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The irreducible ray representations
of the full inhomogeneous Galilei group
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Section A :

Physique théorique.

ABSTRACT. - Out of the discrete symmetries space-inversion, time-inver-
sion, space-time-inversion and the universal covering group of the inhomoge-
neous Galilei group a covering group of the full inhomogeneous Galilei group
is constructed. The continuous multipliers on this covering group are calcu-
lated, and all those continuous irreducible ray representations are constructed,
the restrictions of which to the unit component of the group have a nontrivial
multiplier or are of class II in the nomenclature of 1nönü and Wigner [6].
The direct product of two irreducible multiplier representations of the covering
group is decomposed into its irreducible components. Finally, physical
conclusions are drawn.

RÉSUMÉ. Nous construisons un groupe de couverture du groupe Galiléen

inhomogène complet engendré par le groupe de couverture universel du

groupe Galiléen inhomogène et les symétries discrètes de l’inversion d’espace,
de temps, et d’espace-temps. Les multiplicateurs continus sur ce groupe de
couverture sont calculés, et toutes ces representations projectives irréductibles
sont construites, dont les restrictions a la composante connexe de 1’unite du
groupe sont équipées avec un multiplicateur non trivial, ou sont de classe II
d’après la designation de Inönü et Wigner [6]. Le produit direct de deux repre
sentations irréductibles du groupe de couverture est decompose en ses compo-
santes irréductibles. Enfin, nous examinons les consequences pour la théorie
quantique non relativiste.
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INTRODUCTION

Though one knows about sixty years the Poincare group to be the kine-
matical symmetry group of physics, interest in the Galilei group has remained
for mainly two reasons : In a Galilean theory, first, the interpretation of
observables and results is much more evident than in a relativistic theory,
and, second, interactions can be included in a straightforward way. Further-

more, by a detailed study of Galilean invariance it is seen, that a host of
effects usually considered to be relativistic, really is common to both
relativistic and non-relativistic quantum theory: for example, the spin of
particles, the different properties of spin for particles with mass and those
without mass, and the gyromagnetic factor of the electron [9].

In sec. 1 we give a description of the full inhomogeneous Galilei group
FIGG and construct a covering group FIGG, the components of which
all are simply connected. We prove, that every continuous ray representa-

tion of FIGG is generated by a continuous multiplier representation, and
calculate all the continuous multipliers. Using a method of Mutze [10],
in sec. 2 we calculate up to equivalence all those continuous irreducible ray

representations of FIGG, which might describe non-relativistic particles.
The direct product of multiplier representations of FIGG is decomposed
in sec. 3. In sec. 4, the implications for non-relativistic quantum theory
are discussed and compared to those resulting from Poincare invariance
for relativistic quantum theory.

I. The full inhomogeneous Galilei group FIGG.

Algebraic properties. We denote the elements of FIGG by (D, v;
o 0

a, a; ~S, where D E SO (3), (v, a, a) E [R7, and (ES, ET) E Z2 x Z2,
Z2: = { +, 2014}. FIGG is a subgroup of the real affine group in four
dimensions defined by

FIGG can be considered as an algebraic subgroup of GL(5, 
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this subgroup leaves invariant the hyperplanes perpendicular to (0 0 0 0 1).
o 0

In the following we shortly write (D, v, o, a) for (D, v ; o,~; +, +), I for
the identity ( 1, 0 ; 0, 0 ; +, +), Is for the space-inversion (1, 0 ; 0, 0 ; -, + ),
IT for the time-inversion (1, 0 ; 0, 0; +, -), IST for the space-time-inversion
(1, 0 ; 0, 0; -, -). The group law is

So we have IT2 = IsT2 - I, ISIT = ITIs = IsT, and

Topological properties. FIGG is an algebraic and hence closed
subgroup of GL(5, R) and therefore a Lie group in the induced topology.
It is homeomorphic to SO(3) x Z2 x Z2, where ZZ bears the discrete
topology; from this immediately follows, that FIGG consists of four two-
fold connected components. Let IGG be the unit component of FIGG,
and IGG~ the subgroup generated by IGG and 1~ f = S, T, ST.

