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1. INTRODUCTION

The concept of symbol of difl’erential or pseudodifferential operator
(p. d. o) is useful in finite dimensional analysis. The concept of p. d. o. is
implicity contained in the work of Weyl, Wigner and Moyal for the phase
space formulation of quantum mechanics of systems with a finite number
of degrees of freedom. It seems therefore useful to elaborate a symbolic
calculus in infinite dimensional analysis in view of its application in quan-
tum field theory (Q. F. T.).

(*) Supported in part by the National Science Foundation under the grant GF-41958.
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42 P. KREE AND R. RACZKA

There exist an important discontinuity between the finite and the infi-
nite dimensional analysis :

i ) In finite dimensional analysis, a central role is played by Lebesgue
measures. On the other hand, in infinite dimensional analysis, the Lebesgue
measure does not exist, and we have to use Gaussian measures or their
generalizations ;

ii) The basic variables characterizing symbols in finite dimension are
x and ç, (or q and p). In infinite dimension, the complex variables z and z’
corresponding to symbols of creation and annihilation operators respec-
tively, are most convenient ;

iii) The theory of distribution is most convenient for majority of appli-
cations in finite dimension. In infinite dimensional analysis, it seems more
convenient to use analytical functionals or profunctionals.

In this paper we extend the Wigner-Weyl-Moyal formalism to systems
with infinite number of degrees of freedom. The main tool used here consists
on convenient triplet of spaces

centered on the Fock space Using the L. Schwartz-Grothendieck
kernel theory, we give an effective characterizations of an extensive class
of bounded and unbounded operators in F(X") with the domain D, in terms
of their symbols. In addition, we give also an effective characterization
of an extensive class of linears maps from D to its antidual ’D. The present
formalism allows to control the regularity properties of operators in Q. F. T.:
analysing merely the symbols one may easily verify when non cutoff limit
of operator remain in the Fock space or when becames merely a sesqui-
linear form on D.

In Section 2 we develop a convenient formalism of integration theory
on infinite dimensional spaces. Then in Sec. 3 we elaborate a theory of
analytical functionals and profunctionals of exponential type and we
discuss the properties of Borel transform in infinite dimensional spaces.
In Sec. 4 we develop a theory of kernels and symbols of operators and
sesquilinear forms for quantum mechanical systems with finite number
of degrees of freedom : this theory allows to give a full characterization
of the class of all bounded operators, unbounded operators and sesqui-
linear forms whose domains contain the space Exp ~n in terms of their
kernels or symbols (cf. Propositions (4.20) and (7.1)).

In Section 5 we present a new theory of integral representations for
unbounded operators and sesquilinear forms for systems with infinite

number of degrees of freedom. The main difficulty in the extension of the
Wigner-Weyl-Moyal theory to the interacting quantum system with

infinite number of degrees of freedom consists in the lack of an effective
measure theory on infinite dimensional spaces. In order to overcome this

Annales de l’Institut Henri Poincaré - Section A



43KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

difficulty we introduce a concept of profunctionals and prokernels which
generalizes a concept of a measure. Using these concepts and introducing
an analogue of a Gelfand triplet D c H c D’ we develop a theory of inte-
gral representations of unbounded operators and sesquilinear forms, which
is parallel and equally effective as the corresponding theory for systems
with finite number of degrees of freedom. After experimentation with
prodistributions and various spaces of profunctionals we found that most
effective technique is provided by the theory of analytic functionals. Conse-
quently we stated main results in this language.

Section 6 contains some applications of the theory of integral represen-
tations of operators in the theory of ordinary and generalized quantization
of classical systems with infinite number of degrees of freedom. Finally
in Section 7 we discuss interesting connections between symbols and ope-
rators. In particular we derive an effective criterion for checking when a
given classical dynamical variable Q/e. g. total hamiltonian of a physical sys-
tem in Q. F. T./leads to an operator in the carrier space with D(Q) = Exp XC
and when it leads to a sesquilinear form only. We think that this criterion
will be very useful in quantization theory of classical interacting systems.
We give in Section 8 several examples from quantum field theory for
illustration of main results of our work see also [26] [27].

2. INTEGRATION THEORY WITH RESPECT
TO A PROJECTIVE SYSTEM OF MEASURES

(2.1) NOTATION

Let X be a real Hilbert space and XC its complexification. Let 
be the set of all finite dimensional subspaces of X. The inclusion relation
between subspaces of X induces a following order on J : for every pair
i, j E J of indices there exists k E J with k  i and this means
that Xi and XJ. Let si be the orthogonal projection of X onto Xi
and sij the restriction of si to Xj (if i  j). A function 03C6 : X ~ C is called

cylindrical if there exists j E J and a function ~p~ on Xj such that ~p = ~p~ ~ ~;
the subspace X j is called a basis of ~p. The space of cylindrical polynomial
functions on X will be denoted by the symbol Polcyl (X). The space of conti-
nuous cylindrical functions on X with exponential growth will be denoted
by the symbol CExpeyi (X).

(2.2) PROMEASURES
A promeasure ,u on X is a family of bounded measures on the

spaces Xj such that == ~c~ if i ~ ~; ,u has an exponential decay if ,u~
has an exponential decay for any j :

Vol. XXVIII, n° 1 - 1978.



44 P. KRÉE AND R. RACAKA

Such  defines a linear 03C6~ on CExpeyi (X) which we shall some-

times represent by the abusive symbol For example the Fourier

transform of the canonical gaussian promeasure v on X is the following
function on Xc, with z = x + iy; x and y E X

Here the symbol z2 means in fact (z, z) i. e. the bilinear extension of the

quadratic form ~x~2 on X.
A subset K c J is called cofinal if for any j E f, there exists ~ ~ ~

kEK
A promeasure  = is known if we know only the coherent family

where K is any cofinal subset of J. For example the gaussian pro-
measure v’ on X~ (considered as a real space), is defined by the family

of the following gaussian measures on the finite dimensional com-
plex subspaces of X":

(2.6) REALIZATION OF A CYLINDRICAL PROBABILITY

Let m = cylindrical probability on X : m is a promeasure
such that all mj are probability measures. A realization {03A9, 1:, P, 
of m is defined as a probability space (Q, 1:, P) and a family 0 ~ Yj
of random variables (r. v.) such that

b) The completion T of the 6-field T with respect to P is generated by
the r. v. ~..

