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The Yukawa2 quantum field theory :
linear N03C4 bound, locally Fock property
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Section A :

Physique ’ théorique.

ABSTRACT. - The Yukawa quantum field theory in two-dimensional
space-time is considered. Using the Matthews-Salam integral represen-
tation a linear Nr bound is proved. As a consequence, this bound implies
that the Yukawa2 theory in the infinite volume is locally Fock.

RESUME. - On considere la theorie quantique des champs de Yukawa
dans un espace-temps de dimension 2. Une majoration lineaire pour Nt
est demontree en utilisant la representation integrale de Matthews et Salam.
En consequence, cette majoration implique que la theorie de Yukawa2
dans Ie volume infini est localement Fock.
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160 E. P. OSIPOV

1. INTRODUCTION

In the present paper we prove the locally Fock property (the definition
of the locally Fock property see [1]) for the (renormalized) Yukawa2
interaction ( = Y2) in the two-dimensional space-time with the free or

periodic (in the spatial direction) boundary conditions. For the main
results and references on the Y2 theory, see, for instance [2-6, 7~, 77, 13,
22, 23, 26, 24, 27].
The locally Fock property for models has first been proved by

Glimm and Jaffe [1, 7].
For the Y2 theory the locally Fock property has been proved by Schra-

der [3] (for the free boundary conditions and under some restrictions on
the smoothness of the space cut-off).

In the present paper we get rid of these restrictions and also give a new
(semi-) Euclidean proof which is valid both for the free and for the periodic
boundary conditions. Namely, the following theorem is valid :

THEOREM 1.1. - The Y2 theory with the free or periodic boundary 
tions is locally Fock.
Theorem 1.1 is used in the proof of the Lorentz invariance of the Y2

theory with the periodic boundary conditions [24].
Since the locally Fock property is, in fact, a consequence of the linear N~

bound, see [1, 7, 2, 3], so we shall not give the proof of this theorem and
fix our attention on the proof of the linear N~ bound.

Let an ultraviolet cut-off in the spatial direction be given by a function
~(p2/a), where 11(.) E 9’(rR) and 1](0) = 1.

Let be the interval [a - 1/2, a + 1/2]. Let

: = cardinality of g’. We suppose that our space cut-offs satisfy
the following conditions : i) E ii) uniformly in g ~ I

a

where [xag] ~ ~k) is the Fourier transform of xag.

THEOREM 1.2. - Let 03C3) be the (renormalized) cut-off Yukawa2
Hamiltonian with the free or periodie boundary conditions. Let z  1. 

for some a &#x3E; 0, depending on z only,

uniformly ir2 g, cr, 1  6  oo.

l’Institut Henri Poincaré - Section A



161THE YUKAWA2 QUANTUM FIELD THEORY

- We note that Theorerns 1.1 and 1.2 are also valid
for P(c~~2 + Y2 models. The proofs are in this case the same as for the
case of pure Y2 theory.
To obtain a linear NT bound we use the (semi-) Euclidean formalism

of Matthews-Salam, Seiler [8-10, 5, 26, 28] in which the fermions have
been integrated out. The idea of the proof consists in the following. We
rewrite expressions like (F, exp ( - t(H(g, cr) - with the help of
the Matthews-Salam integral representation with the Gaussian measure
corresponding to the perturbed two-point function

and then we use the technique of Refs. [4, 6, 10, 77] to obtain the bounds
on detren ( 1 + K). Here the complications appear, which are connected
with the fact that the Gaussian measure has no Markov property in the
spatial direction. Nevertheless, the perturbed two-point function decreases
exponentially on large (Euclidean) distances. This decrease allows us,

similarly to Refs. [6, 72], to obtain linear bounds.
The proof of the Matthews-Salam formulas, which we need, has been

considered in Ref. [28].
The exposition is made in the following way. In Sec. 2 we formulate the

Matthews-Salam integral representation for the theory with the Hamil-
tonian H(g, 7) 2014 In Sec. 3,4 we obtain the estimates which we need
for the (perturbed) functions Gr, St and for the integral operators connected
with them. In Sec. 5 we obtain some necessary estimates of the functional

integral over the (perturbed) measure 03C4 and in Sec. 6,7 we prove the linear
Nt bound, i. e. Theorem 1.2.

Since the proofs of the linear NT bound for the free and periodic boundary
conditions coincide essentially, so we give the detailed version for the free
boundary conditions and make some remarks for the changes needed for
the case of the periodic boundary conditions.

In the following f ~ , f " denote the direct and inverse Fourier transform
of the function! We define detn as

By p we denote the set of compact operators with the norm

P: = 2014 i (the gradient operator), ... denote strictly positive constants
possibly depending on unessential variables.

XXX, nO 3 - 1979.



162 E. P. OSIPOV

2. INTEGRAL REPRESENTATION
OF MATTHEWS-SALAM

We want to obtain the integral representation of the Matthews-Salam
type for the Hamiltonian expressions of the form

where F is either a fermion field 03C8 or its Dirac conjugate 03C8 : = 
or a function of the boson field 0 x) at time zero

is the (renormalized, cut-off) Hamiltonian of the Y2 theory perturbed by
the « number )) operator with ’r  1 and the constant a &#x3E; 0 is chosen
such that

We want to consider the (cut-off) interactions of the form

and 7(~) = ~(2014 x) is a function from 9’(IR). Let, for simplicity, W be
either a bounded analytic real-valued function on IR or /J, W 1 E 
and an ultraviolet be made with the help of a function from 9’(IR).