Now let FIGG: = SU(2) x R x Z2 x Z2 be the Lie group defined
by the group law

where D: SU(2) -SO(3) is the canonical homomorphism. Writing
o 0

again (U, v ; a, a) for (U, v ; a, a; +, +), I for (1, 0; 0, 0; +, +), Is for
(1, 0 ; 0, 0 ; -, +), IT for (1, 0 ; 0, 0 ; +, -), and IST for (1, 0 ; 0, 0 ; -, -),
we obtain
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Is2 - IT2 - FIGG like FIGG consists of
four components, but each component is simply connected. Again let
IGG be the unit component, and IGG, the subgroup generated by IGG and
!~ f = S, T, ST. The mapping

(7) /c FIGG, v ; o, a ; 8s, ET) : _ (D(U), v ; a, a ; es, ET)
being an analytic homomorphism, and its restriction to IGG, the universal

covering group of IGG, being the canonical homomorphism, FIGG is
a covering group of FIGG.

The multipliers of FIGG. Suppose R to be a continuous ray repre-
sentation of FIGG, then R o k is a continuous ray representation of FIGG,
and there exists one and only one m e [? such, that the multipliers
of R o k|IGG can be chosen as [2]

(9) Theorem : Let R be a continuous ray representation of FIGG such,
that the multipliers of R IGG are nontrivial. Then the space-inversion
is represented by an unitary operator ray and the time-inversion is repre-
sented by an anti-unitary operator ray.

According to [2] we can choose a continuous representative U
for R with the multiplier exp (im T), m # 0. Now it holds :

for all g E IGG, i = S, T, ST, and from this follows :

with = z iff R(1 i) is unitary = z* iff R(It) is anti-unitary.
As we have for i = S : Isg’IS) = g’), and for i = T :

R(Is) has to be unitary and R(IT) has to be anti-unitary..

Corollary : For any continuous ray representation of FIGG, the multi-
pliers of which are nontrivial on any neighbourhood of the unit, space-
inversion is an unitary operator ray and time-inversion is an anti-unitary
operator ray.
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For all ray representations R o k of FIGG we have, of course,

On the other hand, let R be some continuous ray representation of FIGG
with R( ± 1, 0 ; 0, 0) = id ; then, just as in the case of connected Lie groups,
R o q is a continuous ray representation of FIGG for any choice of the

section q: FIGG ~ FIGG, k o q = idFIGG. Therefore instead of studying
the ray representations of FIGG we can study the ray representations of

FIGG which represent the kernel of k trivially.

(10) Theorem : Every continuous ray representation of FIGG is gene-

rated by a continuous multiplier representation of FIGG.

Proof: Let d : FIGG ~ FIGG, d(g) : = I, d(gIi): = I i, i = S, T, ST, for

all g E IGG, and U a representative of a continuous ray representation

of FIGG so, that U is continuous and the multiplier on IGG is some

exp (im T), U(g)U(Ii) for all i = S, T, ST, and g E IGG. Let

f : Izl [ = 1}, be defined by f(g): = 1,

for all g E IGG, i = S, T, ST; then

for all g E FIGG, and so f is continuous because d and U IGG are continuous.
We have :

where w is the multiplier defined on { I, Is, IT, So our continuous

multiplier is for (g, g’) E FIGG x FIGG :
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the continuous multiplier representation is U,

Moreover, for the continuous function f in (11) we have :

for all (g, g’) E IGG x IGG, (d, d’) e { I, Is, IT, IST} x { 1. Is, IT, IST}, where

b is a homomorphism of the subgroup {I, Is, IT, IST} into the operators
{id, K} on the complex numbers, K(z) : = z*.

(13) Theorem : Any multiplier of a continuous representation of FIGG
with unitary space-inversion and anti-unitary time-inversion is equivalent
to one of the multipliers x, E = ± 1:

is equivalent to iff m = m’, x = x’, e = e’.

For all continuous representations of FIGG with anti-unitary space-
inversion or unitary time-inversion the multipliers can be chosen as class

functions relative to IGG.