For any realization {Q, !, P, (~’~) ~ of m, a complete description of the
complex Lebesgue classes and an algorithm to compute integrals
uniquely in terms of m, are given below.
(2.7) For each j E J, let E j be a dense subspace of the Lebesgue class 
and let E~ _ ~ ~p~ ~ f~ E E 

Then generates a dense subspace of 1 ~ p  oo . This
j

follows directly from (2 . 6 . b).

(2.8) DEFINITION OF L~ FOR 1 ~ /7 ~ 00

Let L~ be the vector space of family of elements t/1 j E such that

Annales de l’Institut Henri Poincare - Section A



45KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

Remarks. i) Condition b~ means that for every Borelian subset ~3 of Xj

This means also that is the conditional mean of t/J with res-
pect to see for example [8].

ii) Condition (2. 8 . c) is empty if p &#x3E; 1, because any set of r. v. bounded
in Lp is uniformly integrable if p &#x3E; 1.

iii) The space L~ has a natural structure of normed space and can be
defined directly with rrc, without any realization of m. Because conditioning
is a contraction in Lp for any p (1 ~ p ~ oo) and because (2 . 6. b), the
sup in (2 . 8 . a) is in fact a limit for p  oo .

(2 . 9) THEOREM([79] [7~]). r, P, be any realization of the

cylindrical probability m on the Hilbert space X. For any g in with
1 ~ p ~ oo and any j, let ~p~ = be the conditional mean of g with
respect to the random variable f~.

a) Then the map

is isometric and bijective.
b) Moreover (~p~ ~ -~ ~ strongly in if p  00 and -~ ~

weakly for any 
This can be proved by a compacity argument or using the martingale

theory. For more details and extensions, see [18].

(2.11) COMMENTARY AND COROLLARY

a) Because is complete, Lm is a Banach space.
b) Part a) of (2 . 9) states that any 03C6 E can be represented by the

promeasure Hence an element (~ e L~ ~ can be identified
with the corresponding promeasure on X. Then the element (~p~)~ of Lm
is written symbolically ~(~).

c) Lm c L~ p. For p  oo, the antidual of Lm is with
+ p’ -1 - 1. For the antiduality will be symbo-

lically written ~p, ~ )&#x3E;.

d) For any g E and any j, we have

Vol. XXVIII, n° 1 - 1978.



46 P. KREE AND R. RACZKA

and this gives a simple method of computation of integral of function
defined on the infinite dimensional space Q.

e) Let K be a subset of J which is cofinal. Let m’ - (mk)k and let Lm-
be the space of family of elements Lmk satisfying conditions a), b),
c) of (2. 8) but only for i and j in K. Then L~ is isometric to 

f ) A « function » cp = in Lm will be called cylindrical if there exists jo
such that ~pi = for jo. The subset K of J consisting of
indeces i ~ jo is cofinal in J, and moreover

We have also 
1

g) With notation of f ) let g be the element of Lp’(Q) corresponding to
the cylindrical functional cp = T, P, is any realization

of m. Let t/1 = (~~)J in L~ not necessarily cylindrical and let h be the corres-
ponding element of By Holder inequality By a well
known property of conditioning we have

Then applying (2.12) we obtain

This gives a very simple formuls for computation of if cp or 03C8 is

cylindrical with a basis Yj. The Segal space L2(X) of wave representation
of free quantized scalar field is the Lebesgue class L2(X) corresponding
to the canonical normal promeasure v = on X.

We now introduce the Segal Bargman space F(X’) = of the

corpuscular representation, using the following results of infinite dimen-
sional holomorphy.

(2.15) INFINITE DIMENSIONAL HOLOMORPHY

Let Z and Y be two complex locally convex Hausdorf spaces, and let Y
be complete. The space HG(Z, Y) of Gateaux holomorphic functions

on Z, valueted in Y, is the space of functions ~ : Z -~ Y, entire on each
one dimensional subspace of Z : see [15]. The subspace H(Z, Y) of holomor-

phic (or entire) functions on Z, consists of functions in HG(Z, Y) which
are continuous.

Annales de l’Institut Henri Poincaré - Section A



47KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

We set HJZ) = C); and H(Z) = H(Z, C). If Z is a Banach space,
then for any 03C8 E H(G), and any zo E Z, there exists s &#x3E; 0, such that the
Taylor series of 03C8 at points Zo converges to 03C8 in the ball ~ z - Zo II  s;
if a function 03C8 E HG(Z) is locally bounded, then 03C8 E H(Z) : see [25]. In the
following considerations, Z is obtained from a real locally convex Haus-
dorf space X by the complexification : Z = XC. An antiholomorphic func-
tional on Z is by definition a holomorphic functional on the conjugate
space Z of Z ; such functional is denoted in the following 

(2.16) DEFINITION

Let p &#x3E; 1. be the space of Gateaux antianalytical functions 03C8
on XC such that

where denotes the restriction of 03C8 to XI and where v’ is the canonicat

gaussian promeasure of X‘ : see (2 . 2). Note that p  pl implies

(2.18) PROPOSITION

a) The space is isometrically embedded in the Lebesgue class
b) For any 03C8 E and any z E XC hotds the following reproducing

pro pert y

c) Each 03C8 in entire.

