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On a differential equation approach
to quantum field theory :

Scattering for Thirring’s model
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Vol. XVI, no 4, 1972,

Section A :

Physique théorique.

ABSTRACT. - We consider scattering problems for Thirring’s model.
The latter is described by a non-linear equation in a Banach space. We
derive some general properties of non-linear scattering in Banach spaces,
and we apply them to the case under consideration. Wave and scattering
operators turn out to be trivial, as in the formal approach to this model.

RESUME. - Étude de la diffusion pour F equation opérationnelle non
lineaire definissant le modele de Thirring. Apres avoir discute quelques
proprietes generales de la diffusion pour les equations non lineaires
dans un espace de Banach, on les applique au cas considere. Les operateurs
d’onde et de diffusion resultant sont triviaux, ce qui s’accorde avec les
resultats du traitement formel du modele en question.

1. INTRODUCTION

Constructing a quantum field theory by giving a precise meaning to
the equations the fields formally obey and by studying the solutions
of such equations might be viewed as an alternative approach to the
Hamiltonian formalism. But even when the latter proves suitable in
constructing a theory satisfying the Haag-Ka stler axioms and almost all
the Wightman ones, as in the remarkable work carried out by Glimm
and Jaffe [1], it is not always clear whether the fields not merely fulfil a
non-linear relation, but really satisfy an equation of the motion, namely,
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whether they solve a (well posed) Cauchy problem. Therefore, as often
stressed by Segal [2], the field equation approach should provide a
different interpretation of the fields, which may reveal itself useful in
understanding some general aspects of the theory.
As a first step towards the analysis of field equations, one may consider

the equations for fields which are not distributions but functions of the
space time, taking values in the space of operators on the Hilbert space
of physical states. In such a frame, and without imposing any require-
ment about commutativity of the fields, Salusti and Tesei [3] considered
the Cauchy problem for Thirring’s model, and showed the existence
and uniqueness of the solution. A further result has been obtained by
Salusti and the present author [4]; they showed in fact that an approxi-
mate version of the canonical anticommutation relations, imposed on the
Cauchy data of Thirring’s model (as treated in [3]) entails - still up to
an approximation - the local anticommutativity for the solutions of
the field equations, that is, if

then

Thus the fields above might be considered as distribution fields, regulari-
zed by convolution with a smooth function of compact support, that
is approximate fields satisfying the exact equation - where by exact
we simply mean the formal equation not affected by any approxi-
mation or cutoff.

In order to pursue the analysis of this approach, it should be natural
to ask about decay and asymptotics of " fields " like those of References [3]
and [4] : the purpose of the present work is precisely to answer this
question, by investigating the scattering properties of the equation
defining Thirring’s model. As the latter is a non-linear equation of
evolution for functions taking values in a Banach space, we cannot
apply the results obtained by Strauss [5], which are valid for C-valued
functions, and cannot be easily extended to the vector valued case.

Thus we are lead to analyze the non-linear scattering in an abstract
Banach space, generalizing the definitions of scattering and wave ope-
rators and proving for such quantities a number of properties which
generalize some familiar results valid in the linear case.

Using these methods, we shall be able to conclude that the scattering
operators exist for our version of Thirring’s model. Moreover, they
w 11 be shown to be trivial, which agrees with the claim of the formal

approach [6], asserting that this model shouldn’t describe any real

interaction between particles.
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The present paper is organized as follows : in the next section we shall
derive some general properties of the non-linear scattering in a Banach
space; in the subsequent section, after recalling our set up for Thirring’s
model, we shall show that the wave operators exist, and applying the
general results previously obtained, we shall derive the properties of the
scattering operators. The triviality of the latter will follow as a by-
product of an explicit evaluation.

2. NON-LINEAR SCATTERING IN BANACH SPACES

2.1. Basic Definitions

Consider the Cauchy problem

where, ~d t ~ 0, u (t), Uo E X, X being a Banach space endowed with
the norm L is a linear operator in X, and the " perturbation 

"

T a (not necessarily linear) operator on the whole of X.

Consider furtherly the free problem corresponding to (1)0 :

where, V t ~ 0, v (t), vo E X, and L is as above.

In the following we shall always suppose that (2) has a unique solution,
and that L generates a group So (t) of operators on X. Thus the solu-
tion of (2) has the form v (t) = So (t) vo. As to (1 )0’ we shall require
something less, namely the existence and uniqueness of a mild solution [7],
that is, a solution of the integral problem

which is equivalent to (1)o when u (I) is differentiable ; we shall further
suppose that t + S (I), as defined by u (I) = S (I) uo, is a group of opera-
tors on X.

