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ABSTRACT. — A systematic and geometrical analysis of shock structures
in a Riemannian manifold is developed. The jump, the infinitesimal jump
and the covariant derivative jump of a tensor are defined globally. By
means of derivation laws induced on the shock hypersurface, physically
significant operators are defined. As physical applications, the charged
fluid electromagnetic and gravitational interacting fields are considered.

INTRODUCTION

Several authors have developed the shock waves from different points of
view, under both mathematical and physical aspects.

In General Relativity shock waves assume a peculiar theoretical role.
In fact they constitute one of the few strictly covariant signals occurring
in the space-time manifolds, where the usual way, to describe waves (as
plane waves, Fourier series, etc.) are globally meaningless. Of course shock
may be considered as a mathematical abstraction that approximates more
realistic physical phenomena.

A very large bibliography on shock waves in General Relativity is quoted
in [9].
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28 M. MODUGNO AND G. STEFANI

We refer chiefly to Lichnerowicz’s researches [/], [2], [3], which range
over this topic and employ refined mathematical techniques.

We believe that a deep understanding of shock waves in General Relativity
requires an adequate geometrical analysis.

In fact Hadamard’s formulas have not a tensorial character and their
application to the complex entities occurring in General Relativity leads
to results that could seem involved, if the geometrical structures utilized
are not emphasized.

Our purpose is, following Lichnerowicz’s approach, to develop a syste-
matic geometric theory of tensor jumps in a Riemannian manifold and to
apply it to General Relativity. We get a global theory, expressed by an
intrinsical language, adequate for a geometrical point of view. Care is devoted
to distinguish the role played by different structures, as the differential
structure, the metric, the connection, etc. The case which requires distribu-
tional techniques will be treated in a subsequent work.

We consider a C® manifold M and an embedded hypersurface = (%),
first we define the jump [f] of a tensors ¢ across X. By means of Lie deriva-
tives we define the higher jumps &7, which involve only the manifold
structure: so we get a first generalization of Hadamard’s formulas (which
are local and hold for functions). As a particular case, we consider the jump
of Riemannian metric ¢g. To describe the jump of the Riemannian connec-
tion we get a veritable tensor [I']*, which is directly expressed by means
of g'g. The jump of the covariant derivative [V*¢] is obtained by means of
¢*g and [[J*: this is a second generalization of Hadamard’s formulas
(which operate only on functions by partial derivatives). In this way we get
a global expression of the jump [R] of the curvature tensor. Particular interest
have several derivation laws, induced on X, when the latter is singular,
which replace the induced connection (that cannot be defined, for the tangent
space of M does not split into the tangent space to T and into its orthogonal
one). Some of these maps, as div” and div*, intervene in the physical conser-
vation laws.

In physical applications we analyse the charged fluid, electromagnetic
and gravitational field, as an example. We get compact formulas, that
resemble Lichnerowicz’s results. In particular we get the « shock conditions »,
the « conservation conditions » and an intrinsical definition of the shock
energy tensor.

(1) Lichnerowicz considers a chl manifold, to get the physical significant part of

gravitational potentials. But, for our purposes it seems more simple to assume M C®
deferring to consideration on the Cauchy problem the statement about the physically

significant part of &Xg (namely ekg").
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SHOCK WAVES IN GENERAL RELATIVITY 29

1. THE BASIC ASSUMPTIONS

Let M be a C* manifold without boundary with dimension n > 2,
connected, paracompact, oriented and endowed with a pseudo-Riemannian
metric g at least of class C°.

We are mainly concerned with the case in which » = 4 and g is Lorentz-
type, for obvious physical reasons. But we don’t need such a requirement, as
our results are more general.

Moreover, let j : £ — M be a C* embedded orientable submanifold of M
without boundary and with dimensions 7 — 1 (£* are the two orientations).

X will be the support of the shock waves. In General Relativity the phy-
sical fields satisfy equations which impose shock conditions for X. The most
important among them is that Z is « singular », i. e. the induced metric j*g
is degenerate. Thus we are led to make a study of the geometry of £ which
holds in the singular case too.

Let us introduce some notations :

T(p,opM/z is the subspace of tensors, p times contravariant and ¢ times
covariant of M, restricted to X (we say that such tensors are on X);

T(,,0)M" is the subspace of tensors, p times contravariant, of M, that are
tangent to X;

T((,,‘,)Ml is the subspace of tensors, ¢ times covariant, of M, generated
by 1-forms orthogonal to X (by duality);

T(p.0)M" is the subspace of tensors, p times contravariant, of M, gene-
rated by vectors orthogonal to X (by the metric).

If Z is singular, T p,o)Zi is the subspace, of tensors, p times contravariant,
of X, generated by vectors orthogonal to X (by the metric).