Proof : From (12) we have for because for m ~ 0 Is has to be

represented unitarily and 1~ anti-unitarily: f(gg’d) = f (gd) f(g’d) for

all g, g’ E IGG and d = I, Is, IT, IST. So f is a one-dimensional continuous

vector representation of IGG for fixed d. All such representations are
o 0

of the form [4 ; p. 64] : (U, v ; a, a) - exp (iea), and so we havef«U, v ;

o, a)d) = exp (ieda) with eI = 0. Using again (12) we get for ray repre-
sentations with

a ) unitary space-inversion, unitary time-inversion :
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b) unitary space-inversion, anti-unitary time-inversion:

in the same way we find : eST = 0 and 

c) anti-unitary space-inversion, unitary time-inversion:

d) anti-unitary space-inversion, anti-unitary time-inversion :

So all the multipliers of continuous ray representations of FIGG are
equivalent to those of the form g’d’) = w(d, d’) exp (imi(g, dg’d))
and so for m = 0 they can be chosen as class functions relative to IGG.
For m # 0, according to (9) Is is represented unitarily and IT is represented
anti-unitarily, and so w is of the form wx~ [3 ; p. 1 69].. Let R be a conti-
nuous ray representation of FIGG ; then R o k, k as in (7), is a continuous

ray representation of FIGG, and we can choose a continuous representa-
tive Re of R o k, that has a multiplier as defined in (13). So for some

section q: FIGG - FIGG we get a multiplier representation Re 0 q
of FIGG, that is a representative of R. However, the choice of
such a section q defines an unique section U: SO(3) - SU(2) and

o 0

v. v. so, that q(D, v ; 0, a ; GS, GT) = (U(D), v ; D, a; Es, Now,
Re ( - 1 ) = ± +1 
q(g’))Re 0 q(gg’), where ~, is the multiplier of Re. For Re ( - 1 ) = - 1
we get : Re 0 q(g) Re o q(g’) = (D, D~)~(~), q(g’))Re o q(gg’) with g = (D, v ;

0 0

a, # ; Es, g’ = (D’, v’ ; Q’~ a’ ~ es, where

(14) ~(D, D’) : = 1 iff U(D)U(D’) = U(DD’), ~(D, D’) : = - 1 else;
as is shown in [5], ( is a nontrivial multiplier on SO(3).
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’ 

Corollary: The multipliers of continuous ray representations of FIGG
are equivalent to such of the form ~,

with m E R, i = 0, 1/2, where w is a multiplier on { I, Is, 1~ for m # 0

is equivalent to a wxE as defined in ( 13).

2. Some irreducible continuous ray representations
of FIGG.

The irreducible ray representations of IGG have been studied

for trivial multipliers by Inönü and Wigner [6] and for nontrivial mul-

tipliers by Levy-Leblond [8] and by Brennich [4]. As we need them for

the construction of the ray representations of FIGG, we give a complete
list of these ray representations. For mathematical convenience they are

defined on IGG. From now on, by Hilbert space we mean a separable
Hilbert space, and by representations we mean such on a separable Hilbert

space.

(15) Theorem [4 ; p. 67]: All continuous ray representations of IGG

are of type I ; every continuous irreducible ray representation of IGG
is unitary equivalent to one of the following ray representations :

V

representative (s, 0 ; p, e, m) (U, v ; a, a)F(x) : =

where F E L2{(~3~ C2s+1) and is the well known irreducible unitary

representation of SU(2) ;

o

representative (s, 0 ; ~ e, 0) (U, v ; a, a)F(x, t): =

where x R, C) and x is defined in (16);
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representative

where

and x and E are defined in ( 16) ;
IV

representative

representative

where F e L2( f x E ~3: C) and x is defined in (16). If two irre-

ducible ray representations of IGG are equivalent, denoted by ~ , they
necessarily belong to the same case; then

In theorem (15) x and E are defined as

where arc cos is chosen in the interval [0, ~].
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The ray representations [s, 0; p, e, m], m # 0, and possibly [s, 0 ; p, e, 0]
describe non-relativistic particles [8] M. In the following these ray repre-

sentations of IGG are continued to ray representations of FIGG. For

this purpose we introduce the somewhat shorter notation: [m, s ; e]
for [s, 0; 0, e, m], (m, s ; e) for (s, 0; 0, e, ~), ~ =~ 0, and [0, s ; p]
for [s, 0 ; 0, 0, p, 0, 0], (0, s ; p) for (s, 0; 0, 0, p, 0, 0), p &#x3E; 0. We further

note, that (m, s ; e) is a multiplier representation of IGG with the mul-
tiplier exp from (8), and that (m, s ; e) and (m’, s’ ; e’) are unitary
equivalent iff m = m’, s = s’, and e = e’.