Let 03C4 be the Gaussian mean zero measure on 9"((R2) with the two-point
function

We remark that the Gaussian measure Jlt is hypercontractive and has
the Markov property in the temporal direction [l4], but it has no Markov
property in the spatial direction [15].
We also introduce the (perturbed, Euclidean) fermion two-point function

The following £ theorem is valid.

Annales de Henri Poincare - Section A



163THE YUKAWA2 QUANTUM FIELD THEORY

THEOREM 2.1. - ( Matthews-Salam formulas). Let H’ be given by (2 . 2)-
(2.3). Then the Hamiltonian objects (2.1) are given by Matthews-Salam
formulas with the Gaussian measure /It and the fermion two-point function (2 . 5).

This theorem is proved in [28].

3. ESTIMATES ON FUNCTIONS St, Gt

In this section we consider properties of the functions St and Gt and of
some integral operator connected with Sf and Gt.

It follows from the definition (2.5) that

where

The following lemmas contain the main properties of the functions S~
and G~.

LEMMA 3.1.

Proof of Lemma 3.1. 2014 In the sense of distributions

and, thus, as it can be easily seen

in the sense of distributions. Since the integrals in (3.2) are convergent,
eq. (3.2) is valid in the sense of usual functions. To estimate the first integral
we write

Vol. XXX, nO 3 - 1979.



164 E. P. OSIPOV

and, thus, this integral is estimated by

To estimate the second integral we divide the domain of the integration
into two subdomains

where A;’ = ~k; , 0). The contribution of domain I is less than

Holder’s inequality gives RB[-1,1] dk’1(.) ~ const.

and so the integral over domain I is estimated by

The integral over domain II is less than

But sup |k’1 |-1 ~ c(k2 + 1) -1/2, and the integral is less than

and so the integral over domain II is less than

To prove the lemma we join together the obtained estimates. Lemma 3.1
is proved.
We need the estimates of the functions and its hermitian adjoint

with some localization conditions in x - space. Moreover, since we want
to obtain the estimates uniform in cut-offs, we need the uniform estimates
of the fermion propagator with cut-offs.

Let ,,(.) E 9’(IR), ~(0) = 1 and an ultra-

Annales de l’Institut Henri Poincaré - Section A



165THE YUKAWA2 QUANTUM FIELD THEORY

violet cut-off in the temporal (11 and spatial (12 directions. Let 1 - ((~,
~(p) E ~(1~2), where ~(p) = 1 for I ~ , and ~(p~ = 0 for ~ ! ~ ~ -f- 1,
be an infrared (low momentum) cut-off.
The estimates we need are formulated in the following lemma:

LEMMA 3.2. - Let I(k) be one o.f the functions St(k), S+~t or

Then

a) « ct exp ( - for h(x) E C~«(IRB{ O}) x ~)~
d = dist ({O}, supp h) ;

b) II (ki + cl exp (- c2d) for ji(x2) E
0 ~), d = dist ({ 0 ~, supp h), 0 ~ r  1 ;

c) 11 h(x)1 ̂ (x)~Lp ~ cl exp (- c2d) for htx) E C~0(R2B{ 0 }), d -
dist ( { 0 ~, supp h), 2 s p  00.

Lf’ the function Sr- (k) is replased by the ,func,~tion St- (k)r~~(k)(I - ~(k)),
then the estimates a), b), c) are valid with the exponential decrease being
replaced by the decrease faster than any power and the estimates are uniform
in ultraviolet eut-off o~ for 1 ~ 61, 2 ~ 00.

Remark. The replacement of the exponential decrease by the decrease
faster than any power in the case with cut-offs is connected with the decrease
faster than any power of the functions 

Proof of Lemma 3.2. Let us first consider the case b) of the lemma fot
the function We shall obtain the representation for the function Sr
in the form of a contour integral. The statements will follow from this
representation.

In the sense of distributions

Let us denote the complex variable k2 by ~. We cut the complex plane (
by ( - foo, - im] and and choose the branches of the analytic
functions ((2 + m2)n2, (~2 + T~22) ~12 such that they would be positive on
the real semiaxis. Let, for definiteness, supp h lie in the half-plane x2  O.
Let C(5, 03C6) be the contour chosen in Fig. 1, where 03B4 and 03C6 are sufficiently
small positive numbers which depend only on m and r and which will be
chosen later (for x2 &#x3E; 0 we should choose the contour in the lower half-
plane 03B6).
We assert that for sufficiently small 03B4 and 03C6

in and on the contour C(5, ~p) for some constant c &#x3E; 0.

Vol. XXX, no 3 - 1979.



166 E. P. OSIPOV

To prove this inequality it is sufficient to show that

in and on the contour C(~, ~p), where

We write

Since b(Re () &#x3E; 0, so heRe 0 ~ ~3 &#x3E; 0. In the domain bounded by the
contour C(5, I  c2, where the constant c2 is independent of
5, ~p for sufficiently small 5 and ~p. Thus, in the domain

and thus in this domain inequality (3.6) is fulfilled for sufficiently small 03B4.