The symbols « ;5 », «” », « * » may be combined, with obvious meaning.

For simplicity, we write also T for Ty oy and T* for T, ;).

The spaces of sections, for each one of the preceding spaces, is denoted
replacing « T » by « @ ».

Furthermore, the spaces of antisymmetric tensors are denoted by A and
those of their sections by Q.

The class of differentiability of tensor fields is denoted by an upper
suffix on & and Q.

If necessary, the labels 7, tand r will denote the contravariant, covariant

and mixed form (induced by the metric) of a tensor 1.

2. THE ORIENTATION OF X

For the orientability of X there exists an « Orthogonal form »
0+# 1€ty M.

Vol. XXX, n° 1 - 1979.



30 M. MODUGNO AND G. STEFANI

If X is singular, we have not the usual unitary normal, but / is defined up
to a positive C* function of X (?) and it is tangent to X.

2.1. Each orthogonal form / is « closed » in the following sense.

PROPOSITION. — Let 0 # /€&y ;)Mj; and let x € X. Then there exists a
neighbourhood U = M of x and a C* function

¢ : U—>R,
such that
l/Unz = dd’/unz-

Proof. — Let { x°, x*, ..., x"~! } be an adapted chart on a neighbourhood
of x.

Then, we have [,y = fdx° with f 2 0 of class C*.
Let f : U— R a C* extension of f.

Then, ¢ = fx° is the required function =

2.2. The orientability of T induces an important splitting of close enough
neighbourhoods of X.

PROPOSITION. — There exist three C* n dimensional submanifolds U,
U*, U™ of M, such that:

a U=U'uvU",

b) U is an open neighbourhood of %,

¢) U nx* = gUu*,

Furthermore, if V, V*, V™ are three submanifolds of M, which satisfy
the above properties, then, also UNV, UN V*, Un V™ satisfy the same
properties.

Proof. — For each x € X, there is a neighbourhood U, of x and two C®
submanifolds U], U_, which satisfy ) and c). Then

U= UU"’

X€XL

Ut = UUf satisfy @), b) and ¢) =

x€L

(2) We will see (6.3) that we can restrict the functions fto be constant along the integral
lines of /.
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SHOCK WAVES IN GENERAL RELATIVITY 31

3. TENSOR JUMPS

The actual purpose is to define the piece-wise differentiability and the
jump of tensors, across X, which will be just the shock carrier.

3.1. DEFINITION. — a) Let t€@, , M. Then, ¢ is said to be of class
C™) with 0 < r < oo, if ¢ is of class C" on M, C® on M — X and if there
exist two C*® tensors 7+ on U¥ such that tys—ysng = ;,i{,*_um,;.

The space of such tensors is denoted by &{ %M.

b) Let te@, sM or t€@, (M — X). Then, t is said to be of class
C(~1:%) (( regularly discontinuous ») if it is C® on M — X and there exist

two C* tensors t* on U* such that #,ys_yng = ;/U*—U*ﬂZ'

The space of such tensors is denoted by ¢, 13M, or by ¢{, 1;*)(M — X)
respectively =

3.2. DEFINITION. — Let t€{, ;M or te &, ;(M — X). Then, the
ump of ¢ is the tensor

. [t] € 55,:1)M/}:,
given by
M=ty—tr =
Note that if # € &, };*’M and [] = 0, then, there exists a unique 7 € §9:'M,
such that

IM-x = UM-3»
but, not necessarily

~

t=1.

On the other hand, if re&(y:5'M, then t;e83 M.

4. INFINITESIMAL TENSOR JUMPS

The best way to calculate the derivatives jump of a tensor ¢ involving
only the differential structure of M, is to evaluate the jump of the Lie deri-
vative [L,t]. Namely, we see that this jump is obtained by a tensor &f on X,
which depends only on 7.

In our treatment, we exclude the case when ¢ is discontinuous across %,
for we don’t get reasonable results, the jumps of 7 and of the deriva-
tives of ¢ being inextricably bound.

Vol. XXX, n° 1 - 1979, 2



32 M. MODUGNO AND G. STEFANI

4.1. LemMA. — Let reG(;YM, ueb{YM, with —1<r,5<0.
The Lie derivative L ¢, defined as a C* tensor on M — X, belongs to
6,50 = 3).

Proof. — In fact, we have
(L)* = Lot
where the Lie derivative L. t* is defined on = (which is the boundary of U*)
by means of any local extension of u* and r* =

4.2. We can now enunciate the fundamental theorem which gives a
stronger version of Hadamard’s formulas.

THEOREM. — Let ¢ € &{5':)M. There exists a unique tensor

etely o nyMyy,
such that
[L.t] = iet = g,
for each ue @ oM.
tis C**) if and only if &t = 0.
Furthermore, we have

et +5) = gt + &5,
e(t®s5)=(e,)®s + t ® &S,
e,Cit = Cig,t.

