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Physical States on Quantum Logics. I

J. GUNSON

Department of Mathematical Physics,
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Ann. Inst. Henri Poincaré,
Vol. XVII, no 4, 1972,

Section A :

Physique théorique.

ABSTRACT. - We obtain some continuity properties of countably
additive measures on the projection lattice of a continuous von Neumann
factor. In the hyperfinite case, we prove a generalised form of Gleason’s
theorem.

RESUME. 2014 Nous obtenons quelques proprietes de continuite des

mesures denombrablement additives sur le treillis des projecteurs d’un
facteur de von Neumann continu. En le cas hyperfini, nous prouvons
une forme generalisee du theoreme de Gleason.

1. Introduction

In the propositional calculus approach to the foundations of quantum
mechanics pioneered by Birkhoff and von Neumann [1], one starts out
with a set ’? of experimentally verifiable propositions, also called " ques-
tions 

" 

by Mackey [2], which possess a natural ordering induced by a
relation of implication. For details, we refer to an earlier paper [3]
where the basic ideas are briefly summarised in a set of structure axioms
A .1 to A. 6. With these, ~ forms an orthomodular partially ordered
set, called a generalised quantum logic. A somewhat more restrictive

definition is given by Varadarajan [4], who defines a quantum logic to
be a v-complete orthomodular lattice. A basic problem is that of charac-
terising all physical states on a given quantum logic. Depending on
just what restrictions are imposed, there are several ways of giving a
precise formulation to this problem. Here we choose the following :

1.1. PROBLEM. - Let T be a a-complete orlhomodular lattice. Charac-
terise all countably additive measures on .

ANN. INST. POINCARE, A-XVII-4 21
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For completeness, we give the relevant definitions :

1.2. DEFINITION. - A c-complete orthomodular lattice is a triple
~ ~, &#x3E;, 1 ) s consisting of a set ~ , an order relation &#x3E; making f into a
c-complete lattice (i. e. all countable joins and meets exist) with 0 and 1,
an orthocomplementation a - al satisfying a V al = 1, a /B al = 0,
a  b =&#x3E; al bl, a11 = a and the orthomodular identity :

1.3. DEFINITION. - A countably additive measure p on a v-complete
orthomodular lattice q is a map pL : ~ 2014~ [0, 1] satisfying p (0) = 0,
~. (1) = 1 and if an j is a countable set of mutually orthogonal elements

of I, then p. an (an).

This is clearly a generalisation of the well-known concept of a mesure
when ~ is a Boolean c-algebra. The prototype of a quantum logic is
the projection lattice ~ (a~ (Je)) of the von Neumann algebra c3 (~e)
of all bounded linear operators on a complex Hilbert space In

this case, a complete solution to problem 1.1 was given by Gleason [5].

1.4. THEOREM. - Let ~~ be a real or complex separable Hilbert space
of dimension E 3. Then every countably additive measure p. on I (03 (Je))
has the form

where T is a trace-class positive linear operator (depending on p), satis-
fying tr (T) == 1.
The essential point about Gleason’s result is that p is the restriction

to ~ (Je)) of a normal state on 03 (ðe). In particular, p extends to
a linear functional on the algebra. Consequently, one is led to conjecture
that this statement holds in the more general case of an arbitrary von
Neumann factor. In this paper, we present some partial results towards
a verification of this generalised Gleason theorem, in that we are able
to prove some nice continuity properties of these measures which suffice
to give a complete proof in the hyperfinite case. Fortunately, this
includes many factors of interest to physicists. Although the non-hyper-
finite case still remains elusive, it is still very plausible that there is
sufficient mobility in the projection lattice given by the automorphism
group for the Gleason theorem to hold.

The hyperfinite case has been considered also by Davies [6] and by
Aarnes [7] who gave proofs of Gleason’s theorem, but only by introducing
extra continuity assumptions which make the proofs rather easy.
The dimension function of a type III factor is manifestly a countably
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additive measure. In solving the problem of the " additivity of the
trace ", Murray and von Neumann [8] effectively showed that this
measure is the restriction of a normal state, the canonical trace. However,
their method of proof depends heavily on unitary invariance and appa-
rently does not generalise. A somewhat different approach has been
followed by Turner [9], who develops an integration theory for finite
factors and, by making rather strong integrability assumptions, proves
Gleason’s theorem for finite factors.