Remarks on (2.19). i) Using (2.13) it can be shown that the cylindrical
function (exponential) _.

belongs to with p-l + ~ ~ = 1. The integral part of (2.19) must
be understood as explained in (2 .11. f ) : the integral means the anti-

duality pairing between 03C8 E Lp and ez E Then (2 .19) can also be written
in the form

ii) Let {Q, T, P, be any realization of v’. Contrarily to the finite
dimensional case, the reproducing property does not hold for any z in Q
but only for z in xc. Then the general formalism of [6] needs one improve-
ment for its application in the infinite dimensional case.

iii) The L2 norm of ez is exp 1 z 2 Coherent state z used in finite
Vol. XXVIII, n° 1 - 1978.
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48 P. KREE AND R. RACZKA

dimensional models for quantum optics are in fact normalized exponen-
tials :

Proof of (2.18). 2014 a) In view of (2.8) and of the definition of 
it is sufficient to prove that for any 03C8 in the family (03C8i) is coherent.
For example if S21 denotes the canonical projection z2) ~ Zl of C2
onto C, it is necessary to prove that

Using polar coordinates this follows from the mean value property applied
to the function z2 ~ Z 2’ 0) at point z2 = 0

The same proof holds in the general case using convenient orthonormal
basis and the L. Schwartz convention of multiindices.

b) Because ¿ is cylindrical the integral in (2.19) can be computed
using (2.14). Then the proof of (2.19) is reduced to the one dimensional
case, and this case was treated by Berezin [5].

c) Using (2.15) it is sufficient to prove that 03C8 is uniformly bounded
on any bounded subset of X~. This follows from (2.19), using Holder
inequality.

(2.22) COROLLARY

a) If p = 2, and if X~ is finite dimensional, a Taylor expansion gives

where !)~~(0)~ denotes the Hilbert Schmidt norm in the symmetrical
completed tensor product QX’. Then (2 . 23) holds also in the infinite
dimensional case because

This proves that F(X‘) is isometric to the usual Fock space.
b) and 03C8 in F(X‘) we have

Annales de l’Institut Henri Section A



49KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

Symbolically, this means that the identity map of Fock space can be written

c) The result of Berezin used in the proof of (2 .18 . b) can be slightly
extended :

For any 03C6 antientire on Cn such that

the following reproducing property holds

(2.26) THE PROBLEM

The following isometry is known in the finite dimensional case [3]

This holds also in the infinite dimensional case but the integral must be
understood as a sesquilinear pairing between and

If an orthonormal basis is chosen in X, e maps the cylindrical functions
on X associated to normalized Hermite polynomials

onto the cylindrical function on X~ associated to the following monomial
on Cn

We want to analyse the properties of unbounded operators in L2(X)
or and also unbounded operators of the space Lm(X) where rn is the
interacting measure of promeasure. It turns out that convenient formalism
can be elaborated with the help of a certain generalized Gelfand triplet
D c L2 c D’ similarly as in case L2(IRn). We take as the space D a certain

Vol. XXVIII, n° 1 - 1978.



50 P. KREE AND R. RACZKA

space of analytical functions on e. g. D = Expcyl (X’). The choice of
test functions in Expcyi is motivated by the formal relation correspond-
ing to the wave representation for exponents of creation and annihilation
operators . m n __ ... ~_ ..

and also by the following property

(2.28) PROPOSITION

The map () defined in (2 . 26) is a bijection between (XC) and Expcyl (X’).

Because E Expcyl eXC) is transformed by () into a cylindrical
function with the same basis, XC can be chosen finite dimensional and
identified to C" :

where the multiindices notation of (2.27) is used. Using the generating
function of Hermite polynomials one obtains

Utilizing the Cauchy formula one deduces from 
estimates for all derivatives of ~p

Then

and finally

Conversely it must be shown that if ~ E Exp then cp = 0-14&#x3E; belongs
also to Exp (~n). This follows directly from the inversion formula for 0
transform : _

3. ANALYTICAL FUNCTIONALS AND PROFUNCTIONALS
OF EXPONENTIAL TYPE

To define the normal representation and the diagonal representation
of an operator in F(X’) a concept of generalized measure is needed, even

Annales de l’Institut Henri Poincaré - Section A



51KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

in the finite dimensional case. Prodistributions and distributions [19] [18]
can be used in the infinite dimensional case in a way to extend well known
results if dim X is finite. It seems more convenient to use a complex exten-
sion of the theory of measure, because this extension permits to pass very
naturally from gaussian measures to Feynman pseudomeasures [17].

(3.1) BACKGROUND IN MEASURE THEORY

If Y is a vector space and if 8 is a locally convex topology on Y, (Y, 8)
denotes the corresponding topological vector space, and (Y, 8)’ denotes
its dual. If X is a completely regular space, denotes the space of
bounded continuous functions ~p : X -~ C. Let j8 be the unit ball of 

The space M(X) of bounded Radon measures over X is the space of bounded
complex measures of the borelian 03C3-field of X such that for every 8 &#x3E; 0
there exists a compact subset K of X such that |m| (X/K)  8. Let tk be
the topology of uniform convergence over all compact subset of X. The
strict topology! over is the finest locally convex topology on 
which agrees with tk on /3. It can be shown [11] that M(X) can be defined
as the dual of the locally convex space !).

(3.2) INTRODUCTION OF WEIGHTS

We shall use the strict topology on spaces of continuous functions in
order to obtain a topology on spaces of entire functions. In view of the
fact that any entire function c~ is unbounded, we introduce a weight, in
order to allow growth of cp at infinity. Let Z be a real Banach space and
let m be a positive integer. The space CExpm (Z) is the space of continuous
functions ~p on Z such that sup exp ( -  oo . This space
has a natural unit ball ~3m, a topology tk, and it can be equipped with a
strict topology im. The dual MExp’m (Z) is the space of Radon measures ,u
on Z such that

The space C Exp (Z) = C Expm (Z) is the space of continuous func-
m

tions on Z with exponential growth. It can be equipped with the topology
9 = lim 03C4m. The dual M Exp’ (Z) of (C Exp (Z), 8) is the space of measures 
with exponential decay, i. e. measures satisfying (3.3) for any m. If in the
preceeding definitions the weights exp are replaced by the weights
exp z 112) we obtain instead of C Exp (Z) and M Exp (Z) the spaces
C Exp2 and M Exp2 (Z).

Vol. XXVIII, n° 1 - 1978.



52 P. KRÉE AND R. RACZKA

(3.4) ANALYTICAL FUNCTIONALS OF EXPONENTIAL TYPE

Let Z be a complex Banach space and let Exp Z be the topological
subspace of (C Exp (Z), 0) consisting of entire functions. The dual Exp’ (Z)
of Exp (Z) is called the space of analytical functionals of exponential type
over Z.
The Hahn-Banach theorem implies the following.