Ifue 6’{‘},0)M”, then

Hence, for each 0 # /€ @3 ;,)M; there exists a unique

1€t M5,
such that
g=IQ1.

Finally, if { x°, x!, ..., x"~! } is an adapted chart, then the local expression
of tis

et = [0t ]dx° @ 0x,, ® ... ® 0%, ®dX"' ® ... ® dx"s.
Proof. — Let f € &5 oyM. Then we have

[qut] =f[Lut]9 fOI' P = 0 =4,
[qut] =f[Luf] - [tf]u =f[Lut]’ for p= 19 q= 0
Lyl =L+t uydf]1=fILys], for p=0,g9=1

Annales de UInstitut Henri Poincaré - Section A



SHOCK WAVES IN GENERAL RELATIVITY 33

Hence the map u — [L,¢] is linear.
Furthermore, if ue &% o,M" we have

(L\Jut)i(,") = Lu/z(;i)/z(J’) = Lstx(»), VyeZ,

hence
~, T~
[Lut] = (Lut) - (Lut) =0 =
4.3. DEFINITION. — Let 1€ {y’5M. The INFINITESIMAL JUMP of ¢ is

0 .
the tensor et€ @y 4+ )Mz =

4.4. The calculation of the Lie derivative jump can be extended to the
case when, both u and ¢ are of class C%®,

Previously we introduce the following notation. « {) » denotes the bilinear
map defined,

VheG yM, r=t®s
by
hOr= Z?l®... Rt QM) ®1;4,Q...Q1,Qs
1

<is<p

H®..0L,Qs® ... 0s€l, M,

]

- Z 1®s'®...07 @IS e ... 0,
1<j<sq
where h* is the transpose of 4.
THEOREM. — Let ue&(’3M and 1eG{0'5'M.

Then, we have
: [Ltl=¢gt —euldr
As, particular cases,

a) if teGM, then [L,f] = &t ;
by if te@{;M,  then [L] = et — e ;
c) if te?® f?,:‘f))M, then [L.f] = et + eu(?).

Proof. — If suffices to prove the last three cases.

For this purpose, let us notice that, if a certain map is linear on v and ¢,
then it can be evaluated on the C"**® tensors u and 7 (in fact, the space of
C©:) tensors is generated by the space of C{!*) tensors, by means of C(°>®

functions).
Then, we see that
(L] — &, teGio oM,
[Lut] — &l + &, te 65(1) (O)o))
[Lt] — et — eu(t), teTioIM,

Vol, XXX, n° 1 - 1979,



34 M. MODUGNO AND G. STEFANI

are linear respect to u and ¢, on the C©*® functions; moreover, these are
zero, if v and ¢ are of class C(1>*)

4.5. The jump of the exterior derivative is expressed by means of the
infinitesimal jump.

PROPOSITION. — Let 7 € Q{)°’M. Then it is
A
[dt] = — &t.
. q :
Hence, if we choose

0# /ety ( Mrp,
we have

[dt] =1AY.

Finally, if { x°, x*, ..., x"~! } is an adapted chart, then the local expres-
sion of [d ] is

[de] = Z Bty Jx® A dx A ... A di's.
101 <. <igS<n—1
Proof. — It follows from the definition of dt

pti

(dt)uy, ..., upyy) = Z(— DL (s - oy Upy )

~

i=1
+ E (- 1)'+jt(Luiuj, Upy ooy Upy ooy Uy ooy Upyy) =
i<j

4.6. We conclude this section introducing the « k-order infinitesimal
jumps », for C*~1:%) tensors, in the same way as the first one.

PROPOSITION. — Let # € &{% "} **’M. There exists a unique tensor

k @
& 1€l (0 iMr.

suchthat [L,, ... L, =i, ..., t=¢ .t foreachu,, ...,uet3 oM.
t is C%*®) if and only if & = 0.

The tensor &% is symmetrical in the first k indices.

Furthermore, we have

k — ok k
sul,...,uk(t + S) - 8ul....,ukt + Eul,...,m;sa

k k
851,...,141‘( t ® S) = (aul,...,ukt) ® s + t ® eul,...,uks’
ek . Cit =Clgh .1

Ut yernstikc ] UL yoossUI"®

Ifu;e6y oM", 1 i<k, thene, _,7=0.

sUk
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SHOCK WAVES IN GENERAL RELATIVITY 35

Hence, for each 0 # /€& 5 \MJ;, there exists a unique

k
1" €t pMys,
such that

Finally, if { x° x!, ..., x*"! } is an adepted chart, then the local expres-
sion of &7 is

et =0, ... 60t§:jjj§';]dx°® W ®dxX°®0x, ® ... ® 0x,,® P ® .. @dxP =
1k 1 K

The proposition 4.4 can be extendend to the k order, in a suitable way.