2. Continuity in Operator Norm

In this section c:~ denotes a factor acting on a separable Hilbert space ~~
(or, more generally, a countably decomposable factor). The uppercase
letters E, F, G, H are reserved for (orthogonal) projectors in c1, whilst
U, V, W are reserved for partial isometries in The orthogonal comple-
ment of any projector E in tl is denoted E1. The reduced algebra
E ct A is denoted 

2.1. LEMMA. - Let E, F be projectors in satisfying B1 E - F II  1.

Then (i) E A F1 = El A F = 0 and (ii) E ~ F.

Proof. - (i) If x E E A F1 Je, then ~(E - F) x II = ~x~!, , whence
x = 0. A similar argument works for x E E1 A F Je. (ii) If is

properly infinite, then the equivalence of E and F is immediate, so we
may assume that c~. is semifinite. If E and F are not equivalent, then
we may take, without loss of generality, E  F. This implies that E
is finite and moreover that there is a finite projector G ~ F such that
E  G. The reduced factor is finite and hence admits a normalised
dimension function OJ. If all orthogonal complements are taken relative
to E V G, then the general additivity of 1D gives

But D (El V G) L OJ (E V G). Together, these give @ (El A G) &#x3E; 0,
leading to El /B F &#x3E; 0, in contradiction with (i).

2.2. LEMMA. - Let E, F be equivalent finite projectors in Then
E /~ Fl is equivalent to EJ. /~ F.

Proof. - Taking orthogonal complements and dimensions relative
to the finite projector E V F, we get

Thus 10 (Hi /B F) = (JJ (E A Fl) and the result follows.
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2.3. LEMMA. - Let E, F be projectors on t1 such that E /v, Fl and
E1 /B F are equivalent. Then there is a canonical decomposition of F
with respect to E in the form
(2.1) 

where X = EFE and V is a partial isometry in with initial projector
E - E /B F and final projector El A Fl.

Proof. - Clearly

Let Vo El FE I be the polar decomposition of E1 FE. Then

Moreover Vo has initial projector

onto R ((X - X2)1/2) and final projector El - El /B Fl. - El /B F
onto R (El FE). By taking the adjoint, we get EFE1 = (X - X2)1/2 V*0.

Since, by assumption, E /B El /B F, there is a partial isometry Vi
with initial projector E /B Fl and final projector El /B F. Clearly
Vo V* = Vi Vo - 0. Hence V = Vo + Vi is a partial isometry with
initial projector E - E /B F and final projector El A Fl. From

Vi (X - X2)1/2 = 0, we get El FE = V (X - X2)1/B thus giving the

second and third terms in the RHS of (2.1). It remains to show

that

Consider the three cases :

then gives

Premultiplying by V and noticing that x lies in the support of

V (X - X’)1~’ V*, we have E1 FE~ x = VV* x - VXV* x.

(b) x E (E~ /~ F) Je. In this case V* x = V2 x E (E /~ H, so

that XV* x = 0. Also VV* x = x and (2.2) is again satisfied.

(c) /~ F~) Je. In this case V* x = 0 and also FE~ x = 0,
so that (2.2) is trivially satisfied. Combining (a), (b) and (c) we get
El FE1 = V (I - X) V* on El Je, which extends immediately to the
whole of Je.
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2 . 4. COROLLARY. - By settin g W = + V (I - X)I/2 we get
WW* = F and W* W = E. Hence W is a partial isometry expressing
the equivalence of E and F. From lemmas 2. 1 and 2 . 2 we see that the

conditions of lemma 2 . 3 are satis fied i f E and F are equivalent finite projectors
or, alternatively, II E - F [j [  1.

2.5. DEFINITION. - Two projectors E, F in t1. are isoclinic if they

are equivalent and there is an angle x E 0, 2 J with

This term is due to Wong [10] and states roughly that the subspaces
E ðe and are mutually inclined at a constant angle x. Straightfor-
ward consequences of this definition are : (a) if x ~ 0, then E /~ F = 0;

(b) if 2: ~z-, then
and

where V is the isometric part of E1FE (c f. lemma 2 . 3); (c) if 03B1 ~ 03C0 2,
then the equations (2 . 3) imply that the proj ectors E and F are equivalent
(cy. lemma 2 . 3) ; (d) if E and F are equivalent finite projectors, then
each of the equations in (2.3) implies the other one.