Since

and since in the domain bounded by the contour C(5, ~p)

so in this domain

Thus, in the domain bounded by the contour C(5, ~) for I &#x3E; 5 

But this is greater than a positive " constant for sufficiently small 5, cp.
These ’ arguments and 0 eqs. (3 . 2), (3.3) imply that the function ST (k 1, 0

Annales de l’Institut Henri Poincare - Section A



167THE YUKAW A2 QUANTUM FIELD THEORY

is analytic in and on the contour ~p) for sufficiently small 5, ~p. It is

easy to see, making estimates of the term 0 for complex’ E C(5, ~p)
in the same way in the proof of Lemma 3.1 for real k2, that

for |03B61-+ 00, ( E C(b, cp), may be nonuniformly in kl. But then the integral
of () over the arcs of the circle entering the contour C(5, ~p) tends
to zero when the radius of the circle increases. Let C’(5, ~p) be the contour
shown in Fig. 2 (or, in the case x2 &#x3E; 0, the analogous contour in the lower
half-plane). Then, by Cauchy’s theorem

Using estimate (3 . 5) it is easy to see that (the term 0 is estimated in
the same way, as in the proof of Lemma 3.1)

where c(1 , I) is a function increasing slower than a polynomial. Thus,
in the sense of distributions

and

which proves the part b) of the lemma for the function St’
In the same way we consider the functions Si and (k2 + m2)~’2S~ N Si .
Now, we consider the case a~ of the lemma for the function St. For

definiteness, we suppose that supp h lies in the half-plane xl  0. Then,
in the sense of distributions

where

We use the relation lim (k ± i E) -1 - P. V. k -1 :p which is valid

in the sense of distributions, see [16].
We want to write the integral over kl and k2 as the integrals over some

contours in the complex planes ’1 1 and ’2’
Vol. XXX, no 3 - 1979.



168 E. P. OSIPOV

First we consider the integral over A;i. We cut the complex plane 03B61 by
Then the integrand is an analytic function in the upper half-

plane with the cut. The integrand in (3.8) decreases in ’1 in the upper
half-plane as I ’1 1-+ oo . This is evident for the functions S;«(1, k ~ ),
s~~ (~1, k2) and for the integral over kl it follows from the estimates

Now, choosing the contour, as it is shown in Fig. 3, it is easy to see that

the integral over the arcs of the circle tends to zero and, by Cauchy’s theorem,
the integral of k over the real axis is equal to the integral over the contour
C’~k2). As a result

It is easy to see that the right side of (3.9) is analytic in 03B62 for sufficiently
small I 1m ’2 I (in particular, for the integral over k 1, the analyticity in
this domain follows from the fact that small). Besides, the inte-
gral of (3.9) over’ 2 over the intervals

for sufficiently small positive 5 tends, as it is easy to see, to zero when

R -+ oo. So, the contour of the integration over ’2 may be shifted up or
down, depending on the sign of x2. As a result,

Annales de l’Institut Henri Poincare - Section A



169THE YUKAWA2 QUANTUM FIELD THEORY

the integral over (2 converges due to the properties of the contour C’«(2).
This expression defines a function smooth in x (this can be easily proved
by interchanging the order of the differentiation and the integration),
increasing exponentially in Xl and x2, and, thus, in x for 0. Thus,

norms of derivatives of this function satisfy the bound ci exp (- c2d)
and by the Hausdorff-Young inequality norms satisfy the same
inequality.

Thus, the case a) of the lemma is proved for the function St’
In the same way we consider the other functions.

Consider the case c). By a) and b)

We have used the Holder and Hausdorff-Young inequalities. The obtained
inequality proves the case c) of the lemma.

In the case with cut-offs it is necessary to estimate, for example, the case b~
with an ultraviolet cut-off, the expression of the form

Let { ei be a partition of unity in the variable y2 obtained by the
translations of a fixed C~ function with the support in [ - 3/4~3/4~] so
supp ei ~ [(i - 3/4)d, (i + We insert this partition of unity between

r~~ and St’ After that the term

is estimated by

where . . is some norm on the Schwartz space in variables ~2~2’ Taking
the location of the supports into account, it is easy to see that the above

expression is less than

uniformly i n 6 for 03C3 &#x3E; 1.

Vol. XXX, n° 3 - 1979.



170 E. P. OSIPOV

The terms

are estimated similarly to the previous one by the

Taking the sum over i we obtain power estimate for the cut-off propa-
gator.
The estimate for the case b) with a lower momentum cut-off is obtained

with the use of a two-dimensional partition of unity and the bound a) of
the lemma.

In the same way we consider the case a) with cut-offs. Lemma 3.2 is

proved.

LEMMA 3.3. - The function G03C4(x) ~ Lp(d2x), 1 ~ p  oo . The following
estimates are valid

where

Proof of Lemma 3.3. The proof is analogous to the proof of Lemma 3.2.
The integral over kl is taken explicitly, and the integral over k2 may be
rewritten as the integral over the contour of the form C’(~, Fig. 2.
Lemma 3.3 is proved.