5. THE RIEMANNIAN CONNECTION JUMP
Henceforth, we suppose that the assumed metric g is at least of class C(©+*,
If g is of class C*~1®) 1 < k, we get the following jumps
[gl=0 ¢£g=0, 1<i<k-1, and ¢y

The physically significant « part » of g is
el =1® ... ®1Qj* €ty Ms®F3 T
1 k

Notice that g*g is different from ¢*g. More precisely, we have
dg=-Cig®g®ee=-10...0/0C{}gR "
1 k

Let g be of class C(>®, Then, the Riemannian connection V is defined

on M — X, If teG{; )M, with — 1 < r < oo, then Vie&(, 1M — I).

In each chart, the Christoffel symbols are of class C(~1:%),

5.1. We can express the jump of the connection by a tensor. For physical
reasons we are concerned with the cases k = 1,2.

THEOREM. — Let g be of class C*~1:®) with k = 1,2.
The map T :GRHM x G M —> G 0, M
given by
[T : (u, £) — i,[V*1] — &, (where V2 = VV) is k + 1 linear.
Then, we can identify [ with a tensor
[te R pMz.
[TT* is symmetrical in the last two covariant indices.

Vol. XXX, n° 1 - 1979.



36 M. MODUGNO AND G. STEFANI

Furthermore, [T} is expressed by 8"g, as
') = 5(C+ C - Cum 1@ o',
[T )= 5(CI38 + €I - Clidue 1 o,
Hence, for each 0 # /¢ @‘;:;,I)M,lz, we have
I =083 +7'®/- ¢ o),
P =300I08 +107 0/-10g o)

Proof. — 1t suffices to prove that [T* is k + 1 linear with respect to
C*~1*) functions and then to evaluate [T on tensors of class C*, taking
into account the Riemannian expression of V (see [11], p. 127).

Namely, we get

[T1', 1) = (VU] = e(f1) = f[V.t] + (.St = fet — [u.flt = f T (u, 1)
and, Va, b, ce G 0M,
M'@®b,c) = %([Lag](b, ¢) + [Ligl(a, o) — [L.gl(a, b)) ;
[T@® b, /1) = i,0,[VV(/1)] — e2g,(f1) =fT®b, 1)
and, Va, b, ¢, de G ,0M,
e ®b®c,d)=[V,Vye]-d — [Vyuclrd= [V, V] d
= S LiVserd) + Ly cla-d) + (L50)-d (Lga, V0]
= [L(Vye-d)]
= 3Ll d) + [LLgl6, )~ [LLgb, ¢) =

The expression of [I']* gives the following results, if geTGHIM.

5.2. COROLLARY. — The following conditions are equivalent.
a) [V4] =0, VieG iy IM.

byedg=0 -

5.3. CorROLLARY. — The following conditions are equivalent.
a) [V =0 Vte@'?;:g’))M”.

be'g" =0 =
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SHOCK WAVES IN GENERAL RELATIVITY 37
5.4. We can calculate [div 1] = — C}[V¢] and [V div 7] = C3[VV¢l.

COROLLARY.
We have, VieG{ )™M :
Ce[VH] = (CIIT() + Cie't

§%<l,t>c}§1+<1,z‘> it k=1
]l®(;—<l,t>C}§2+(l,t2>) i k=2 =

5.5. In the study of shock waves we find a condition on &g, which we
want to characterize in an interesting way.

CoRrOLLARY. — The following conditions (« harmonicity condition »)
are equivalent.

a) (:’12 Chrrx+2 — Ck,k+1)3kg =0= %1C:§k - g"(f)

b) [Af] =0, VieG (g > M.

Proof. — We utilise the previous corollary taking into account that
@)t = — g'(d), for k=1
0? = — g, for k=2 =

5.6. COROLLARY. — Let k = 2.

We have [V, V{] = [L V1], Vu, te GG M.

Hence &'Vt = [T1(t) + &, VieG{ M.

Proof. — It ve &{{'3’M, we have

L[V V] = [VV1] = [Vl = [Vg,ul + [LV,f] = [LV,] =

From the expression of [[']* we get the jumps of the Riemannian tensor R
the Ricci tensor r and the scalar curvature r,.

’

5.7. COROLLARY. — Let k = 2.
We have

1 1
[R] = §A12A34323325 = 2(1 DA 52
1 ~ _
[r] =C;5[R] = 5(12«32 + CigYl®@1—1v g*(D)

[ro] = C,,[r12Cig® — g2, )
Vol. XXX, n° 1 -1979.



