-iii) are satisfied.
Let

for cp  0 and

for ~p &#x3E; 0, and define the operators T À(:t) and Z~±) by

where E). Q = z~.
The operator T;~ + is an isomorphism from .%(G + (z, ~,)) onto

(-) (_) .

.V(.j’:!d-l)(Z)) with the inverse Z; + .Lx 
!_1

The same result holds under assumptions A II i)-v) with ~,a replaced by 0.

Proof We consider (T;~ +, Z~, + ) in case I with ~p  0, the proof for ~p &#x3E; 0
and for (T ).-, Z~ _ ) with cp c 0 is similar, and case II is analogous. For
brevity we set T).+ = TÀ, Z.+ = Z;.-

By (5.10) of Lemma 5.2

since () for ~,y =t= ~,a and Ro(z, () are regular at , = ~,.

2) Z). maps ~( 91: ( z )) one-to-one into %(G + (z, ~,)), and T ).Z). = 1.
Let z E 9{: ( z )), i. e.

Applying Z~ to (7 . 43) we get by 1 )

Applying G _ (z, ~,) to (7 . 44), we get by (3.10)

From (7.41)-(7.43) follows

Also, if ~)), then by Lemma 5 . 3 = 0 so by
(7.46) T = 0, and 2) is proved.

Vol. XXXII, n° 2-1980.



156 E. BALSLEV

and let 03C4 be given by (7 . 41 ). Then by 1 ) and (5 . 29)

By (5.21) = 0 for Q E %(J(z)R1 +(z, A)), and 3) is proved.

5) one-to-one.

By 2), 4) and 0 (3.10) for ~)) the following j statements are ’
equivalent,

Moreover, (7.49) implies by (5.10)

Thus, it and T03BB03A9=0, then by (7 . 52) and (7 . 53)
Q E ~(G.(z, ~)). From the assumption that and Lemmas 3 . 3 and 7 . 6
it now follows that Q = 0.
The Theorem now follows from 2), 3) and 5). 

--

We now consider the case, where ~, E ~ À-oc n for ~p  0 (~, E ~ À-oc 
for 03C6 &#x3E; 0), but Y(+)(03B6, 03BB03B1 + 2014) has a simple pole at , = (2n03B1(03BB - 03BB03B1))1 2

B 2na
and J~(G(+)(z~)) corresponds to an embedded eigenspace ~V’(H(z) - ~).
We make use of the following observation.
LEMMA 7. 8. 2014 Assume that A I i)-iii) are satisfied, and that for ~p  0

and has a pole of order 1 at ~ = z, i. e. for’ near z

where A~) E ~), and
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Then ~~ ~ -1 1)(~) is regular at ( = z, and

Moreover,

The same holds under assumptions A II i)-v) with ~,« replaced by 0.

Proof 2014 We consider case 1, the proof in case 2 is similar. By (3.10)
and (7 . 55) we have for’ near z

This implies (7. 57) and

and hence by (7.54)

For ( near z

By (7 . 55) and (7 . 60) ~*(0 is regular at ( = z, and

and the Lemma is proved.
THEOREM 7.9. - Assume that and (7.54), (7.55) are satisfied.

Let l’ + and Z; + be defined hy (7 . ~ 1) and (7.42) with /.) replaced
(-) (-)

’"

The operator T03BB + induces an isomorphism T03BB -1- of

with the inverse Z;, + induced by Z03BB.
The same results hold under assumptions A II i)-v) with 03BB03B1 replaced by 0.

P~oo, f: 2014 We consider (TB+,Z~+) in case I with ~p  0, the other cases
are similar. This is proved as Theorem 7 . 7 replacing Y-(z, ~,) by Y-(z, A),
utilizing Lemma 7.8 and making the following modifications in 2), 3)
and 5) of the proof.

2’) ZÀ induces a- o...ne-to-one map ZÀ of N(J*03BB03B1(z)) into (G+(z,03BB))/
and = 1.
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3’), 5’) T}. induces a map 03BB from %(G+(z, 03BB))/0(G+(z, A))
into N(J*03BB03B1(z)).

REMARK 7.10. - Under the assumptions of Theorem 7.9 we obtain
from [11] Lemma 4.6 and Theorem 7.9 a decomposition

such that

and

THEOREM 7.11. 2014 Assume that A I i)-iii) are satisfied and that

Suppose moreover that either of the following conditions is satisfied :

2) Conditions (7.54) and (7.55) are satisfied, and

Then ~~,a 1 ~(~) has a pole at ( = z.
Under assumptions A II i)-v) the same result holds with 03BB03B1 replaced

by 0 and nx replaced by m.

Proof 2014 We consider the case of ~(0 for ~p  0, the cases of ~(0
for ~p &#x3E; 0 and ~~~(0 are similar.
Assuming 1), we have ~, E B ~~ and hence ~, E By Lem-

mas 3 . 3 and 7.6 X E implies that ~V’(C _ ( z . 1)) == { 0 }.
By Theorem 7 . 7 this together with ~, ~ ~~,a implies that

This together with Theorem 7 . 4 implies that ~(0 is a meromorphic
function with a pole at ~ = z. Hence ~,(0 is meromorphic
in (9- with a pole at ~ = z.
Under assumption 2) it follows from Lemma 7.8 and Theorem 7.9

that ~* -1 (~) is regular at ~ = z and

and ’ we conclude " as above " that ~,(0 has a pole at ~ = z.
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The corresponding result for 9o(~) follows in the same way under

assumptions A II i)-v) from Lemmas 4. 5, 7 . 6 and 7. 8 and Theorems 7.4,
7.7.7.9.
REMARK 7.12. condition 1) is satisfied by [5] Lemma 1.
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