LEMMAS 3.1y-3.3y. - The bounds corresponding to the bounds of Lemmas
3.1-3.3 are also valid in the case of the periodic boundary conditions, these
estimates are uniform in the box cut-off V ~ 1 (naturally, I x2|  V/2).

~.7v-~.~y. - Lemma 3.1v may be proved in the same
way as Lemma 3.1.

The statements of Lemma 3.2y and 3.3y follow from Lemmas 3.2 and
3.3, from the inequality for a norm II  and from the relations

where the series converges in the sense of distributions and where f is one
of the functions Gt, St’ [(k~ + m2) 1 ~2 Si N Si ] " or these functions with
cut-offs and Iv is the corresponding function in the periodic boundary
conditions case.

Let us consider, for instance, the case b) of Lemma 3.2. In this case
~2)~([-V/2,V/2]B{0})and

Annales de Henri Poincare - Section A



171THE YUKAWA2 QUANTUM FIELD THEORY

Then

In the same way we consider the other cases. Lemmas 3.1 v-3.3y are
proved.

4. ESTIMATES FOR SOME INTEGRAL OPERATORS

In this section we consider trace-norms of some integral operators.
With the help of Lemma 3.2 we prove Theorem 4.1 (an analogue of Theo-
rem 2.2 of Ref. [4]) which allows us to estimate contributions of the separate
squares.

THEOREM 4. l. Let xa, a E Z2, be the characteristic function of the square
with center at oc and side 1. Fix q &#x3E;_ 1. Suppose operators A, B are given
with Ax«(P2 + E ~R, and (p2 + E ~9.. for some

E &#x3E; 0 and where q’-1 -E- q’~-1 _ q-l.
Then, for all rx, /3 E q, where I(P) is an operator of multipli-

cation on one of the functions Si , S; - , ( p2 -E- m2) 1 /2S; - ST , and

If the function Sz (p)isreplacedby the function with cut-offs~a(p)(1- 03B6(p))S~03C4(p),
then the assertion of the theorem is valid with the replacement of the exponen-
tial decrease by the power decrease with arbitrarily large degree, and this
degree of the decrease is uniform in the ultraviolet cut-off 03C3 for ffi 1,2 ~ 1.

Proof of Theorem 4.1. The proof uses Lemmas 3.1, 3.2 and is an ana-
logue of that of Theorem 2.2 Ref. [4].

Let |I G( - 03B2I s v/2 (i. e. touehing squares), then

Now, the assertion follows from Holder’s inequality for operators and from
the boundedness of the operator in the square brakets (Lemma 3.1).
Now, let I a - B/2 (i. e. non-touching squares), then either

I ¿ 2 or 1, ! ~ - ~2 ! I &#x3E;2. Let h be a 
function with support in ( - B/2 - ~, ý2 + 5) identically one in (- B/2,
B/2), where 5 is chosen with Ý2 + 5  2.
Now, if /31 r &#x3E;_ 2, then

Vol. XXX, no 3 - 1979.



172 E. P. OSIPOV

and

The assertion follows from Holder’s inequality for trace-norms of opera-
tors and from the boundedness of the operator in the square brackets

(Lemma 3.2a).

and

Again the assertion follows from Holder’s inequality for operators, from
the boundedness of the operator

from Lemma 3.2 and from the inequality I x 2014 ~ ~ 1 + a2 - ~2 ! I
for I ~1.
Theorem 4.1 is proved.

5. Jit -INTEGRABILITY OF SOME FUNCTIONS

In this section we prove some integrability results for the Gaussian
measure which is given by the two-point function y) (formula
(2.4)), and obtain some bounds.

THEOREM 5.1. &#x3E;- 2 and v, )B, &#x3E; 0 with ( v + ~,)q &#x3E; 1. 

the Gaussian mean zero measure on G’(R2) which is given by the covariance
y) (2.4)). Let A(03C6) = (p2 + + linear

map from some subspace of G’(R2) to operators. Here A E ond has

a Then A(03C6) is 03C4 almost everywhere in q.

Proof of Theorem J.7. Consider first the case q = 2k with k an integer.
Acting as in the proof of Theorem 3.4 Ref. (see also Ref. [77], Theo-
rem 9.1 and using Lemma 3.3 it is easy to see that

When q is not an even integer, we can, following Seiler and Simon [4],
use the interpolation theorem. For the proof of the interpolation theorem
see Gohberg, Krein [18, p. 137-139). Theorem 5.1 is proved.