38 M. MODUGNO AND G. STEFANI
1
P.roof. — [R] = ALTP = E(Auszg + ApA3S 8% =

5.8. COROLLARY. — Let k = 2.

The following conditions are equivalent.
a) [R] = 0.

bye?g" =0 =

5.9. We can extend theorem 5.1 in several ways. For example we will
use the following result in the physical applications.

PROPOSITION. — Let k = 2. Let 1 €G3 o)M, u, v G):5)M. Then we have
V.V, = [Ty, v, ) + V, 1.
Proof. — [V.V 1] = i[V.Vt] + Viy it = T4, 0, 1) + Vit =

6. CONNECTIONS INDUCED ON X

It is well known that if X is not singular (i. e. the induced metric j*g on
T is not degenerate or /> # 0), then the connection V of M can be decom-

posed into the tangent connection respect to X and the second fundamental
form of X.

But our main interest is, for physical reasons, towards the singular case.
In such a case, we have not a tangent projection and a unitary normal to X
and the vectors orthogonal to X belong to its tangent space. On the other
hand, in the singular case we find other interesting properties of the connec-
tion. In this section we assume g at least of class C®*® and X singular.

6.1. ProposITION. — The two maps
VEIGE S X G2 08— 680 Myg
given by
v t(u, t)—> (V,,;)/"";_,

where ¢ is an extension of ¢, are well defined (independent of the choice of
the extension) and are derivation laws.

Proof. — We contend that, if p =1 and tN/z = 0, then (Vu?),“—; =0. In
fact, Vo € {:5) Mg, it is
20 (V)h = u. @ D + 1.(0-0)x + (L300 — (Lg)*(u, 1),
where each term is zero =

Annales de I’Institut Henri Poincaré - Section A



SHOCK WAVES IN GENERAL RELATIVITY 39

6.2. PROPOSITION. — The two maps

1+ | 200 1 0 )
Va2 180,005 X G2 = Tl %,

given by
VHE (1) Vit

for contravariant tensors and given by duality for covariant tensors, are
derivation laws.

Proof. — 1t suffices to prove that, for controvariant vectors we have

I'Vi=1VI-1Lt= %V,P =0 =

This proposition can be generalized in such a way as to concern the « jump
type tensors » by introducing the new derivations V" and V*.

6.3. PrROPOSITION. — The two maps
V83 0 x (07,05 @65 gMis) > T30 ® 65, yMp,
given by
VE Q.. @N>V(® ... 1® 1,
are derivation laws.

Proof. — 1t suffices to prove the statement for p = 0 = ¢, r = 1. In fact,
we have

1'VED = VE@D) — (VE)b=0 =
6.4. PROPOSITION. — The two maps
VT ot x (B30 2t @65 Myp) > 202 @G Mg
given by
VL I® ... ®I0—>V(® ... ®1® 1),
are derivation laws.

Proof. — It suffices to prove the statement for p = 0 = g, r = 1. In fact,
we have Yu e (%,

wVEH =Vl - Vi l=0 =
Wengce, V** may be viewed as a connection on each integral manifold
L of /, writing
V18,0l X T ol — G 0L,
i. e. L is a geodesical submanifold of M, with respect to V.

Vol. XXX, n° 1 - 1979.



40 M. MODUGNO AND G. STEFANI

Then V¥ induces two affine structures on each L (at least locally) and
we can normalise /, up to a positive constant along each L (in such a way

that %7,*1 = 0). Such an / is said to be a « normal ».

6.5. Proposition 6.3 suggests the definition of an interesting differential
operator.

COROLLARY. — The two maps
div:=-Civ'# :25;3,0)21 ®CH Miy— G5 My
are well defined and are given (for any normal /) by
divt I ®t— (div'iDt — (V1) =

6.6. Proposition 6.4 suggests the definition of an interesting differential
operator.

COROLLARY. — The two maps
divt* = CiV** 168,02 @G0 Mz~ G5 )Mpx
are well defined and are given (for any normal /) by
divi*  I@1—> — (Vi)* =
6.7. PrROPOSITION. — The map

[]:88 0% X T3,0%— 63,02,
given by
] : (w, )~ [V,1],
is the restriction of [I')* and we get

~

1‘//_ 1~ 2k s .
M=-58"=-3/®j% =

Moreover, a sufficient condition to get
v//+ ="~ and vJ.+ — V_L—
is that the harmonicity condition holds —

6.8. We have introduced only those induced derivation laws of tensors
on X we need for applications. Further ones can be interesting.
As an example we mention two of them.