(3.5) CHARACTERIZATION OF Exp’ (Z)
Let T be a linear form defined over a dense subspace of (Expcyl (Z), 0).

Then T E Exp’ (Z) if and only if T can be represented by an exponentially
decreasing Radon measure on Z.

(3.6) FOURIER TRANSFORM FT

For every (eZ’ the function z -~ exp ( - J=1 zQ belongs to Exp Z
where z~ denotes the bilinear duality from between Z and Z’. Then FT is
defined by the following function on Z’

where the integral has only a symbolic meaning. It can be shown that FT
is entire of nuclear type on Z’ and that the map T -~ FT is injective [17]
at least if Z is separable and has the metric approximation property ;
these hypothesis will be assumed below.

(3.8) IMAGE BY A LINEAR MAP

Let Z and U be two complex Banach spaces, and let ~, be linear conti-
nuous map Z -~ U. For T E Exp’ (Z) the analytical functional ~,T on U
is defined by

for every 1/1 E Exp (U). This implies the following relation between the
Fourier transforms of T and ~,T

where ~,’ denotes the transpose of /L

(3 .11) Product with an element ~ E Exp (Z).
The product ~T is defined as in the distribution theory by the formula

for any 03C8 E Exp (Z).

(3.13) TENSORIAL PRODUCT

Let Z1 and Z2 be two complex Banach spaces and Z = Z1 x Z2. Then

Annales de Henri Poincaré - Section A
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the tensorial product of the two linear forms associated to T 1 E Exp’ (Z1)
and to T2 E Exp’ (Z2) is a linear form on the subspace E = Exp(Z1)~Exp (Z2)
of Exp (Z). The subspace E is dense in Exp Z ; indeed if T E Exp’ (Z) is

orthogonal to E then the Fourier transform T = 0 and T = 0. If
M Exp = 1, 2 represents t~ then J11 (x) ,u2 E M Exp (Z) repre-

sents ~,. In view of (3 . 5) (Z); we write ~, = T 0 T 2’ There is a
Fubini-L. Schwartz formula

for any 03C6 E Exp (Z).

(3.15) REMARKS

i) The preceding theory holds for any kinds of weights on the complex
Banach space Z. For example for any p &#x3E; 0 we can define the space Exp p (Z)
of entire functions ~p on Z satisfying the estimate

The corresponding space of analytical functionals will be denoted by
Expp (Z). In particular, for p = 1 we obtain Exp’ (Z).

ii) For T E Exp’ (Z) the Borel transform BT of T can be defined by

Comparing with (3.7) the following relation is deduced

Exactly as the concept of promeasure extends the concept of Radon
measure the concept of analytic functionals of exponential type will be
generalized in the following manner :

(3.16) ANALYTIC PROFUNCTIONALS OF EXPONENTIAL TYPE

Let Z be a complex Hilbert space and let be the family of finite
dimensional complex subspaces of Z. The space Expcyl (Z) of cylindrical
entire function on Z with exponential growth can be considered as the induc-
tive limit of spaces Exp (Zj). Then Expcyl (Z) can be equipped with the
lim topology. The space Exp’cyl (Z) of analytical profunctionals of exponen-
tial type is defined as the dual of Expcyl (Z). Equivalently, is the
space of linear forms T on Expcyl (Z) whose restrictions to each Exp (Z)
are represented by an element of Exp’ (Z~). The result of the action of T on
03C8 ~ Expcyl (Z) is symbolically written in the form

Vol. XXVIII, n° 1 - 1978.



54 P. KREE AND R. RACZKA

(3.18) LEMMA

a) The natural injection

is continuous with a dense range.
b) By transposition of J we obtain a canonical injection of Exp’ (Z)

into 

Proof of a). 2014 The continuity of J follows from general properties of
generalized inductive limit [11]. Density follows by a natural polarity
argument. Usual operations can be now defined in Fourier
transform of can be defined by (3 . 7) because the function
z --~ exp ( - z~) is cylindrical on Z.

(3.19) IMAGE BY A LINEAR CONTINUOUS MAP

Let Z and U be two complex Hilbert spaces and ~, be a linear continuous
map Z -~ U. We wish to define the image by ~, of T = (TJ, E 
Let Uj be any finite dimensional subspace of U and tj be the corresponding
orthogonal projection of U. If Zj is the subspace of Z orthogonal to
ker (t J ~ ~,) = ~, -1 (U~ ) there is a commutative diagram

where sj is the projector on ZJ and where 03BBj is injective. Then 03BBT is defined
by

This implies (3 . 9) for Then formula (3.10) connects
the Fourier transforms of T and ~.T.
The product of T E with ~ E (Z) is defined by (3 .12) for

any 03C8 E Exp,y, (Z).

(3.22) TENSOR PRODUCT

Let and be a family of finite dimensional complex subspaces
of Hilbert spaces Z 1 and Z2 respectively. Let 

and To define 
it is sufficient to define ( T Q9 U, 03C8~ for any 03C8 E Expcyl (Z). Because any
basis of 03C8 belongs to some Z1j x admits a basis of the type Z} x Z2k
and

Annales de l’Institut Henri Poincare - Section A



55KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

where s~ and 6k are orthogonal projectors on Z~ and Z~ respectively. We
set

(3.25) CONVOLUTION

The convolution T * U of T E and U E is the image
of T Q U by the addition map : Z x Z -~ Z. This means

(3.26) EXAMPLES

a) Let P be a polynomial on a complex Hilbert space Z identified with
its dual. For any finite dimensional complex subspace Zj of Z the restriction
P J of P to Z J is the Fourier transform of a distribution Tj supported by the
origin ofZj’ Cauchy formula proves that Tj~Exp’ (Zj). For any pair (i, j)
of indices such that i &#x3E; j (3.10) permits to show that Tj = and
T = is an analytical profunctional of exponential type. For example

if P = 1.

b) Let X be a real Hilbert space, and X~ = X + . J -1 X be complexified
space. Let zz’ be the complex extension of the scalar product x, y -~ ~ y )
on X. To any can be associated its natural extension
to X~

By (3.5) this measure defines an analytical profunctional T of exponential
type on X~ and FT is the analytic extension of For example, if ~ = v,

c) For any real 0, the rotation

transforms m into an analytical profunctional ReT = Te. For example
v(x) 8&#x3E; is transformed in 03BD03B8 such that

For example, if 8 = Tr/4, we obtain the Feynman pseudomeasure w on X.