2.6. LEMMA. - Let F, G be two projectors with 11 F - G [I  1

and F F1 G.L. Then there is a projector H in 03B1 which is isoclinic

to both F and G with angles 03B11 and 0:2 respectively and satisfying 03B11 + (7.2  03C0 2,
i f and only i f

where

.Remark. - The requirement (2.4) is a natural one, in that it gives
a triangle inequality for all points in the spectrum of ø. The latter

may be regarded as the closure of the set of all (stationary) angles of
inclination from F Je to G de. The condition F  Fl /B G1 ensures
that there is enough " room 

" in ~C to encompass all three projectors
F, G and H. The example of two-dimensional projectors in a three-
dimensional Euclidean space, for which the theorem fails, shows that
such a condition is necessary.

Proo f. - From lemma 2 . 3 and its corollary, we may write
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where A = FGF, W* W = F - F /B G, WW* = F1 A G~. Set-

ting (F - A)1/1 = (FGI F)’~’ - sin e and cos ø = (I - sin’ 0)1/2, we

can define the " angle " operator 0 satisfying 0 L ø  F ; . The

condition )/ F - G j l  1 implies [ ~ FGl F (  1 and ensures that the

spectrum of ø lies in the half-open interval (0, 2 ~‘
The " if " part of the proof can be reduced to finding a partial isometry V

satisfying

and

with

after selecting the values of ai and 0~ in accordance with the condition (2. 5)
7"

and the hypothesis 03B11 + 03B12 -’ By substituting (2 . 6) and (2 . 8)~

into the first equation of (2.9), we get, after some cancellations

Setting LI = , we can write (2.10)
cos ~x~

in the form UU* = F. Similarly, from the second equation of (2.9),
we get U* U == F. We now proceed to construct a candidate for V
in the special case U == F.

The condition (2.4) can be written in the form

Using the monotonicity of cos a for 0 ~ x ~’ 7r, this gives

or

Let B be the self-adjoint operator satisfying

on the support of sin e (= F - F /B G) and vanishing on its orthogonal
complement. The condition (2.13) tells us that B is a self-adjoint
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contraction. Moreover, using the hypothesis F  F.1 /B Gl, we can
find a partial isometry ~V’ satisfying ~V’ = F and W W* ~ F1 A Gl.
We claim that the operator WB + W (F - satisfies all the

requirements for V, viz. equations (2. 7) to (2. 9).
Firstly, we remark that since 0 ~ F, (F - B2)1/2 is a well-defined

non-negative operator in Denoting VVB + VV’ (F - B2)1/2 by X,
we have

and XX* X = XF = X, so that X is a partial isometry. Moreover,
its range projection is by construction, thus verifying (2 . 7).
Next we define the projector H using equation (2.8) and setting V = X.
We proceed to verify equation (2.9). From the arguments immediately
following (2. 9), this is equivalent to showing that the operator

is isometric on F de. But X* W = B, since W’* W = 0. On using
the definition (2.14), the RHS of (2.15) simplifies to the projector F
itself. This concludes the construction of a suitable partial isometry V
and hence of the required projector H.
The " only if " part is more straightforward. Given the existence

of a projector H satisfying (2.8) and (2.9), we obtain the partially
isometric operator U defined in the sequel to (2.10) which satisfies

UU* = U*U = F. Let x be an arbitrary normalised element of F ~e.
Then the second equation for U gives

Using B] V* 1 and the Cauchy-Schwarz inequality on the LHS
middle term of (2.16), we obtain the set of inequalities

where

B

The second inequality of (2.17) gives
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on using the restrictions  ~’ The first inequality gives

From (2.19) and (2.20), we get the triangle inequality

This may be put into the equivalent form

Since x is an arbitrary element of F Je and cos2 ~3 = (x, cos2 0 x), we
may again use the monotonicity of the cosine function on [0, 7:] to reco-
ver (2.4).