a) The map ViG3H,0Z X G0z T 5,
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SHOCK WAVES IN GENERAL RELATIVITY 41
given by
Vo ) > (V) = (V)
is a derivation law.
Moreover, V is the Riemannian connection induced on Z by j*g, as we
have, Yu, v, 1€ o),
2{ V8, 0) = L)1, 0) + L"), 0) + )Lyt v) — Luj @), 1) =
b) The bilinear map
0 2] 0
Q61,02 X 01,02~ QG n-1y%
given by
0 ~ ~
Q:(u, )~ j* x (V) 0) = j* % (V,0),
and the linear map
0
r:e5)M—@3,z%,
given by
0
=%V =%V,

resemble the second fundamental form relative to the non singular case =+

7. FURTHER USEFUL FORMULAS

In this section we assume that g is of class C**®), X is singular and the
harmonicity condition () holds.
We have not calculated [VV¢] for C©®) tensors and [V¢] for C(~1:*)

tensors. But we can calculate [div V¢] for C'®* tensors and jj5[div R].
Such results will be fundamental for physical applications.

7.1. LEMMA. — Let

ok, o,

J¥ i TRIM T3 2
and

ok, 0, Ly %k

i .@‘}0,‘;"))M—> @30

be the canonical projections.

(®) This condition is physically interesting, but it is not necessary for the following
theorems. However it gives simplified formulas.
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Let 1€ &'%'M. Then the following conditions are equivalent.
a) (i) =0, VxeGH oM.

@) ("D e 0k @ 6,1

b (it ) =0, VxeGioM .

b) (*t1) e (€8 ,0Z)* @ TG0

7.2. LeMMA. — Let 7€ &(3'%M. Let the previous conditions hold.
Then we have

Clt = Clj*t + Cli*t™.

Proof. — We can easily prove this algebraic formula by any adapted
basis =

7.3. THEOREM. — Let 1 € &{y’5M. Then we have

[div V¢] = (div" + divhet.
Hence, if [ is a normal, we get
[div V] = (div" )t' — 2V,t".
Proof. — Let x €G3 o). Then the formula
i )[VVi] = [V, V,t] - [Vlet] =0- ey = 0

shows that condition 7.2 a holds.
Then we can write

Cl[VV1] = CLj}[VVi + Ciif[VVil.
Moreover we get:

a) FHOV = 3V = FRIO 1
= V'[V1] - j{RIO ¢
= Vst — jFRIO 1,

b) i*[VV1] = V*[V1]
= V'tet.

The statement follows taking into account that, by the harmonicity
condition, we get

1 1
Cijf[Rl = §C1(A34st((jfg2) ®I®D) = §A(g2(l) ®H=0 =
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7.4. THEOREM. — We have
Jtaldiv R] = jiy(div" + divh)[[]
= jT,S:5(div" + divt)e’g.

Hence if / is a normal, we get
jildiv R] = ((— %(div” )+ V,)j*gz) ® 1
Proof. — Let x € (] o)Z. Then the formula

ixilj;4[VR] =j;k2ixil[VR] =jf2ixvl[R] =J';k2ix(l ®IA Vtgz) =0
shows that condition 7.1 a holds.
Then we can write
jfz[div R] = — Clzj;4[VR] = - C}jLiT[VR] - Clzj:fd;[VR]-
Moreover we get:
a) j§‘4iT[VR] =J.;‘4Vl[r]2 >
b) J3ed3IVR] = j3S12(V'[TP — 845V ' [I]%),
in fact, Vx, y, ze 03 ,O)M”, Yuet M, we have
[VR](H, X, Vs 2) = [vuvxvyzl - [vuvyvxZ] - [vuvayZ]
- [R](vux9 Y, Z) - [R](.X, vuy’ Z) - [R](x’ Y, vuz)
= V([P y, 2)) + [T1(Lx, 3, 2) + [RI, x, V,2)
- Vy([l“]z(u, X, Z)) - [F]Z(Luy’ X, Z) - [R](u5 ) vxz)
— [[P(L.w, y, 2) = [TP(Vx, 3, 2) + [TV, X, 2)
= (vx[rlz)(u’ s Z) - (vy[F]z)(u, X, Z)'
The statement follows taking into account that, by the harmonicity
condition, we get
C12812813V"[F]2 = C,ZS”V”[T’]z = C23V”[F]2 = V"CU[F]2 =0 =

This theorem can be viewed as a particular case of the previous one, if
we take into account that the Riemannian tensor R is locally the covariant
derivative of a C°:®) tensor.

8. ELECTROMAGNETIC
AND GRAVITATIONAL SHOCK WAVES

We apply now our theory to a physical case, namely to the relativistic
electromagnetic and gravitational shock waves.
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Henceforth, M represents the space-time manifold and X represents the
support of the shock waves.