(3.27) FIRST MODIFICATION OF THE THEORY : S-ANALYTICAL PROFUNC-
TIONALS

Let S be a dense vector subspace of the complex Hilbert space Z. In some
cases it is useful to replace the family of all finite dimensional sub-

Vol. XXVIII, n° 1 - 1978.



56 P. KREE AND R. RACZKA

spaces of S by the subfamily of all finite dimensional subspaces of S.
The space Exps.cyi (Z) = D is the subspace of Expcyl (Z) consisting of

functions admitting a basis contained in S. The space

can be equipped with the inductive limit topology. The dual 
of ExpS-cyl (Z) is the set of coherent family T = with T, E Exp’ (Z,).
The Borel transform { T} of T is the following function defined on S

The theory of usual operations is the natural extension of the correspond-
ing theory for 

(3.28) CONNECTION WITH WORKS CONCERNING ANALYTICAL FUNCTIONALS
ON Cn

An analytical functional on ~n (see [10] [23] [22]) is usually defined as
an element of the dual of tk); the Borel transform realizes
a linear bijection of onto Exp (C"). Martineau in his thesis has

equipped Expm with the topology corresponding to the supremum
norm 

..

and Exp with the topology lim tm~. Using an argument of Grothen-
dieck thesis [13] Martineau [23] has proved that the Borel transform
realizes the following homeomorphism

The following proposition gives the connection between this natural

topology and the topology 8:

(3.30) PROPOSITION

On Exp the two topology lim tm~ and 03B8 = lim 03C4m agree.

Proof. - Because the inclusion 8 c lim tm~ is evident, it is sufficient

to prove the continuity of the identity map

Using the universal property of topology defined by inductive limit it is

sufficient to prove the continuity of the injection
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With the same argument, it is sufficient to prove the continuity of the
restriction to the unit ball 03B2m of Expm (C"). Finally, using a lemma of Gro-
thendieck [l4] Chapter II, n° 14 it is sufficient to prove continuity at the
origin of Expm (C"). The problem is reduced to proof of the following
implication concerning a filter in 

But an arbitrary neighbourhood of the origin for contains a

ball V = {~ ; sup exp ( - 2m ~ I z I)  oo }. Because if I z I -~ oo, then

0, hypothesis a) implies that if

&#x3E; R. Now hypothesis b) implies exp ( -  ~ if z  R

if j is big enough ; this implies the assertion of Proposition.
Let us note that specialists on finite dimensional holomorphy work

with more general analytical functionals than elements of For

example in [23] elements of the dual Exp’ of (Exp (C"), lim f~)
are studied. By transposition of the homeomorphism (3.29) and because
H(C") is reflexive the following proposition can be obtained.

(3.31) PROPOSITION

The Borel transform realizes the following isomorphism

(3.33) CONNECTION WITH THE SPACE Z OF GELFAND-EHRENPREIS [70]

A theorem of Paley-Wiener type asserts that ~i maps bicontinuously the
Schwartz space ~(f~n) onto some space ~ = Z(C") of entire functions on ~n,
By transposition of the injections with dense range

the following injections with dense range are deduced

For applications in physics is in general too small because any
T E H’(C") is represented by a measure with compact support ; and for
example gaussian measure has no compact support. In confront to 
the smaller space Exp’ has the following interesting properties :
- Fourier transforms (or Borel transforms) of elements of Exp’ (~n)

are analytical functions (and not distributions).
- the space Exp’ is invariant by any complex rotation z ~ ei03B8z ;

this is useful for instance in the deduction (3 . 26 . c). The preceding consi-
derations imply the following corollaries :
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(3.34) COROLLARY

All spaces Exp’ (C"), Exp are complete, nuclear, and reflexive.
This follows from the reflexivity and the nuclearity of H(C") [l3] and

from theorem 7 of [13] chapter 2.

(3.35) COROLLARY

Let Z be any complex Hilbert space identified with its antidual and let S
be any dense subspace of Z. T hen the Borel transform realizes a linear bijec-
tion between and HG(S).

Moreover, this bijection is bicontinuous : in order that a filter 

converge to zero it is necessary and sufficient that the family (T)
of their Borel transforms converge to zero on every finite dimensional

compact subset of Z.
We now prove a useful technical lemma.

(3.36) LEMMA

For E Exp there exists a sequence Of linear combinations

of exponentials such that

-~ ~ uniformly on any compact subset of en.

Proof. 2014 The inverse Borel transform T of 03C8 can be represented by a
measure  with a compact support Because K is separable, there
exists a sequence of finite linear combinations of Dirac measures

on K, converging weakly to  in M(K). Then the sequence = 

satisfies the conditions of Lemma (3.36).

(3.37) SECOND MODIFICATION OF THE THEORY

In general, if E and F are two locally convex spaces, the antidual ’E
of E is the space of all antilinear continuous forms on E. If E denotes the

conjugate space of E, then ’E == (Ey ~ (E’). If A : E ~ F is a linear conti-
nuous map, the adjoint A* : ’F -~ ’E of A is defined by

the bracket being linear with respect to ket, and antilinear with respect
to bra. Let Z be a complex Hilbert space. Since the Riesz theorem gives
an isomorphism Z ~ ’Z, it is more convenient to work in the complex
case, with antilinear rather than linear functionals. Then if the Borel

transform ~ of T E ’Exp is defined by
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then we have two conjugate isomorphisms

In the same manner we obtain

By taking tensor products on obtain

By interchange of variables, there is an isomorphism of H(C" x ~n) to the
space H(C" x cn) of sesquiholomorphic functions on ~n x and so
the Borel transform of any T in ’Exp (~n x ~n) is written

4. KERNELS AND SYMBOLS
(FINITE DIMENSIONAL CASE)

In this case X = and X’ = en.