2.7. DEFINITION. - An isoclinic (n - 1)-sphere in t1 is a set of

mutually isoclinic projectors constructed as follows : (i) let

be a set of mutually orthogonal equivalent projectors in (ii) let

) Vrnl : m = 1, 2, ..., n be a set of partial isometries with initial projector
n

Fi and final projectors and with V11 - Fi; (iii) let r = 03A3ri ei be
a unit vector in an n-dimensional Euclidean space with orthonormal basis

n

{ ez s ; (iv) let W (r) =03A3 ri Vi j . Then the projectors F (r) = W (r) W* (r)

satisfy 
:= i

If we introduce an orientation to distinguish F (- r) from F (r), then
the projectors trace out a manifold analytically homeomorphic to the
unit (n - 1)-sphere in n-dimensional Euclidean space. It is clear

that the projectors F (r) are the minimal projectors in a type L subfactor

of the reduced factor 03B1F of where F = 03A3Fi. The appropriate
~

subfactor is that generated by the set m = 1, 2, ..., n j.

2.8. LEMMA (Gleason). - On an isoclinic (n - 1)-sphere in n  3,
a countably additive measure p. is the restriction of a positive quadratic
form (regarding the sphere as embedded in a Euclideann-space in the manner
described above).
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Proof. - This is a direct consequence of Gleason’s theorem for type
In (n ~ 3) factors, since orthogonality of the projectors F (r) corresponds
directly to the orthogonality of the vectors r themselves.

2.9. COROLLARY. - If E, F are isoclinic projectors in inclined at

an angle 03B1  03C0 3 and E::::; Ei A Fi, then, /or any countably additive

measure pL on the projection lattice of we have

Proo f. - From definition (2.5), we have

The condition E  El A Fl implies the existence of a partial isometry W
with initial projector E and final projector A Fl. Clearly V
and W together generate a type 1:; subfactor of The set of

projectors

where

forms an isoclinic 1-sphere in this subfactor. From lemma 2.8
we conclude that, on this isoclinic 1-sphere, ~. takes the form
A + B cos2 (~3 + y), for certain constants A, B and y satisfying
2 A + B (E V F) and A, B ~ 0. We have

Hence

Using the elementary inequalities B cos2 "( (E), B cos2 (y + x) ~ ~. (F),
B sin’ (y + ~) ~ ~. (E V F) - ~. (F), we get the required inequality (2.23).

2.10. Remark. - An inequality simpler than (2.23) which suffices
for small values of x can be obtained from the final stages of the above
proof by using sin (2 y + ~) I i 1 and (E V F). This gives
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2.11. THEOREM. - Let the factor él be continuous and let ~. be a countably
additive measure on its projection lattice ~ Then p- is continuous

in the norm (operator bound) topology.

Proof. - We will show that for any ê E (0, 1) that ( F - G II 
implies I [J- (F) - ~. (G) ~ 81~’’- (I), where F and G are two projectors
in t1.. Since we always have [ F - G [ [  1, we can apply lemmas 2.1
and 2. 3 to show that G and

where sin ø = (FGl F)1/2. From the identity

and the relation Fl GF 1 = V (FGl F) V*, we obtain

Hence ) ~ s, giving

We can, without loss of generality, assume that F A G = 0. Otherwise,
we could always replace F and G by F - F /B G and G - F /B G
without affecting the values of ~ F - and (F) 2014 p (G) . We
now use the hypothesis that t1. is continuous in order to divide F by two,
i. e. find two projectors Fi and F2 satisfying Fi + F2 = F, F~
and F2 [11]. Similarly, we can construct a related division of G
by setting Gi = WF1 W* and G2 = WF2 W*, where

The following are straightforward consequences of this definition

Moreover, the conditions F1 /~ G1 and Ff /B Gf required
in the following application of the corollary to lemma 2.8 are now

satisfied. To show, for example, that Fi  Fl /~ Gf, we first notice

that the projectors Fi, F2, Ei = VF1 V* and E2 = VF2V* are all equivalent
and mutually orthogonal. Moreover, Fi V G1 - Fi + Ei. But

whence the result. Proceeding to apply lemma 2.6 to each pair of

projectors (Fi, Gi) and (F2, G2), we deduce the existence of projectors
Hi, H2 such that Hi is isoclinic to Fi and G~ (i = 1, 2) with the angle
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of inclination 2014~2014’ From corollary 2 . 9 and remark 2.10, we then

obtain the inequalities

Hence

as required.