8.1. DEFINITION. — A « self-interacting system constituted by a gravita-
tional field an electromagnetic field and an incoherent charged fluid » with
a shock of 10 kind is a 6-plet

M,%,8 F,C, up)

where

M is a C® manifold without boundary, with dimension 4, connected,
paracompact, oriented and time oriented with respect to g;

Y is a C® embedded submanifold of M, without boundary, with dimen-
sion 3, oriented;

g is a C"*®) Lorentz metric;

F is a C'®® 2-form;

Cis a family { D, } ,cp of embedded, connected, time like, maximal sub-
manifolds, such that D= UD »is open and there exists locally a C»*) chart

peP
adapted to the family; I

w is a positive C>*® function of M which is zero on M — D, p is the func-
tion p = Ky, with KeR — {0}

Such that
1
r—srg=1 M)
dF =0 (2)
divF = —J, (3
where
tE%F2g+C13F®F—-uv®v
J=pv

v is the unique vector field tangent to the family C, normalized and future
oriented =
It is known that from (1) (2) and (3), by means of Bianchi identity, we
get further equations
div (uv) = 0 4
,uV,,v = lJF (5)

8.2. THEOREM. — Let (M, Z, g, F, C, u, p) be a self interacting system as
in the previous definition.
Moreover, we assume
g’g"(x) # 0, OI@)
e'F(x) # 0, VxeZ. N

() Such assumption is suggested by considerations on the Cauchy problem (see [/]
and [/0]) in order to get an effective shock.
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Then we get the following results.

a) Z is singular, i. e.

a’) ?=0.
1

) (cis - 5¢50) e =0,
i e.

') g =5 tr g%

0 JaseF =0

C238F = O

i.e.

CI) F =1A FO’

¢’ F°(h) =0
(where F° is defined up to a multiple of /, while j*F° is uniquely given).

d) ev=0

e) eu=20

f) Jaa(div’ + divhe’g = jyser
i. e.

) @iv'1-2V)j*e® = — F(, F)j*¢ + j*(F° VE(®)) for V|i=0
2) (div" + div')eF = A,Ci(e*%g @ F)
i.e.
g) (div' I —2V)j*F° = — (j*¢*)(F() for V=0
) If ue@y oM is such that w> = 1, Ly =0and urv =0
(we can find such an u, at least locally) then we get the geodesic derivation

formula
[V V] = Kie,F + [Rlv; 4, v).

If (e, ey, e,, e3) is an orthonormal local basis, such that » = e,,
I = Mey + e,), e, and ey are the eigenvectors of the restriction of g2 to the
plane orthogonal to e, and e, with eigenvalues y, and y;, then we get
(choicing 4 = 1)

[V,Vul.eq =0
[V, V,ul.e, =0

[V, Vul.e, = — Ku'F9 + %yuz

1
[V, V,ul.e; = — Ku'F — iyuS,
where y = y, = — y;.
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Proof. — Let us prove a) and b):
(1) gives
] -~
0=[l=5 + g1 @1V g’(D),
which is equivalent to

P#0 and j*g?=0

or
P=0 and g*)= %tr 2.
But the first condition is excluded by (6).
Let us prove ¢):
(2) gives IANF =0,
ie. F =1 A F°
moreover (7) gives J*F° #£0  VxeX.
(3) gives I'F® =0
(and ? = 0).
Let us prove d):
(5) gives 0 = K[i,F] = [V 1] = l(v),
hence v =0,

v being time-like and / null.
Let us prove e):

(4) gives 0= [pudive] — [v.u] = — I()u
hence wo=0.
Let us prove f):

Taking into account the Bianchi identity, theorem 7.4 gives
f:a(div” + diVL)ezg =j;3813[diV R] =j;‘3A13[Vr]
=j;3A13|:V(T - %trt g)]
j;s’(r - %trr g)
1 = ,
= ~5(C3E'FP) @)%

+ Cpe'FQ F + C,,C,,F®¢'F
=1Q(—F Fj*g + S,j*(,F ® F%)

Ii

hence
(div" Dj*g? — 2V,j*¢* = — F(, FO*(F° V F())).
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Let us prove g):
Theorem 7.3 gives
(div" + divt)eF = [div VF)
[div dF] — [A,,C,;VVF]
~ [A;.VC,VF] = [A;;Cis[R O F)]
= — Ae = ApCu(RIOF)
= - 2C13(RI®F)

hence
(div” 1)j*F° — 2V, j*F° = — (j*¢®)(F ().
Let us prove h):
(5) gives
[V,Vu] = [V, V2] + [V,Lu]
= [V,V,0] + [RI(v, u, v) + &,(L,u)
= K[V,i,F] + [R)v, u, v)
= Kl.UEuF + [R](U, Ui, U),

where u" is the component of u orthogonal to v and /.