(4.1) EXTENSION OF THE MAP 0

The L. Schwartz theory of Fourier transform of real tempered distri-
butions can be illustrated by the following scheme :
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We now extend this scheme to the complex case. Since e : -+ F(C")
is an isometry, and by virtue of (2.28) we have

(4 . 3) dcp E Exp (C"), E Exp (C"), ( 8 -1 cp I ~ ~ _ ~ ~P 
Then, the adjoint of the linear bicontinuous map 8-1 : Exp -~ Exp {~n)
is a linear bicontinuous map : ’Exp -+ ’Exp extending the map 0
defined by (2. 27). The extension is called 0 and we have the scheme

where j and k are the canonical injections ; the spaces and F(C")
are identified with their antiduals, and j* and k* are the adjoints of j and k
respectively.

(4.5) THE REPRODUCING PROPERTY (2.19) MEANS THAT ANY (~ IN 

COINCIDES WITH THE BOREL TRANSFORM OF THE ANTIANALYTICAL
FUNCTIONAL 4&#x3E;v’

This property is very important and o can be extended to other elements

(4.6) LEMMA

Let T E ’Exp 1 be such that

T hen the , action of is given by the following , formula ,

Proof 2014 This formula holds it ~ is any exponential, by the definition
of { T }. By linearity, the formula holds for any linear combination of expo-
nentials. Using (3 . 36) the formula holds for any 03C8 E Exp (C").

(4.9) THE SPACE (Q) OF LINEAR OPERATORS

Let (Q) be the space of linear continuous operators Exp -+ ’Exp (C").
This space is equipped with the topology of uniform convergence of all
bounded subsets of Exp 
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The linear map transforming any T E (Exp in the element   
of ’Exp is an isomorphism of locally convex spaces. Then using (3 . 42)
and the theorem 6, chapter II of [l3],

(4 . 11 ) DEFINITION OF THE KERNEL QK OF Q IN (Q)
The antianalytical functional of exponential type associated by (4.10)

to any Q E (~) is called the kernel of Q. This kernel will be denoted by the
symbol QK.

(4.12) SOME RELATIONS

b) In particular, the Borel transform {QK} of QK is given by

For the sake of simplicity, this can be also denoted by Q(z, z’) : see § 8.
From (3 . 42) it follows that the map Q -+ {QK} is a homeomorphism
of Q onto x cn).

c) The Borel transform of the kernel of the adjoint Q* of Q is

so

It is evident that Q is symmetric if and only if { QK} (z, z’) = . { QK} (z z’).
(4.13) PROPOSITION

Any operator Q E (Q) admits the following R representation

More precisely, for any 03C8 E Exp (C"), the Borel transform of is
given by the formula

This follows directly from (4.12 . a) because {Q03C8} (z) =  ez, )&#x3E;.

(4.16) PROPOSITION

Suppose that Q E (Q) satisfies the following j condition :
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then for any 03C8 E Exp (ën), the Borel transform of has the following
integrat representation

Proof. - For relation (4.18) follows from (4.12 . b). By
linearity, (4.18) holds for any linear combination of exponentials. And
using (3 . 36), relation (4.18) holds for 

(4.19) WICK SYMBOL AND QUANTIZATION

a) The Wick symbol QW(z, z’) of Q E (Q) is the following function

b) The symbol map : Q -+ Qw is an isomorphism from (Q) to H(C" x C").
The inverse map is called a quantization.
A quantization Q of S is a map F(z, z’) -+ Q(F) of symbols of classical

dynamical variables into operators in the Segal-Bargman space F(cn),
which satisfies the following conditions

The following Proposition gives a method of prescribing to any classical
dynamical variable F(z, z’) an operator Q in Bargman-Segal space of quan-
tum states.

(4.20) PROPOSITION

Let QW be the inverse Borel transform of the Wick symbot QW o~’ Q E (Q).
Then Q admits the following normal representation

More precisely, for E Exp (C"), the Borel transform of is given
by the following formula ’

Proof - By the density argument and because Qw is an antilinear
continuous form on Exp (~n x C"), it is sufficient to prove (4.22) for
~ = ~. But in this case (4 . 22) follows directly from the definition of the
Wick symbol.

Proposition (4. 20) allows for defining the Wick product of Q 1, ..., Qn E (Q)
by quantization of QY x ... x Qn .
In order to clarify the meaning of introduced concepts we consider
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the following example. Let Q be a formal operator given by the formula

where k = (k 1, ..., kn), = l2 , ... , U are multiindexes.
Its Borel transform {QK} by (4.12 . b) has the form

Hence the Wick symbol (4 .19 . a) of Q is

00

Consequently, if x en) then by virtue of (4.19 . b) the

formal operator Q represents the map from Exp Cn into ’Exp Cn. Most
operators considered in Quantum Optics are given in the form (4.23)
with _

To verify when (4 . 23) maps Exp (cn) in F(C"): see (7 . 4 . a).

5. WICK SYMBOLS AND KERNELS

(INFINITE DIMENSIONAL CASE)

We shall now extend the results of previous section to the case of infinite
number of degrees of freedom. We shall carry it out using the formalism
of analytical profunctionals of section 3. Let S be a dense subspace of
Z = Xc, which is the complexification of S n X. Consider the natural
continuous injection with a dense range D -+ L2(X) and D -+ F(Z),
where D is defined in (3.27). Taking the adjoints, two triplets are obtained.

Since 9 maps a cylindrical function with exponential growth into a
cylindrical function with the same basis, 6 can be extended to ’D. More
explicitely, the diagram (4. 4) is generalized to the following one :

In what follows we shall work only with the Fock representation.
Vol. XXVIII, n° 1 - 1978. 5
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(5.2) DEFINITION OF (Qs)
Let Q be a linear map : D -+ ’D. For any j E J, let Qj be the restriction

of Q to Exp (X~~. Then for ~p = ~p_j ~ ~ in D, we have :

The following map

is called It is easy to see that the set characterizes Q. Then (QS)
can be defined as the space of linear maps Q = (Q) from D into ’D such
that for any j, Qj belongs to the space of linear continuous maps
Exp (X;.) -+ ’Exp 

(5.3) PROKERNEL QK

Any map Qj by virtue of (4.10) has a kernel Q~ E ’Exp (X~ x The

family (QK)~ (j E J) satisfies the following coherence condition

Hence this family defines an antianalytical S-profunctional QK of expo-
nential type on Z x Z. This profunctional is called the prokernel of Q.