A theorem on the ray representation of discrete symmetries.
Let S be a continuous ray representation of a topological groupe G. Then

the unitary subgroup of S, i. e. the subset of elements of G represented
by an unitary operator ray, is a closed normal subgroup of index 1 or 2.

This follows immediately from the fact, that card [G jf -1(N’)]  card [G’/N’]
for any group homorphism f: G --~ G’ and any normal subgroup N’ of G’,
and that the set of unitary operator rays is a closed normal subgroup of
index 2 of the group of all operator rays [10; p. 16].

(17) Theorem [10; p. 21] : Let G be a topological group with a closed nor-
mal subgroup N of index 2 and d E GBN. Then for any continuous irre-

ducible unitary ray representation S of N with the representative U, the
multiplier of which is w, we have:

If S satisfies the condition:

(Us) there exists an unitary operator ray V with

the mapping
gCL"

defines a continuous irreducible unitary ray representation of G. For

an equivalent ray representation S’ of N, V’ may be chosen so, that S’
is equivalent to S.

If w satisfies the condition :
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the mapping S,

defines an unitary ray representation of G that is irreducible iff no operator
ray V satisfying (UJ exists. The choice of U is of no importance, as a dif-
ferent U gives the same S if we choose r accordingly. If U is continuous,
S is continuous iff r is continuous. For an equivalent ray representation S’
of N, U’ and r’ can be chosen so, that S’ is equivalent to S.

Furthermore, any irreducible continuous unitary ray representation
of G is unitary equivalent to a ray representation as defined after (UJ
and (Ud).

If S satisfies the condition:

there exists an anti-unitary operator ray W with

the mapping

is a continuous irreducible ray representation of G with unitary subgroup N.
For an equivalent ray representation S’ of N, W’ may be chosen so, that S’
is equivalent to S.

If S satisfies (As) and A is a representative of W, for every homomor-
phism x : N - C1 such, that

ray representation of G with unitary subgroup N, that
is irreducible iff there is no unitary operator D satisfying

S does not depend on the choice of U, and if U is continuous, S is continuous
iff x is continuous. For an equivalent ray representation S’ of N, U’, x’,
and 8’ can be chosen so, that 9 is equivalent to S.
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If w satisfies the condition:

the mapping S for K = K + = K-1 anti-linear and 8 e { + 1, - 1 )

is a ray representation of G with unitary subgroup N, that is irreducible
if (AJ is not satisfied and else is equivalent to a ray representation as
defined after (AJ. The choice of U is of no importance, as a different U
gives the same S if we choose r accordingly. If U is continuous, S is
continuous iff r is continuous. For an equivalent ray representation S’
of N, U’, r’, K’, and B’ can be chosen so, that S’ is equivalent to S.

Furthermore, any irreducible continuous ray representation of G with
unitary subgroup N is unitary equivalent to a ray representation as defined
after (AJ and (Ad).

The physical irreducible ray representations of FIGG. We call
« physical » those continuous ray representations of FIGG, in which space-
inversion is represented unitarily, time-inversion is represented anti-unitarily
and the restriction of which to IGG decomposes into ray representations
of case I and II. As the case I ray representations of IGG have nontrivial

multipliers, while the case II ray representations of IGG have trivial mul-
tipliers, in such a decomposition only either case I or either case II ray
representations can occur.