Moreover
iV, ,Vu] =0, for LF' =0 = [R];
i,[V,V,ul =0, for ii,F" =0 =i,il[R];

[RIo, u; v, e;) = %g2(u, e), i=23.

Furthermore y, = — y; follows form 5) -

Let us remark that the formulas ), ¢), /) and g) are compatibility condi-
tions on initial data and they involve only j*F° and j*g?.

Moreover the equations /) and g) result into ordinary differential equa-
tions along the null geodesic generated by /.

8.3. If j*(F(J)) # 0, then an electromagnetic shock induces effectively
a gravitational shock and vice versa. More precisely we get the following
result.

ProposITION. — If j*F° # 0, then the following conditions are equivalent:

a) (div’' [ — 2V )j*g? = 0

b) j*F() = 0.

If j*g? # 0, then the following conditions are equivalent:

¢) (div" I — 2V )j*F° = 0

b)j*F(l) = 0.

Proof. — a) = b) j*g and j*(F° V F(/)) are linearly independent, for the
first one is not decomposable while the second one is.
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Hence j*(F(D) = 0.

c)=b)let y = F()e T o,2. Let j*(g*(»)) = 0 and j*y = 0.

Then choicing a basis { ey, e,, e,, e; } such that

e,=1 , =y , eebl in{e}t , eec{ee}t
and
e3=1 , e=—1, wefind g},=g33=0
Hence, taking into account 8.2 b, we get
j*¢* =0

b) = a) and b) = c) are trivial -
Let us remark that j*(F(/)) = 0 means that each observer sees the electric
and the magnetic field parallel to the observed direction of 7.

8.4. Let us remark that if V is a one dimensional vector space then

® V is one dimensional and, if p = 2gq, it has a natural orientation.
4

LeMMA. — The tensors
W,=Cie'FRe'F) = (FHYIQRIQ®IQ ety My
1
W, = (i C36Cas — C23C67)32g ®&’g

1 1
= 5 ((gZ)Z - E(tr g2)2)1® 1® l® 1668,4)M/2,

depend only on (j*F°) and (j*g?) and are positive.

Proof. — a) (F°)? depends only on j*F° and it is positive. In fact, taking
in to account (¢”), we get

j*GO — j*Fo

FO'I _ 0 - (GO)Z — (FO + aI)Z — (FO)Z > 0

b) (g»)* — %(tr 2%)? depends only on j*g? and it is positive. In fact, taking
into account (b)" and using a basis { ey, e,, e,, €5 } such that
e,=l , ep.e=1 , ei=—1 , eéi=e3=1 , {eye;}={ep .},
e, and e, are the eigenvectors of g restricted to their plane, we find
@~ 3rg? =27 where  gh=—gl=y =
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Note that (g2)? — %(tr g°)* = b?, where be &% ,,M,; is any tensor such
that j*b = j*g and b(/) = 0. Hence we get that be @ (2,00= and tr b=0.

8.5. The preceding result suggests to assume as a measure of the shock
the following tensors.

DEeFINITION. — The « energy of the electromagnetic shock » is the tensor
W, = C;34(e'F ® &'F)
and the « energy of the gravitational shock » is the tensor

1
W, = (5 Ci36Cys — CZ3C67)82g ® ’g.

The « energy of the gravitational electromagnetic shock » is the tensor
W=w,+W, -

8.6. For the cnergy tensor W = W, + W, we find the following conser-
vation law.

PROPOSITION., — div" W = 0

Proof.
div’ W = (div" [ — v,)((1:°)2 + %(g’)2 - i(tr gz)z)l RIRQI

= ((F% (div" I — 2V))j*F, ) + %<13, (div' I =2V )i*a* N @I®!

I

= J*E(F, F) + 3 GV FD),BY - 1 F(, F)Cb, %)

= — "€ (F®), ) + 3 CF V F(), B)

—J*g*(FO), F%) + j*?(F°, F)) =0 =~

Here we have developed the interacting gravitational electromagnetic field
as an example. In an analogous way one can easily study the three fields
separately.

LIST OF SYMBOLS

Cjt:ir is the contraction of the contravariant index iy ... i, with the

covariant index j; ... j,.
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is the contraction of the index i#; ... i, with the index

Ji -+ Jp identifying covariant and contravariant indices
by means of the metric.

1eerip,j1ep

S = c is the symmetrization operator.

A= Ze(a)a is the antisymmetrization operator (¢ = permutation,

o€eS(q)
S(g) = symmetric group of order ¢).
V=So® is the symmetrized tensor product.
A=A® is the antisymmetrized tensor product.
* is the Hodge contraction with the unitary volume form.
t* is the transpose of the tensor ¢, by means of the duality.

is the adjoint of the tensor ¢, by means of the metric.
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