(5.5) BOREL TRANSFORM {QK} OF QK. WICK SYMBOL OF OPERATOR

By analogy with (3.44) we define the Borel transform { (z, z’) and
the Wick symbol Qw(z, z’) on S x S in the following manner

We note that for any j E J, the restriction of { (resp. QW) to X~ x X;
coincides with {Q} (resp. 
The symbol map Q -+ Qw is a bijection between (QS) and the space

HG(S x S) of Gateaux sesquiholomorphic functions on S x S. This follows

directly from (3.42).
All properties and formulas of Section 3 and 4 can be now extended

to the infinite dimensional case. For example for the Borel

transform of Q03C8 is given by

where the integral means the action of QK on the cylindrical functional
-+ 

In particular also Propositions (4.13) and (4.20) extend to infinite

dimensional case. Since the concept of prokernel reduces the proofs to
the finite dimensional case we left them as an exercise for the reader.
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(5.9) USE OF NUCLEAR PROPERTY OF S

In conclusion without any assumption on the dense subspace S of Xc,
it is possible to quantize any Gateaux sesquiholomorphic function on S x S,
using a cylindrical formalism reducing the infinite dimensional case to
the finite one.

However, if S is a Frechet nuclear space, using some recents results of
infinite dimensional holomorphy and some topological and bornological
arguments, it can be show [20] that mains of results of § 4 can be extended
in the infinite dimensional case, replacing en by the nuclear triplet :

The space Exp ’S is defined as the space of entire functions ~ on ’S such
that there exists a continuous semi-norm p on ’S with

Then Exp ’S is an inductive limite of Banach spaces Bp, and we have a
triplet

where ’Exp (’S) is equipped with the topology of uniform convergence of
all ball of all the spaces Bp : This is a complet nuclear space and its strong
dual is Exp (’S). The space Op T of linear continuas maps Exp (’S) -+ ’Exp (’S)
is equipped with the topology of uniform convergence on all balls of all
spaces Bp. Then we have three isomorphism

So in this particular case, any element of H(S x S) can be quantize, without
using the cylindrical formalism.

6. REMARKS ON GENERALIZED QUANTIZATIONS

Let Z be the complexification of the real separable Hilbert space X. Let
Exp2 ( Z x Z) be the space of continuous sesquiholomorphic functions
f(z, z’) on Z x Z, satisfying for some n &#x3E; 0 the following growth condi-
tion :

This space has a natural inductive limit topology given by (3.2). The
Borel transform of any T E ’Exp2 (Z x Z) is the function on Z x Z defined
by (3 . 44). Denote by the symbol Q a fixed nonzero element of Exp2 (Z x Z).
Then the quantization rule (4.19) can be generalized in the following
manner

Vol. XXVIII, n° 1 1978.



66 P. KREE AND R. RACZKA

(6.1) GENERALIZED QUANTIZATION 

(6.2) Suppose that I&#x3E;(z, z’)eH(Z x Z) is the Borel transform of some
i&#x3E; E ’Exp2 (2 x Z).
Then for any 03C8 E Expcyl 1 Z, the function

is Gateaux holomorphic on Z. The linear operator C :

transforming ~ into whose Borel transform is given by (6. 3), may be
written symbolically in the form

Let us note that using the definition (3 .12) of the product of an analytical
functional by an analytical function we can write (6.4) in the form

This shows that the theory of a generalized quantization Q may be
reduced to the theory of Wick ordering with a weight. The normal (or the
Wick) quantization rule corresponds to Q = 0. The antinormal quantiza-
tion rule corresponds to Q = The Weyl quantization rule corresponds

to Q = ~ Any quantization rule used so far in Quantum Theory (e. g.

standard, Born-Jordan, Rivers, etc.) in case of finite number of degrees of
freedom can be written down with the help of a function Q in the space
Exp Cn. Therefore in this case we obtain a natural extension of results
of [6]. In case of infinite number of degrees of freedom, contrary to common
believe, there exists a restriction on the set of sesquiholomorphic functions
which can be quantized. This restriction is intrinsic and not technical. For
instance the energy operator at a free scalar classical field 0(t, x) has the
symbol

were = 

~[1/2C + ~), ~ = ~/~~ - A and z(p) is the

Fourier transform of z(x). The normal quantization of Po gives
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which is a well defined self-adjoint operator in F(Z) whereas antinormal
quantization leads to

The same phenomenon occurs for many other classical dynamical varia-
bles as well as for other generalized quantizations. The reason for this
difficulty lies in the fact that other than Wick quantization rules give
expression for dynamical variables in which a*(p) proceeds a(p) : in this
case since for 03C8 E Exp Z, Exp Z in general, the action of not
normally ordered operators cannot be defined in Exp Z. It seems therefore
that in Quantum Field Theory the Wick quantization is more suitable
for analysis of properties of various models.

7. PROPERTIES OF OPERATORS CONNECTED
WITH THEIR SYMBOLS

The preceding analysis shows that, starting with a nuclear triplet
T = (S -+ XC -+ ’S) any sesquiholomorphic function on S x S is the
Wick symbol of an linear continuous operator Q defined on Exp S,
with values in the space ’Exp S’, which is bigger than the Fock space.
Because in constructive quantum field theory, one usually starts with
cutoff operators in the Fock space, it is interesting to have an easily verifable
criterion concerning Wick symbol Qw (or Borel transform of the kernel),
assuring that Q maps continuously Exp S’ into This criterion which
describes the regularity properties of operators is given by the following
theorem.

(7.1) THEOREM

Let Q be in Op T. map: Q ~ {QK}, induces a topological isomor-
phism T . ~ . _ ,_ _ , , _ __ __ _ .__

More explicitely an operator Q E Op T maps continuously Exp S’ into the
Fock space, if and only if for any fixed z’ E S, the function z -~ ~ QK ~ (z, z’)
belongs to the Fock space, and if the map z’ -+ Q~(., z’) is continuous
from S into F(XJ.