( 18) Theorem : Any continuous irreducible ray representation of FIGG,

the restriction of which to IGG has a nontrivial multiplier, is equivalent
to one of the ray representations [m, s ; m E ~~~ s = 0, 1/2, 1 , ...,
e E R, x, E E { +, 2014 }, which are defined by their representatives
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R: = (m, s ; e),~ E, r~ = ± , and R: = (m, s ; ~) ~ respectively, as follow-
ing :

The multiplier of (m, s ; is wm ° ~ - ~~SE, the multiplier of (m, s ; 

is w-,(-)2s~m, W~~m as defined in (13). Two of the multiplier representations
defined above are unitary equivalent iff they are identical, while [m, s ; ~
and [m’, s’; are (unitary or anti-unitary) equivalent iff I m’ j,
~ == ~. / == /B s = ~’.

Proof : As FIGG is a Lie group, the unitary subgroup of any ray repre-
sentation contains IGG ; furthermore according to (9), space-inversion
must be represented unitarily and time-inversion anti-unitarily. So the

unitary subgroup of ray representations of FIGG, the multipliers of which
restricted to IGG are nontrivial, is IGGs. Because of this we first have
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to construct all irreducible unitary continuous ray representations of IGGS,
the multipliers of which restricted to IGG are nontrivial ; this is done by
means of (15) and (17). Now for (m, s ; e), m # 0, PSF(x): = F(- x)
satisfies PS2 = 1, Ps(m, s ; e)(U, v ; a, a)Ps o = (m, s ; e)(U, - v; - o, a), 0
and so for [m, s ; e], [Ps] is the only operator ray satisfying condition (Us).
So every continuous irreducible unitary ray representation of IGGs, the

multipliers of which restricted to IGG are nontrivial, is unitary equivalent
to one of the kind RR, RR(U, v ; o, a) : = [m, s ; e](U, v ; a, a),

o 0

RR((U, v ; G, a)Is) : = [m, s; e](U, v ; G, a)[Ps].
Defining TSF(x) : = x)*, we see that Ts is an anti-unitary

operator and Ts 2 = ( - )2S1, PsTs = TsPs. So [Ts] satisfies (As) for the
ray representations RR, and is the only operator ray satisfying (As) ; thus
we immediately get [m, s ; e] + + and its representatives. There remain those

ray representations of FIGG, the restrictions of which to IGG decompose
into direct sum representations. We start from the continuous multiplier

representations (m, s ; e)" of IGGS, (m, s ; e)ll(U, v ; o, a) : = (m, s ; e)(U, v ; o, a),
o 0

(m, s ; v ; o, ~)Is): = s ; e)(U, v ; o, a)Ps; we have to consider the

continuous homomorphisms x : IGGS ~ C1 with x(g) = X(ITgIT) for

all g e IGGs. For the restrictions of these homomorphisms to IGG
o 0

we have [4 ; p. 64]: X(U, v ; o, a) = exp (iea), and so with
0 0 0

IT(U, v; o, a)IT = (U, 2014 v; a, - a) : I X(U, v; a, a) = 1 ; I there remains

x(Is) = + , With this we get for = 1 the representations (m, s ; 
and for x(Is) = - 1 the representations (m, s ; e)-~(~ = +). The irre-

ducibility of these representations follows from the fact, that (m, s; e)
is an irreducible multiplier representation of IGG. On the other hand

it is easily seen that the ray representations constructed with x - 1 and B = 1

as after (17 As) are reducible. The calculation of the multipliers and the
establishment of the equivalence is a straightforward task, which we refrain
from performing..
As is easily seen we have defined an abundance of representatives:

(m, s ; and (m, s; e’)±~ differ only by a phase function and have the
same multipliers, i. e. this phase function defines an one-dimensional vector

representation of FIGG.
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(19) Theorem : Any continuous irreducible ray representation of FIGG
with unitary space-inversion and anti-unitary time-inversion, the res-

triction of which to IGG contains a case II representation, is equivalent
to one of the ray representations [0, = 0, ± 1 /2, + 1 ... , ~ E (0, (0),

x = ± , e = ± , which are defined by their representatives R : = (0, 0; ~),~ E,
q = ±, (0, 0; p)-E, or (0, s; s ~ 0, respectively as following :