Annales de Henri Section A



173THE YUKAWA2 QUANTUM FIELD THEORY

THEOREM 5.2. Let ~( . ) E be a function with a bounded support.
77!~

belongs to  1 /It almost everywhere ’ and ’

X E C~([R2) and equal to one on supp % A

and , C is trace class in the Hilbert space 

Proof of Theorem 5.2. - Let y be a Co (f~2) function which satisfies

0  x  1 and o is identically one ’ on supp % A and o zero o on

Then L = 

so, by Lemma 2.1, M, M e ~2. Then, by Theorem 5.1, N e ~2 ~ almost
anc~

where C is trace class in namely,

where G T and E are the operators of multiplication in the momentum
space by the functions, respectively, and

where p t = p ± k/2.
Using the number inequality

we obtain

Theorem 5.2 is proved.
We also need some estimates for integrals of Wick monoms which are

similar to the estimates of Dimock, Glimm [12, Lemma 2.4] and Glimm,
Jaffe and Spencer [17, Theorem 9.4]. In contrast to the bound of Lemma 2.4

Vol. XXX, nO 3 - 1979.
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by Dimock and Glimm [12] we need an estimate in which the kernel is
Lp(d2x) function with p &#x3E; 1 and p - 1 is small (see also Ref. [17]).
We want to consider functions on g’(1R2) of the form

where the normal ordering is made with respect to the measure 03C4 and,
for simplicity, all have the form = p(v, k)x), ~ E 9’(1R2),

1, or all are ~ = k)~?(P(v~ ’1 E 9’(~),

1 (a more general case of dinerent cut-offs in different direc-

tions can also be considered). We remark that for ultraviolet cut-oifs of
the form the normal ordering with respect to the measure 03C4
and with respect to the free boson measure with the mass mb coincide.
We suppose that the support w lies in a set of the form

where c~(v) e l~2 and where A~. c: [R~ is the square with side 1 and center
at j ~ 1Z2. Let ~j be the characteristic function of 0394j and let n* = sup ny.
Let, also ~={1_..,N}, I,={(~1),...~ 
The set of all possible graphs on I is denoted r(I), the set of all vacuum
graphs is denoted ro(I) and let [1] = ~I03BD be the set of all legs [72].

where

Proof of Lemma 5.3. The proof is the same as that of Proposition 9.3 [77] ]
or of Lemma 2.1 [12] with the replacement of Schwarz’s inequality by
Holder’s inequality. 5.3 is proved.
We define a function 03C9(.) on [I] k)) = and for j ~ Z2 define

THEOREM 5.4. - Let w E p &#x3E; 1. have the a,f’orementioned
form and inf p(v, k) = p &#x3E; 0, then, as above for 03B4 E [0, 1)

_ .

Annales de l’Institut Henri Poincare - Section A



175THE YUKAWA QUANTUM FIELD THEORY

Proof of Theorem 5.4. The proof of this theorem is the same as that
of Lemma 2.4 of Ref. [12]. Some slight modifications appear in the proof
of estimates for the kernel G~(y, y’) only, to which the kernel y’)
corresponds in notations of Dimock and Glimm [12]. But these estimates
can easily be obtained.

Since the function Gt(x) has an exponential falloff for large distances
(Lemma 3.3) and since for each n the uniform in p(v, k) for

inf p(v, k) = p &#x3E; 0 estimate
(v ,k )E[I]

is valid. So

On the other hand, for //M~ S: 2 the following estimate is valid

! G, ~ 11c;1- * Gz * ~,,  (Hausdorff-Young inequality)

for r  (2//~)~.
These estimates and the arguments of Ref. [/2] imply Theorem 5.4.

Theorem 5.4 is proved.

6. UPPER BOUND ON detren (1 1 + K(A))) I

In this section we prove the main technical result of this paper.
The operator S03C4039303C6 enters the Matthews-Salam formulas. Here, A(x)

is a space-time cut-off. The idea to consider this operator in the Hilbert
space L2((p2 + t’I’i2)1~2C~2p) Q (;2 belongs to Seiler [10]. In the Hilbert

space ([2 this operator has the form

The operator with cut-offs K(A, (7) is given by the analogous expression.
We define

infinite boson mass renormalizations and 2,03C4(,03C3) = 1 2d 03C4K(, 03C3)2 is the
second order Euclidean renormalization.

Vol. XXX, no 3 - 1979.
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Let be a space-time cut-off. Let xa be the partition of (R2 on squares
with centres in a E l~2 and side 1. We define

and we shall identify A’ and Let I A I : = cardinality of AB
aEA’

We suppose that space-time cut-offs satisfy the following conditions :
i) A(x) E ii) uniformly in ~ I

We remark that, in particular, the indicator of a rectangle satisfies the
condition i), ii) and if g(x2) satisfies the conditions i), ii) of Sec. 1, then
xp,b(xl)g(x2), where ~a,b 1S the indicator of [a, b], satisfies the condi-
tions i), ii).

THEOREM 6.1. - Let A(x) satisfy the above conditions i), ii). Then, for
any p there is a constant c so that uniformly in ultraviolet cut-offs

The similar assertion is also valid in the case of the periodic boundary 
tions.

Proof of Theorem 6.1. 2014 To prove the theorem we, as Seiler and Simon
[77, 4] split the operator K into two parts with large and small momenta. Let
~(p) be a positive Coo function, equal to 1 on the E 1R2 I  ~ },
and equal to 0 on the set {p E I 2 , + 1 }. The function 03B6(p)
gives a low momentum cut-off. The positive constant’ will be determined
later.

Let

where

Taking in the inequality of Theorem 4.1 [4] A = H, B = 0, C = L we
obtain the estimate

where b = 1 + e$l4 = 4,4 ... , A = H + H* + A+ is its non-

negative part and A- - its negative part. Similarly we define A(03C3), etc.