3. Strong Continuity

In this section we extend the given countably additive measure from
the projection lattice to the whole hermitian portion of the factor êt

and, in several stages, proceed to demonstrate some further continuity
properties of this extended function.

3.1. - DEFINITION. - If p is a countably additive measure on the
projection lattice of the countably decomposable factor then by ~,
we denote the functional on the set of hermitian elements of et, defined

as follows : (a) let T be any such hermitian element and let T = 7. dE/
be its spectral resolution, where the spectral family of projectors
{ E~ : 2014 oo  ~  oo { is composed of elements of d [12]; (b) set

== [J- (E/.), so determining a bounded c-additive measure on the Borel
sets of R. Finally we set

Having already established the continuity of p. in operator norm in
theorem 2.11, we now proceed to establish the strong continuity of ;j..
For this purpose, it is convenient to use the r-norm topology as determined
by the norm

where z is any faithful normal positive linear functional on (the exis-
tence of such functionals is guaranteed by the hypothesis of countable
decomposability). In the sequel, we always take r (I) = 1, so that r
is a faithful normal state.

3.2. LEMMA. - On the unit ball ell all r-norm topologies coincide
with the strong (and ultrastrong) operator topology.
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Pro f. - The support of any faithful normal state is I, so we may
use two propositions of Dixmier [13] to conclude that all r-norm topologies
restricted to cli, coincide with the strong operator topology on 

3 . 3. LEMMA. - On the hermitian part of the unit ball strongly
continuous at the origin.

Proof. - From lemma 3 . 2, it is sufficient to prove r-norm continuity,
where T is any faithful normal state on c1. Let be a sequence of

operators satisfying 0 ~ T,t i I and converging in r-norm to the null
operator. We claim that ~ (T,J -~0 as n -+ 00. For, suppose that
lim sup ~. (Tn) &#x3E; 0. Then we can find a o, ~ &#x3E; 0, and an infinite sub-
sequence ; { Sm t such that tû. (Sm) ~ 3 for all m = 1, 2, 3, ....
Since, by hypothesis, r (S~) - 0 as m - oo, we can choose a further
infinite subsequence C f with

Forming the left continuous spectral resolution Rn = f 2, (03BB)
for each Rn, we define

whence

and

From (3.3) and (3.6) we get ~- (V;2) C oo and hence, using (3.5) :
72 = 1

If we define

then the ; X~ } form a commuting sequence of elements of A satisfying
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From the isotony of ~ we have, for n ~ N,

The sequence of projectors is decreasing as N - cxJ and

However, (3.7) implies that 03A303C4 (E(n)0) C ~. Since the functional : is

n-1

faithful, we conclude that InfN ( N E oZ’ = 0. The countable additivity
n~B

of  on orthogonal projectors then requires that (N E on’ ~ 0 as
N - oo. Finally, from (3 .10), we see that (XN) ~ 0. Since

this contradicts our supposition that {1. (R~) ~ o &#x3E; 0 for all N.

We next turn to the general case in which f is any sequence of
hermitian operators in the unit ball 03B11 converging to 0 in r-norm. If

Tn = T i - T~L is the canonical decomposition of Tn into positive and
negative parts, then both sequences T i ,~ and { Tn } converge to 0 in
T-norm [use 03C4 (T2n) = r -)- r (T-2n)]. From the first result, both

P- (T;) and (T-n) - 0 as n - oo. Hence (Tn) (T+n) 2014 (Tn) - 0.
This completes the proof.
We note that if t1. is a finite factor, then the canonical trace determines

a positive normal linear functional on The corresponding norm is
usually denoted 1B . 2 ~ [14].

3.4. LEMMA. - Let En } be a sequence of projectors in t1. converging
to a projector F in the strong operator topology. Then there is a decomposition
En = Ena + Eni and F = Fno + Fn, inlo pairs of orthogonal projectors
such that ~ ~ 0 and the sequences and F,~1 ~ both

converge strongly to zero.