with

ANN. INST. POINCAR~‘, 11 1
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The multiplier of (0, 0; is that of (0, 0 ; is and that

of (0, s ; p)xe is w o’c ~25~~ w o~ as defined in (13). (0, 0 ; and (0, 0; ~)~
are unitary equivalent iff p = p’, B = E ’ ~ ~l = ~’; (0, 0 ; p) - and (0, 0; ; p’) - E
are unitary equivalent iff p = p’ ; 8 = s’; (0, s ; and (0, s’ ; are

unitary equivalent iff 1 s 1 = ( S’ ~ , p = p’, x = = 8’. . (0, 0 ; and

(0, 0; p’)~~’ are inequivalent, (0, 0; ~)~ and (0, s; are inequivalent
for all s # 0, and (0, 0 ; p) - E and (0, s, are inequivalent for all s # 0.
The same equivalence relations are valied for the ray representations

and [0, s ; p]~’~’, s # 0, except for the condition ~ = ~’, as (0, 

and (0, 0; define the same ray representation [0, 0; of FIGG.

Proof : The unitary subgroup must be IGGS, as the space-inversion
is to be represented unitarily and the time-inversion is to be repre-

sented anti-unitarily. Defining ~):=~(x)’~’F(-x, t) we get:
o 0

s ; p)(U, v; Q, = (0, - s ; p)(U, - v ; - o,~), and as [0, s ; p]
and [0, - s, p] are identical for s = 0 and inequivalent for s # 0, we get
the following continuous irreducible unitary ray representations RR

of IGGs, the restrictions of which to IGG contain a case II ray represen-

tation: s = 0: RR(U, v; . o, a): = [0, 0; p](U, v; . a, a), RR(IS): = [Po] ;
~ ~ 0: Choosing the representatives (0, s ; p) for [0, s ; p], we have to look

for the continuous functions r : IGG ~ C1 with r(g)r(IggIs) = 1 and

r(g)r(g’) = r(gg’), as the multiplier of (0, s ; p) is 1; froom the second condi-
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o 0

tion follows [4 ; p. 64] : r(U, v ; Q, a) = exp (iea), e E R, and from the first
o 0

with Is(U, v ; a, a)Is = (U, - v; - a, a) : r - 1. So we get for the ray
representations :

By performing the unitary transformation

we obtain

Defining TsF(x, t) : = x, t)*, we have

and one venfies to be the only anti-unitary operator ray satisfying (17 A~)
for s = 0, and the only anti-unitary operator rays satisfying (17 AJ for s # 0
to be . So for s = 0 we get the representations (0, 0 ; p),~
and (0, 0 ; /?)’’ as in the case m ~ 0 ; for s ~ 0 we get the repre-

sentations (0, s ; p)x+ using and not doubling the represen-
tations RR’, and (0, s ; p)x-, doubling once more, and noting that 8 must
be chosen - 1 for these representation to be irreducible, and that the

doubled representations constructed with T$ and 

are equivalent. The statements about the multipliers and about equiva-
lence follow by a straightforward calculation..

In contrast to the case m ~ 0, for m = 0 there also exist ray represen-
tations of FIGG, which represent Is anti-unitarily and IT unitarily. They
can be found with the same methods ; however, we refrain from doing so.
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3. The decomposition of the direct product
of irreducible multiplier representations of FIGG.

The decomposition of the direct product of irreducible multiplier
representations of IGG. 2014 Here some results have been obtained

by Levy-Leblond [8] and by Brennich [4].

Theorem [8 ; p. 786]: For m + ~ ~ 0 ~ o-: = sign ° 

we have

Theorem [4 ; p. 75] : For m # 0, j : = 0 iffs + s’ integer, and j : = 1/2 else,
we have :

Theorem : For m # 0 and p &#x3E; 0 we have

Proof : Let us shortly write R for (m, s; e) (8) (0, s’; p); then

where x varies over 1R3, y varies over the sphere of radius p, and t varies
over With the unitary operator Ai,

we get :
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or, defining

Consider the continuous representation of SIJ(2) defined by

where x E S~ and F E L2(S2, C). It leaves invariant the subspaces spanned
by the functions

where Ux is defined in [4 ; p. 62] and has the properties :

for all U E SU(2). These subspaces are irreducible, and using the complete
decomposability of all continuous vector representations of SU(2), it can
be shown [11 ; p. 53], that these functions form an orthogonal base
in L2(S2, C) : they are a generalisation of the spherical harmonics. So

we have for this representation : 1+ L). With this the theorem
L=o

follows immediately..