Annales de l’Institut Henri Poincare - Section A
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It is easy to see that the right side of inequality (6.1) may be rewritten
in the form

where

To prove the theorem it is sufficient to show that for each p E [1, oo),
!’=1,2,3 

.... ,.,

uniformly in Q.
First, we consider the factor v 1. By Theorem 5.2

Since 1/2 for sufficiently small 5, depending only on 
and p, so for such ð 1 - 2p03B4C is a positive operator in 
and by a direct calculation of the Gaussian integrals (cf. [~D, Lemma 3.3],
[13, Lemma 2.1]) we obtain the bound

Estimating the determinant we have used the inequality

Lemma 2.1 [4] and eq. (5.1) imply that

The operator C in given by eq. (5.2). In correspon-
dence with the unitary equivalence in the Hilbert space L2(d2p) the operator C
has the form

We note that the operator E is the operator of convolution (see (5.3))
by the function where
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To estimate CC 1 norm of the operator C we write

and

So the linear bound for the factor 03BD1 is obtained.
Now we proceed to the Gaussian factor v2.
To estimate this factor we cancel the divergences in the explicit form.

For this purpose we rewrite this factor in the following form

Here

where B is a positive (for large () Hilbert-Schmidt operator in the Hilbert
space (see below) and B(6)-the corresponding operator
with ultraviolet cut-offs. The operator B is equal to

where Greg is the operator of multiplication in the momentum space by
the function

Here, ~± == ~ ± k/2, S~(~) = (1 2014 ~(p))ST (p) is the perturbed two-point
fermion function with a low momentum cut-off, Sp is the operation of
taking the trace over spinor indices and we have written the counterterm
of the boson mass renormalization for the Yukawa2 interaction with

Furthermore,
i r

are the second order Euclidean renormalization with and without a low

momentum cut-off.
It is easy to see that

uniformly in u and 0 A.
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In addition, if B ~ 0, then

Thus, to obtain a linear estimate for the Gaussian factors it is sufficient
to prove that B &#x3E; 0 for sufficiently large’ and to prove a linear bound for
the square of the Hilbert-Schmidt norm of B.

Let us show that for sufficiently large’ B is a positive Hilbert-Schmidt
operator. Writing S-r = So + S4, where So is the usual Euclidean two-point
fermion function, and using eqs. (3.1) and the estimate of Lemma 3.1,
we see that the function

is bounded by a constant uniformly in ~. Estimating the second item in
(6.3) in the same way as in [11] we obtain that

So the operator B is positive for sufficiently large’.
Now we estimate the Hilbert-Schmidt norm of the operator B in the

space replace the space 
and write Aa : = where ~03B1 is the indicator of the squares with center
in ex E ~2 and side 1. Then

where

It is easy to see that

Let us consider operators First we show that E ~2. It is easy to
see that
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Since (6.3) is bounded, so the direct calculation (see Seiler [3, A 12]) and
the triangle inequality give

Then

where we use Schwarz’s and Young’s inequalities to obtain the last expres-
sion. Now the condition ii) for A implies that B03B103B2 E 2.
Now

To prove a linear estimate it is sufficient to prove that

where 03B15 = 03B11. This estimate follows from the equality

and from the estimate

B03B1103B12 ~ 2 and Ch. XL8, exercise D.49c [21] imply that

Let h be a function with support in (- V2 - ð, ý2 + ð) iden-
tically one in (- ~/2, B/2) where b &#x3E; 0 is chosen with y2 + b  2.

Now, if Xi 2014 a2 f &#x3E; y2, ( ~c2 - ~3 ! I &#x3E; yi (non-touching squares),
then it is easy to see that (6.5) is the limit of the analogous expression in
which is replaced by Greg(r, ~). where x) is a function obtained
by performing an ultraviolet cut-off in the fermion propagators (i. e. to

bound the integration domain in (6 . 2)). Thus, we have
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where

In the same way we can replace the function by A"(~ where
A(x) = h( ~ x ~ I - a2 - a3 ’ Thus in the case of non-touching
squares

Using inequality (6.4) we see that

In the same way we consider the other cases of mutual locations of

o 0~.

uniformly in I A I.
The estimation of the Gaussian factors is finished.
Now we proceed to the factor v3. Estimating this factor we shall follow

in the main the proof of Proposition II.1 given by Magnen and Seneor [6]
(remark that we follow the proof of Proposition II.1 which was given in
the preprint only).

Let ~3(cr) be the factor u3 with an ultraviolet cut-off r. First, we show
that ~3(cr) defines Pt measurable function for (72014~00. Theorem 5.1, the
expansion ST = So + S4’ eqs. (3.1) and the estimates of Lemma 3.1 imply
that H E /? &#x3E; 2, Pt almost everywhere. Thus, to show that v3{a) defines
fit measurable function for (y 2014~ 00 it is sufficient to show that
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for o- 2014~ oo . For this it is sufficient to show that the operator B1 is Hilbert-
Schmidt in But Bi where Greg
and Freg are the operators of multiplication by functions, respectively,
(6.2) and

In the Hilbert space B1 = + Since eqs. (3.1),
the estimates of Lemma 3.1 and Seiler’s calculations [I0, Appendix] imply
that Greg + Freg is a bounded operator and Lemma 2.1 [4] implies that
G1/203C4 E so the operator B1 is Hilbert-Schmidt.