ANN. INST. POINCARE, A-XVI-4 19
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We may then ask :

a. whether, given a solution u (I) of the perturbed problem (1) with
Cauchy datum uo, there exists Cauchy data v± of the corresponding
free problem (2) such that the corresponding solutions v-~-- (I) become
asymptotic to u (I) as t 2014~ ~ oo ;

b. whether, given a solution v (I) of the free problem (2) with Cauchy
datum vo, there exists Cauchy data u± of the perturbed problem (1)
such that the corresponding solutions u± (I) become asymptotic to

v (I) as 1 - :I:: oo.

We then introduce the operators on X,

and their limits

The latter operators are of course defined on the elements of X where
the limits exist. Then it is evident that the answer to (a) is positive
if and only if Uo~D (W±) (and in such case v± = uo) ; analogously,
the answer to (b) is positive if and only if vo e D (and in such case
u± = W± v o) .
We next define - whenever the definition makes sense -

The latter operators map D (W-) in D (W+), D (W-) in D (W+), res-
pectively.

In the classical case, namely that of potential scattering with X = Hil-
bert space ; i L, i T, i L + i T linear self adj oint operators (to be inter-
preted as the free Hamiltonian, the perturbation, and the complete
Hamiltonian), S is the scattering operator in the Heisenberg picture [8],
and it is a constant of the motion as it commutes with the complete
Hamiltonian [9]. On the other hand, S doesn’t commute with the
total Hamiltonian but with the free one, and it is not a constant of the

motion; nevertheless, it reveals itself useful to compute observable

quantities [10]. In general, the problems one faces concern : (i) the
domain and the range of the operators W±, W±, and (ii) the existence
and invertibility of S, S. These items are strongly connected, because,
as an immediate consequence of the definitions, we have
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PROPOSITION 0. - S is well defined as an operator from R (W-) to
R (W+) if and only if W- is one-to-one and D (W -) c D ’(W+); its :inverse
8-1 is well defined if and only if W+ is one-to-one and D (W+) c D (W_).
Thus S is invertible if and only if W+, W- are one-to-one and invertible
and D (W+) = D (W-). Analogously, S, as an operator from R ("w_)
to R invertible if and only if W+, W- are one-to-one and

D (Wj - D (W-).
In the classical case, one considers as strong limits on X ([8], [9],

[10], [11]), that is, one requires D (W±) = X (1). Such a wave operator
W±, whenever it exists, is isometric (and therefore one-to-one); thus S
turns out to be well-defined and unitary from R (W-) on R (W+). When
R (W±) = X (and therefore W± is unitary on X), then W± = W±B
and both S and S are well-defined and unitary on X. In the latter
case, the theory is said to be complete.

In the non linear case, the condition D (W-) = X is true only under
very special circumstances [12], and the completeness is even more
hard to be established.

2.2. Properties of the scattering operators

Referring to the definitions of the 1st paragraph, we furtherly
precise our hypothesis concerning So (t) and S (f) :

compacts of R+, for any t, and

A typical situation where (ii) is verified occurrs if

(ii)’ T is locally Lipschitz continuous (i. e., N (r)  + oo)
and T~Kc(X) [13] :
in fact, in such case, (ii-1) is true, and

(1) We refer here to the case where both the free and the complete Hamiltonian
have a pure absolutely continuous spectrum [9].
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We then have :

then

Proof. - Consider

where

Therefore, if the hypothesis is satisfied, the limit of W (t) W± u - u I
exists and it is zero. 

-

Q. E. D.

In a similar way one proves.

lhen

Putting together the two preceding results, we have :

COROLLARY 2. - If the hypothesis of both the Lemmata 1 and l’ are

satisfied, then
--- --- .

and, in particular, W±, are one-to-one.

Then, recalling Proposition 0, we may express the relationship between
the operators Wand S :
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PROPOSITION 3. - If the hypothesis o f Corollary 2 are satisfied, and

then S is well-defined and invertible from R (W-) lo R (iV+). If
furtherly

- ,--- - -

then S is well-defined and invertible on Y, and 0160 is well-defined and inver-
tible on Y.

By this way, the classical formulation is extended to the non linear
case. Yet the conditions of Proposition 3 are not easily verified in the
general case [for instance, Brodsky [12], working in a Hilbert space, is
able to characterize only some subsets of R (W-+-)]; for this reason we
consider subsets Z±, Z± of D (w±), D (W±), respectively, and ask whether
suitable restrictions of S, S may be defined as invertible operators.

After introducing the notations

we state the following results, quite analogous to the former lemmata 1
and 1’ :

then

then

. 

As an immediate consequence, we have :

COROLLARY D. 2014 If the hypothesis of both fhe Lemmata 4, 4’ are satisfied,
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Then it is easy to generalize Proposition 3 as follows :

PROPOSITION 6. - Assuming the hypothesis o f Corollary 5, if
Z+ = Z- = Z, Sz, defined as Sz = Wz+ W-1Z, is well-defined and

invertible from Z_ fo Z+; if furtherly Z- = Z+ = Z, then Sz is well-

defined and inverlible on Z, and Sz = ~ z+ is well-defined and
invertible on Z.