The decomposition of the direct product of irreducible multiplier
representations of FIGG.

Theorem:
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.Proof : First we consider (m, s; e) (8) (m’, s’; e’). By a transformation
to the center of mass system:

we get

with M: = M: = m + m’. So we obtain the decomposition

of (m, s ; e) 0 (m’, s’; e’) by expanding F(X, x) into an integral over the
modulus of x, and then by expanding the functions F(X, x) with fixed
modulus of x into spherical harmonics. To space-inversion and time-
inversion happen the following:
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and using x) = ( - we obtain the decomposition of

and the decomposition of (m, s ; ~)~ 0(~’, s’; e’),~ +(IT) is obtained

using (-)~Y~(x), from which follows :

Noting, that for any linear operator B : B 0 ( - B ) and ( - B) (B B
are unitary equivalent, and that the phase of (m, s ; and (m, s; 
is irrelevant, as for any anti-linear operator A: wA = 

for all J w ~ - 1, we have for the other cases, abbreviating

and from this the decomposition of (m, s ; ~)~ Q9 (m’, s’ ; ~’)~ follows.
The proof for (m, s ; ~)~ 0 (m’, s’; e’)-E follows along the same lines.
Writing shortly R for (m, s ; e); - Q (m’, s’ ; ~’)~ ’, we have

and an analogous formula for R(IT). After transforming by A4,
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So the decomposition of the 2 x 2 matrices

defines the complete decomposition of (m, s ; ~ 0 (m’, s’ ; e’),~ - . The
rest follows along the same lines..

4. Consequences for non-relativistic quantum theory.

Interpretation of the quantum numbers. According to [4 ; p. 70],
[m, s ; e] for m # 0 is a ray representation of IGG describing a particle
of mass I m I and spin s. [0, s ; p] for p &#x3E; 0 gives the non-relativistic
description of particles of mass 0, spin helicity sign(s) for s ~ 0,
and wave number p ; however, this description is rather insufficient, as there
is no Doppler effect. As in the relativistic case, helicity is no more an inva-
riant, if space-inversion symmetry is included : under space-inversion,
the helicity changes sign.
The quantum numbers arising from discrete symmetries have not such

a simple meaning. Let R be a representative of one of the ray represen-
tations [m, s ; e]X8 as defined in (18) and (19) ; then R(Is)2 = z ~ 1 = 1,
R(IT)2 = ::t 1, R(IsT)2 = ± 1, and R(Is) is unitary, R(IT) and R(IsT) are
anti-unitary. By a suitable choice of R we get R(Is)2 = 1, meaning
that R(Is) is a self-adjoint operator and hence may be an observable ; then
we have independant of the choice of R(IT) and R(IsT):

R(Is)R(IT) = XR(IT)R(Is), R(IT)2 = E(-)251, and xE(-)2S1.

So the quantum number e fixes (for a given spin) the square of R(IT), x and e
fix the square of R(IsT), and the quantum number x determines wether R(Is)
and R(IT) commute or anti-commute.

In the relativistic theory unitarity of the space-inversion and anti-unitarity
of the time-inversion is assured by the physical demand, that the energy
spectrum should be bounded to one side [3]. This demand has no conse-

quence in the non-relativistic case, as for particles with non-zero mass
it is satisfied automatically, while for massless particles it can not even

be satisfied for IGG. In this case, for non-zero mass particles, one has to
represent space-inversion unitarily and time-inversion anti-unitarily accord-
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ing to (9) for purely mathematical reasons ; for massless particles, however,
one has to make an ad hoc assumption. In spite of these differences, many
properties of the discrets symmetries are common to relativistic and non-
relativistic theory.