Moreover, it can be shown, as above for the kernel Greg, that for

I oc - {3 I &#x3E; V2 the operator has the kernel

which satisfies the estimate c1 | 03B1(x)03B2(y) (1 + 03B1 - 03B2 B)-4. The proof
of this estimate is similar to that of Lemma 3.2.

In the following we shall not write down the ultraviolet cut-off cr, keeping
in mind that our bounds are uniform in 03C3 ~ oo .

We introduce an increasing sequence of cut-offs po, ... , pn, ... with

03C10 = 0 and pn = 1. Let the values of ultraviolet cut-offs ke belong
to this sequence. We also define cut-off fields by

where = and ~ is a positive Coo function, = 1 for

I  1/2, 0   1 for 1/2 I  2, r~(k) = 0 for 2  k. Then, for
a set { k039403B1 }03B1~Z2 of localized cut-offs we define

We write

We use the inequality
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for A~ &#x3E;: 2014 1, and Lemma 6.2 to obtain the bound

Applying Seiler’s arguments [10, Lemma 3.2 we obtain the bound

LEMMA 6.2. - (Seiler [10], Magnen, Seneor [6] ) . Let A, B E 4 be two
self-adjoint operators, then

Since the proof of Lemma 6.2 given by Magnen and Seneor
[6, Lemma III.1] is contained only in the preprint, we give here its proof.

Proof of Lemma 6.2 [6, preprint, Lemma 111.1]. 2014 It is sufficient to prove
the inequality for operators of finite rank, then the proof follows by approxi-
mations. Let ~,i and /17 be the eigenvalues of A+, and B+ form a decreas-
in sequence, then with

we have
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Since 1 + v ~(t ) ;::: 1, so

l

Since a~~ 4 and are subsets of the sets of the eigen-values of A4 and B4,
thus, by applying the generalization of Lidskii’s theorem (Kato [19, II Theo-
rem 6.10 and 6.11] and Seiler [10, Lemma 3.2]) we have

Lemma 6.2 is proved.
Eqs. (3.1), Lemma 3.1 and Seiler’s calculations [10, Appendix A] imply

that

A

uniformly in a space-time cut-off A.
We transform the expression (6.6) in the following way. Any difference

term between quantities with and without ultraviolet cut-offs is developed
as a sum of terms containing the difference H - Hk, or H* - or

4&#x3E; - ~k. Using linearity in the fields, we replace each field 4&#x3E; by ~ and

A

use the triangle inequality

Now each c~ localized in A with an ultraviolet cut-off ka = for some

E will be decomposed in (this is not done for the fields 4&#x3E; - c~k)

with

= = ~2/P)) and where ~ is defined above.
After this we also use linearity in the fields or the triangle inequality

to rewrite ’ each localized expression as a sum over i 1, i2, ...

Annales de # Henri Section A



185THE YUKAWA2 QUANTUM FIELD THEORY

After these transformations expression (6.6) is bounded by a sum of
expressions with each field being localized. Each of these expressions
contains a difference ~ 2014 ~ localized in some square Ao, which we call
a reference square. Moreover each of the rest of the fields is localized and
contains an upper p and a lower 1 ultraviolet cut-off.

BVe estimate with the help of Lemma 4.1 each of the expressions
II ... ~(Op) ~~ 1, where ~(A) is H(A), or Hk(4), or H(A) - Hk(A),
or their hermitian conjugates. Taking into account that H has a low momen-
tum cut-off which is performed with the help of a smooth function ~),

p

we obtain a bound of the form ~’(Dr) i p for any
r=l

given b. Here A’) = max (1, dist (A, A’)) and j~’(A) is the operator
with the kernel which is obtained from the kernel of the operator 
by replacing the fermion propagator St- with cut-offs by (p2 + m2) -1 ~4 + E.
With the help of the triangle inequality we estimate the product

(probably, with another ~). As a result, we obtain the bound

And finally, for the terms appearing in the expansion of

we replace the kernels by the same ones multiplied by d(do, 0)-3.
We want to estimate the expression generated from (6.6) by a sum over

the reference squares Ao of expressions depending only on the ultraviolet
cut-off in Ao and independent of the values ke in other squares. The depen-
dence on ke in our bound is through the sum over { ~}. Since each item
of the sum is positive, we extend the sum over { i ~ up to infinity, and in
this way it does not depend on ke, A #- Ao.
We, thus, get the bound

Ao

where
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and

Here, s = (j, i, A) E S is a vector, the components of which belong to the
following sets. j E J, where J labels the terms appearing after pointing out
the difference 4&#x3E; - ~k. A E ~ where the and

{ 0394, j} are defined in the following way. If the jth term of the expansion
contains the difference ~ 2014 ~ and s - 1 fields 4&#x3E;, then { A,~} is the set
of sequences ..., AaS _ 1), where E A’, j } is the set of

sequences i2, ..., where irE 7l+, r = 1, ..., s - 1.