Proof 2014 By L. Schwartz, A. Grothendieck kernel theory [l3] the map
Q -+ QK induce an isomorphism

In turn the Borel transform induces an isomorphism ’Exp S -+ H(S)
(see [20] ) ; and by (2 . 20), coincides with the identity map on F(X’). By tensor
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product of these two isomorphisms, it follows that Borel transform
induces the topological isomorphism

By standard arguments of [13J, this last space is topologically isomorphic
to the space H(S, of holomorphic functions defined on S, with values
in which map continuously z’ E S into Theorem (7.1) follows
by composition of the isomorphisms (7.2) and (7.3).

If we consider in particular the nuclear triplet T = (C" = cn) we
obtain the following.

(7.4) COROLLARY

The map Q ~ {QK} induces a topotogical isomorphism

According to our knowledge this kind of effective characterization of
an extended class of unbounded operators in the Fock space, was never
obtained even in the finite dimensional case.
We present now some other properties connecting operators and sym-

bols which are usefull in applications.
Let us observe that any unbounded symmetric operator Q in F whose

domain D(Q) contains the linear envelope D of coherent states vectors eZ,
z E S has the Wick symbol Qw(z, z’) which is the sesquiholomorphic func-
tional on S x S of order two. Indeed since ~ = E F(X") the function

by (2.18) is antiholomorphic on S of order two. Now because

the Borel transform Q(z, z’) is holomorphic in z’. Since Qw(z, z’)
the assertion follows.

(7.5) REMARK

The linear continuous operator Q : Exp (S’) -+ ’Exp (S’) coincide with
its adjoint Q* : Exp (S’) -+ ’Exp (S’) if and only if its Wick symbol has
the following hermitian symmetry property

(7.6) LEMMA

The coherent state o tends weakly to zero in -+ oo.
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Proof. 2014 It is sufficient to prove that for any

tends to zero. For any B &#x3E; 0, there exists a cylindrical polynomial function ~
such that H  B with H = ~p - Then

Hence | a |03C6~ |  28 if ~03B1~ is sufficiently large because

(7.7) PROPOSITION

Q is a , compact operator in the Fock space, , then 0 z) tends to o zero o
I -+ ~ .

Proof. - In fact.

Using the preceding lemma, and because Q is compact, if II tends to

infinity, then tends to zero strongly. And because has norm

one, then zn) _  Zn tends to zero.

(7.9) PROPOSITION

Let T = (S c Xc c ’S) be a nuclear triplet. Suppose that Q E Op T admits
an integral kernel of the type

where Ø defined on S’, betongs to some Lebesgue class Lp, p &#x3E; 1. Let

Then Im Qw c Dom Q c D(p) where D(p) is the disk the complex
plane where I z  p.

Proof. 2014 The first inclusion follows form (7.8). The second inclusion
follows from

(7.10) COROLLARY

a) If p is finite, then Q is bounded and
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b) If z -+ z) is not bounded on S, then Q cannot be bounded.

c) If Q is self adjoint in F(XC), then

Im QW c Convex Hull of Sp Q c D( )

8. EXAMPLES

We shall illustrate now the main theorem 7.1 by several examples from
quantum field theory.

... ; x = (xo, x) and

Let r+ = {pe (1~N ~ p o &#x3E; 0, p 2 = m2 ~ .
We use the real nuclear triplet T = (Sr c L2(r+) c where Sr is the

L. Schwartz space of rB Let D(x) be a free scalar massive quantum field
on RN :

The Borel transform of the kernel of is the following function on
SxS

Because this function belongs to H( S x S), C(x) belongs to Op T for any
x E For any f E the usual Wick monomial : C" : ( f ) has for Wick
symbol the following sesquiholomorphic functional: 

..

Then : l&#x3E;n : ( f ) belongs to Op T. Now, we prove that : 0" : ( f ) is a linear

with g(x) = f (x)Z’n - k(x). It is sufficient to prove that Qk E L (Exp (S’), F(XC))
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Usins Fourier transform on 

Because A(z) = z’) is a polynomial of degree k on S, this function
belongs to if and only if

This inequality follows from g(p) E and from the existence of a
k

strictly convex cone in (~N)k containing r + . Now we have
I=1

Taking norm in the Fock space

By a similar argument the continuity of the map z’ -+ from S
to can be proved. Theorem 7 . 2 implies that Qk E L (Exp S’, 
Because (7 . 5), : D" : ( f ) is a symmetric operator of Now if f -+ 1
in then the Wick symbol of : C" : ( f ) tends to the Wick symbol
of : ~n : (1) in H(S x S). Using the topological isomorphisms (5.11), this
means that : ~n : ( f ) tends to : ~n : (1) in Op T. We see therefore that the
present formalism allows to control the properties of operators when
cutoffs are removed. This will allow to elaborate an effective technique
for introduction of proper counter terms in order to return back the operator
properties of noncutoff sesquilinear forms.

Consider now the sharp time Wick polynomial : C": (0, g), for g E 
The similar analysis as previous prove that : C" : (0, g) definies a linear
continuous operator Exp (S’) -+ F(X’) if and only if for k = 1, ... , n

The elementary computation show that (8 . 5) is finite if and only if N = 2.
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Hence the sharp time Wick polynomials are defined as operators in two
dimensional space time only.

In the same manner we see that if N = 2, and if g -+ 1 in S’(R), then
the unbounded operator : C" : (0, g) of F(X’) tends to : D" : (0, 1) in the
space Op T. Consider now the cutoff hamiltonien Hg in quantum field
theory, given by the formula

where Ho is the free hamiltonian. It was shown in [12] that Hg is essentially
self adjoint in the Fock space and for weak coupling the vacum Qg
of Hg is non degenerate.
We show now using symbolic calculus that Hg is unbounded symmetric

operator Exp S’ -+ F(X") whose non cutoff limit exists as a map from
Exp S’ to ’Exp S’. Indeed, the Wick symbol of Hg is :

The first term satisfies all condition of theorem (7.1). Hence it is sufficient
to apply the preceding analysis to the second term.

Let us note that corollary (7 .10) implies that all operators : C"(/) : and
: D" : (0, g) are not bounded.
Further applications of symbolic calculus to the theory of interacting

quantum fields are in preparation.
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