Supers election rules. The existence of several non-equivalent
multipliers of FIGG gives rise to a set of superselection rules.

a) Masses. In the Galilean quantum theory, mass is introduced via
the multiplier [2 ; p. 41] ; to different masses there correspond inequivalent
multipliers, and so there is a superselection rule.

b) Integer spin - non-integer spin. As every ray representation of FIGG
defines a ray representation of its subgroups, the superselection rules for
the subgroups also are valied for FIGG. As SO(3) has two inequivalent
multipliers, the trivial one for integer spin, and’ as defined in (14) for non-
integer spin, we have a superselection rule.

c) Commuting - anti-commuting space- and time-inversion . For

any physical ray representation of FIGG, the space-inversion can be repre-
sented by a self-adjoint operator ; then the representatives of space-inversion
and of time-inversion commute or anti-commute, and as these two cases
correspond to inequivalent multipliers, there again is a superselection rule.

d) Square of the time-inversion. For any representative R of any phy-
sical ray representation of FIGG, R(IT)2 is + 1 or - 1, independant of
the choice of R, and of an equivalence transformation. These signs cor-
respond to inequivalent multipliers, and there is a superselection rule.

All superselection rules except a ) also are valied in the case of Poincare
invariance. Superselection rules provide an excellent means of testing
a symmetry : a broken superselection rule has the immediate consequence,
that the symmetry is broken. So, apart from the trouble with massless
particles, alone the existence of nuclear reactions, that do not conserve
the total mass, completely disproves Galilean invariance. A testing of
the discrete symmetries by superselection rules is hampered by the fact,
that usually only representations of the kind [m, s ; e] + + are assumed to be
physical. Then the superselection rule e) is of no importance, and the
superselection rule d) is a consequence of the superselection rule b) .

Parity breaking shows, that not all elementary particle can be described
by ray representations of the kind [m, s; e]+ +. Landau [7] suggested
that not the parity P, but the product CP of parity and particle - anti-
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particle conjugation C, is a general symmetry operation. If we try to inter-
pret CP as space-inversion, we get the following conditions : space-inversion
exchanges particle and anti-particle states, time-inversion transforms par-
ticle states into particle states, anti-particle states into anti-particle states.
In the context of ray representations this means, that particles must be des-
cribed by representations of the kind [m, s ; e]x+, as only these ray repre-
sentations can be chosen to be diagonal for g E IGGT. Then for m # 0,
[m, s ; e] + + describes a particle equal to its anti-particle, while [m, s ; e] - +
describes a particle different from its anti-particle. However, assum-
ing the photon to be described by [0, 1 ; p] + +, the proton by [mp, 1/2; e] - +,
the electron by [me, 1 /2; e] - +, and the charged pion by [m, 0 ; e] - +, we find,
considering the decays of the « stables » enlisted in [7], that electrically
neutral particles must be described by [m, s ; e]+ +, and electrically charged
particles by [m, s; e] - +. It might seem, that this contradiction can be solved
by the following modification of Landau’s proposition: space-inversion
is represented by CqP, where Cq is the electric charge conjugation. However,
this would have the consequence, that the decay M-~~’+~+v
for inverted spatial impulses has the same cross section as the

decay ~-~~+~"+v, which markedly contradicts experimental
results.

From all this we conclude, that a consistent description of elementary
particles is not possible in the context of ray representations of FIGG
(and of IO(1, 3), too). This also can be predicted from the fact, that for
charged particles there is a superselection rule between particle states and
anti-particle states. For if there are superselection rules, the pure states
of a physical system no more form the projective space H/C of a separable
Hilbert space H, but form the union t j of such projective spaces,

f6t I

shortly called bundle space. The concept of ray automorphism has to
be generalized to that of bundle automorphism, b : 

iEI i ie I

where for all i E I there is a j E I so, that b is a ray isomorphism
from Hi/C onto Hj/C. The set of these bundle automorphisms is a subgroup
of the group of permutations of j H;/C, and a bundle representation of

i e I

a group G is a homomorphism of G into the bundle automorphisms of
a bundle space (details of bundle representations can be found in [10]).
Hence we finally conclude : Elementary particles must be described
by bundle representations.
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