We are now in a position to apply the modified argument of Dimock and
Glimm (see Magnen, Seneor [G], Dimock, Glimm [12]).
We define a partition ~n{0~ of the space f/’(1R2). We define it by induction.

be the subset where V(A, p 1) = 1. Let ~(A) be the subset
of where V(A, &#x3E; 1 and V(A, pj  1. Since, as we will see below

(Lemma 6.3), I V(A, 12 --+ 0 as n --~ 00, so { ~ defines a parti-

tion of the space Y’([R2).
Further,

where { is the set of all the functions from U { /1 } into 7L+.
eEn~

Thus,

A

and we obtain the bound

for any sequence 
’ of positive ’ integers p(n(A)).

To obtain a linear bound 0 it is sufficient to prove 
’ the following lemma.

LEMMA 6.3. - Whatever be the ’ there # exists E &#x3E; 0

such that
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In fact, assume that Lemma 6.3 is proved. Then

A /t ;

The last inequality is obtained by chosing an appropriate sequence { p(n) }
(for example, as in [12], exp with sufficiently small ~ &#x3E; 0).

It remains to prove Lemma 6.3.

Proof of Lemma 6.3. 2014 Change the order of summation and multipli-
cation in

where R is the set of all the vector-functions depending on two arguments
Ao E t J { Ao} and " -~(~(~o)) } and taking their values

in (u {Ao }) x S.
To estimate the integral of (6.8) over we use the method of combi-

natoric factors [20). It is sufficient to choose the following combinatoric
factors : to each non reference localization square we assign the factor

a)3, to each boson field entering Q(r(Ao, (except for the
difference 03C6 - 03C6k) with a low cut-off p we assign the factor for some
E &#x3E; 0. Then, to prove Lemma 6.3 it is sufficient to show that

Let us consider the expression
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It contains trace-norms II . 110 of the operators .541’(A) with ~ &#x3E; 3. We

estimate the integral by replacing all trace-norms ~. 110 by ~. ~3. We use
the interpolation theorem [19, p. 137-139, 11, p. 2290] to estimate

where ~’, ~" are appropriately chosen expressions (if

then ~ = ~=1/4-, and one may put ~ = ~’ = 

Now we apply to the integral over ~ Holder’s inequality in order to

replace I . 

As a result we obtain the integral

where Q2 is obtained from Q1 by replacing some H by the appropriately
chosen H’ and H" (see above). The integrand in (6.10) has the form of
(5.4) with localized wELl +£1’ for some ~1 &#x3E; 0. For the kernels of H,
H’, H" this follows immediately and for the kernels appearing from

this follows from Lemma 3.2c and Holder’s inequality.
We apply to (6.10) the bound of Theorem 5.4. It is evident that the

localization numbers 2.

Ao

Each combinatoric factor is compensated by the same factor presented
in the bound of Theorem 5.4. In addition, each factor in the product over

qso gives the factor As a result we obtain the bound (6.9).
Thus, Lemma 6.2 and so a linear bound for v3 is proved.
Theorem 6.1 is proved.

7. BOUNDS ON SCHWINGER FUNCTIONS,
LINEAR Nt BOUND

Let us write the Matthews-Salam formulas for the unnormalized Schwin-

ger functions
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where

THEOREM 7.1. Let each hi be localized in some square ~03B1 with exactly
na localized in square a. for suitable constants c c~

Analogous statements are valid also in the case of the periodic boundary
conditions.

Proof of Theorem 7.1. use the method of Frohlich, Seiler-Simon [4J,
namely, we obtain bounds on the Schwinger generating function and use
Cauchy estimates to bound Schwinger functions. Let ai = {p2 + m2)-1/4fi,
bi - (p2 + m2~1/4ss ~p~g~. By homogeneity, we can suppose that

in @ (:2. Let C~ be the rank one operator C,M = ~,  ~~ M ). Then

where the definition of detren (1 I + K(A) + C) uses the same counterterms
as before (cf. Sec. 6). One can demonstrate the validity of this equality
using the formulas of [21, ch. XI, 9.23].

Denote the function whose derivatives occur on the right of (7.1), G(/1, À)
with  = (/11’ ... , n), 03BB = (03BB1, ..., 03BBk). Then it is easy to see that G is
an entire function on 

By using, as in Sec. 6, the inequality 4.1 of Seiler, Simon M (including
k

~,~CJ into the term C), the inequality

J
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and acting as in Sec. 6, we obtain that if i~ h~ !!-i = 1, II ai II == ! b~ II = L
then

where S~ is the set of i with supp supp xa.

Thus, by Cauchy estimates

Taking Ra = n« 1/2, we get

Since ~ ai I: 11-1/2, 11 II - + so homogeneity,
eqs. (3.1) and Lemma 3.1 yield the bounds of the theorem.
Theorem 7.1 is proved.

Proof of Theorem 1.2. -- The proof is similar to the arguments at the end
of Sec. VI [4] and to the proof of Theorem 3.4 [5]. The density of Euclidean
Jost states for the Hamiltonian Ho - oNT is obvious (for the definition of
Euclidean Jost states see [5]).

Moreover, the additional factor exp 0-) - ~)
appears, where E2 is the Hamiltonian energy renormalization in the second
order and is a time cut-off. If is the indicator of )/?, ~J, then the
direct calculation [13, ~ 3] implies the uniform bound

1 (b - r) - ~) ~ I  ~’1(b - !’

Theorem 1.2 is proved.
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