Proof. - In the unit ball lemma 3 . 2 allows us to use a ;-norm

topology. By assumption : ((En - - 0. Since

we have  (En Fl En) - 0. Now En F  En is a contraction operator

with left continuous spectral resolution of the form i. dEn (03BB).
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We set T (En F1 En) = ~2n and temporarily suppress the index n for

ease in writing. This gives 03C4(EF| E) = 1 1+ À d, (E (2,)) = ô2. If

we define Ei == E (oc) - E (s) and set E = Eo + E i, this gives

We thus get

using

Next define

when

From the first equation of (3.14), we obtain Eo /~ F~ = 0. Hence
we can apply lemma 2.3 to the pair Eo, Fo to show that Eo N Fo and
E1 Fo Et = V (Eo F1 Eo) V* for a suitable partial isometry V. Thus

Also

Here we have used the inequalities

Upon reinserting the suffices and using the previous result that ,, - 0
as n - oo, we conclude that ~ Eno - T and r all tend
to zero as n - oo. This completes the proof.

3.5. THEOREM. - Let ~. be a countably additive measure on the projec-
tion lattice o f a countably decomposable continuous factor (:1. Then ~.
is strongly continuous on the projection lattice.

Proo f. - Using the notation and result of the previous lemma, we
take a sequence of projectors converging strongly to a projector F.
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Since ~. is additive on orthogonal projectors, we have

for the decomposition of lemma 3.4. Hence

using theorem 2.11 and lemmas 3.3 and 3.4, we see that each term on
the RHS of this inequality vanishes as n - oo. Hence p (En) - p (F)
strongly. Since F is arbitrary, this proves the theorem.

3 . 6. THEOREM. - Let { TB } be a sequence of operators in the hermitian
part of êt converging strongly to a hermitian operator T. Then

P- (Tn) -+ P- (T). (Notation as in the previous theorem.)

Proof. - The sequence t Tn is uniformly bounded [15] and so we may
take, without loss of generality, ~ ~ ~ 1 for all n. Writing the left

continuous spectral resolution of Tn dEn (~), we have
-1

Since p (En {a)) is then a left-continuous, monotonic, non-decreasing
function of the real variable ~., (3.15) may be interpreted as a Riemann-
Stieltjes integral. If ~, is not in the point spectrum of T, then the En (~)
converge strongly, as n - oo, to the corresponding spectral projection
E (~) of T [16]. Consequently, from theorem 3.5, we conclude that
p (En (~)) - ~. (E {7~~)) except possibly for ~ in the point spectrum of T.
The latter is a countable subset of [ - 1, +1]. Using an appropriate
convergence theorem for sequences of Riemann-Stieltjes integrals [17]~
we conclude that

This completes the proof.

4. Gleason’s Theorem for Hyperfinite Factors

The result of theorem 3 . 6 enables us to prove Gleason’s theorem for
the hyperfinite case by reducing it to the known type In case.

4.1. DEFINITION. - A factor cx is hyperfinite if it is the weak closure
of the union of a strictly increasing sequence m1 c c m3 c ... of

factors of type In1’ ... respectively.
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The operator norm closure of~mi is a uniformly hyperfinite
z

(UHF) C*-algebra in the sense of Glimm [18]. A hyperfinite factor
is continuous and countably decomposable.

4. 2. THEOREM. - is a countably additive measure on the projection
lattice of a hyperfinile factor c:~t, then ~. is the restriction of a normal state
on t1 to the projection lattice.

Proof. - As in definition 3.1, we construct the functional p- on the
set of hermitian elements of t1.. Using the notation of definition 4 .1 ~

it is a direct consequence of Gleason’s theorem for type In (n ~ 3)
factors that is linear on the subspace of hermitian elements of the

*-algebra~mi. By Kaplansky’s density theorem, the unit ball

i

of the latter subspace is strongly dense in the hermitian part of the unit
ball of If S, T and p S + (7T are hermitian elements in the unit
ball of A, then we can use theorem 3.6 to obtain linearity,

(S) + (T), by continuity. Since ,~. is positive
homogeneous on the hermitian part of t1., it is clear that P- is a positive
linear functional which is strongly continuous on the unit ball. By
complexifying in the obvious manner,

(4.1) 

where S and T are hermitian, we construct the required normal state p.
This completes the proof.
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