3. THIRRING’S MODEL

In this section we shall apply the previously given formulation to
Thirring’s model [6], [15]. Following the treatement of References [3], [4],
this model is defined through equations like (1)0’ (1), where X = Co
(R; B) EÐ Co (R; B) endowed with the norm

Co (R; B) is the Banach algebra of the continuous functions on R, bounded
at infinity and taking values in B, B being the Banach algebra (H)
(norm ~ ~ ~ In) of the linear continuous operators on the Hilbert

space H; L is the linear closed operator

and T the non-linear operator defined by

It is known [3] that L generates a group on X, So (0, and that L + T
as well generates a group S (t), satisfying (1); moreover, So (t) and S (t)
fulfil the conditions (i), (ii) [in particular, T satisfies (ii)’ with N (r) ~ 3 r~].

We want to prove the following result :

THEOREM 7. - The subset K o f X defined by K = C, (R; B) 0 C. (R, B),
C~ being the space o f continuous functions of compact support, satisfies
the hypothesis o f Proposition 6 with Z = = K; there fore both SK.

and SR are well-defined and invertible on K.
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Moreover, VI=1:, W-~- exist as well, and

Thus S, S exist and are equal to the identity.
In order to prove this theorem, we must show :

The proof of the above items (a), (b), (c) depends essentially on the
following Lemma :

LEMMA 8. - If u, as a function from R to B, vanishes for x &#x3E; c,
then :

Before proving Lemma 8, let us deduce from it Theorem 7. In fact,
for u E K with u (x) = 0 for I x &#x3E; c,

and the last quantity converges to zero as it, i2 go to infinity, because,
applying Lemma 8, we know that

Thus we have shown that :
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Putting for short f (s, t) = So (- t - s) TS (s) So (Q u, we have :

which is zero for I larger than c. Thus KcD and the

proof of (a) is complete.
As to (b), notice that 

.

where we made use of Lemma 8 again. Using once more Lemma 8

[in particular (ii)], we get u) (x) = 0 for x ~ &#x3E; c, which proves

that W±KcK. Analogously,

where we used Lemma 8, (m) and (iv). Thus W± K c K, and we have

also proved that- 

of

This completes the proof of (b). Finally, in order to prove (c), it is

easy to convince ourselves that both the f unctions ~ W (t) u 2014 W± u (
and W (t) u - W± u have compact support (in the variable t) whenever
u e K. The argument to be used is of the same type of those exploited
in proving (a) and (b).
As = 1, we may extend by continuity W± to the whole of X,

obtaining W± = 1 (2). Applying Corollary 5, we find that WK .- = 1,
thus = 1 = W±B and S = S = 1.

We are then left with the proof of Lemma 8 :
Let us define :

(2) This extension is peculiar to the case under consideration, because, in the general
case, W± cannot be easily shown to be uniformly bounded on K.
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We then have :

SUBLEMMA 9. For any k E N, t E R, there are functions of Co (R; B),
namely

~1-Z B ;/." ~ il-v ~r v

such that

Proof. - The claim is obviously true for k = 0, with = = 1.

Let us next suppose that the required property is valid for a given k,
and show that the same holds for k + 1. fact,

As a similar argument applies to (t)) (x), Sublemma 9 is proved.
Let us next prove :

Proof. By Sub lemma 9, we may write :

Therefore this expression vanishes for x &#x3E; c and for 2 t &#x3E; c + x,
therefore for 1 x &#x3E; c and for I 1 &#x3E; c, which proves Sublemma 10.

As an immediate consequence of Sublemma 10, the Co (R ; B) ~ Co (R;
B)-valued function So (2014 ~) T (t) vanishes for j t &#x3E; c, for any k.
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Then the items (i) and (ii) of Lemma 8 follow : in fact, it can be shown [4]
that a constant h exist such that :

this implies that (i) and (ii) hold for t  h ( u 1-2), moreover, the estimate
t S (0 u f ~ ( u ~ I and the group property of S (t) ensure that (i) and (ii)
hold for any t [4].

In order to prove the items (iii) and (iv) of Lemma 8, we proceed in
a similar way; after defining

we prove :

SUBLEMMA 9’. - For any E R, there are functions o f Co (R; B) :

such that :

The proof is the same as for Sublemma 9, because :

As a consequence, we have :

SUBLEMMA 10’. - If u (x) = 0 for I x &#x3E; c, then, for any k,

The proof mimics that of Sublemma 10, because

Then, repeating the arguments mentioned above, the proof of Lemma 8
can be easily completed.
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