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ABSTRACT. — Some facts concerning symplectic vector spaces, their
automorphism groups Spl(2n, R, E), and derivation Lie algebras
spl(2n, R, E) are given. For every element R of these Lie algebras a sol-
vable Lie group exp(RR) x E x R is constructed, which is nilpotent
iff R is nilpotent. We calculate the Lie algebras RR @ E @ R of these
groups, all of which contain the Heisenberg Lie algebra. Automorphism
groups and derivation Lie algebras of RR @ E @ R, and faithful finite
dimensional representations of them together with the corresponding
representations of exp(RR) x E x R are given. In Part II a modifica-
tion weyl(E, o) of the universal enveloping algebra of the Heisenberg Lie
algebra is defined. We realize the Lie algebras RR @ E @ R in this
algebra. Finally some automorphisms and derivations of RR @ E® R
are constructed by means of the adjoint representation of weyl(E, o).
Attention is given to the case of the harmonic oscillator and especially
to the free nonrelativistic particle whose group is nilpotent.

REsuME. — Quelques qualités concernant des espaces vectoriels symplec-
tiques, leurs groupes d’automorphismes Spl(2n, R, E) et leurs algébres
de Lie des dérivations sont discutés. Pour chaque élément R d’une telle
algébre de Lie, on construit un groupe de Lie solvable, exp(RR) x E x R,
qui est nilpotent si et seulement si R est nilpotent. On calcule les algébres
de Lie RR @ E @ R de ces groupes qui contiennent tous 1’algébre de Lie
d’Heisenberg. On donne les groupes d’automorphismes et les algébres de
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104 HANS TILGNER

Lie des dérivations de RR @ E ® R, ainsi que des représentations
finies fidéles ensemble avec les représentations correspondantes de
exp(RR) x E x R. Dans la 2¢ partie, on définit une modification weyl(E, 6)
de I’algébre universelle enveloppante appartenant a I’algébre de Lie d’Hei-
senberg. Dans cette algebre, nous réalisons les algbres de Lie RR @ E @ R.

Finalement, on construit quelques automorphismes et dérivations de
RR @ E @ R avec I’aide de la représentation adjointe de weyl(E, o).
On observe I’oscillateur harmonique et plus spécialement la particule libre
non relativiste (dont le groupe est nilpotent).

INTRODUCTION

In § I-1 we collect some facts on the symplectic matrix group Spl(2n, R, E)
and its Lie algebra spl(2n, R, E). In § II-8 we give an isomorphism R
between spl(2n, R, E) and the Lie algebra of all bilinear polynomials of
the position and momentum operators g; and p’. With the help of this
isomorphism, we define for every Hamilton operator which is bilinear
in the g; and p’ a 2n + 2-dimensional solvable group, each containing the
Heisenberg group as a subgroup. Their Lie algebras are isomorphic to
the Lie algebras formed by the identity element, the linear combinations
of the ¢; and p*, and the chosen Hamilton operator in the infinite dimensional
associative algebra weyl(E, ), which is a certain modification of the uni-
versal enveloping algebra of the (Heisenberg) Lie algebra of the canonical
commutation relations.

These solvable Lie groups were suggested (see [1]) as « spectrum generat-
ing » groups of the chosen Hamilton operator, i. e. their inequivalent
irreducible unitary representations should label the physical states of the
Hamilton operator, excluding spin. We find the hard work of classifying
the unitary representations easier for the above solvable groups than for
the corresponding « invariance » groups, since their dimensions are in
general smaller and their algebraic structures easier to handle. Besides
this, in general it is not known which of the local but not global isomorphic
covering groups is the invariance group; for instance, it is hard to say
which covering group fo the infinitely connected group U(n, C) is the inva-
riance group of the n dimensional harmonic oscillator.

There is another advantage in using these solvable groups instead of
invariance groups: having classified their representations, we will have no
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trouble with the construction of position operators since they are included
from the beginning.

We denote the direct vector space sum of two vector spaces A and B
by A @ B, the direct Lie algebra sum of two Lie algebras A and B by A <+> B,

their semidirect sum, B being the ideal, by A 1>B, and the semidirect
product of two groups A and B, B being the normal subgroup, by AQ B,
their direct product by A @ B.

PART 1
A CLASS OF SOLVABLE LIE GROUPS

§ I-x: Symplectic Vector Spaces
and the Symplectic Group.

A pair (E, o) of a real vector space E (in the following we consider only
finite dimensional ones) and a nondegenerate antisymmettic bilinear form o
E x E — R is called a symplectic vector space. Between the (antisymme-
tric) bilinear forms ¢ and the (antisymmetric) matrices A exists the bijec-
tion

o(x, y) = ETAy for all x, yeE

where x = Zé'e,. with ¢'e R and e; € E is the general element of E,
=1

& being the row vector (¢!, ..., &) of x and € the corresponding column
vector. The bilinear form o is nondegenerate iff det (A) # 0. Because
of det (A) = (— 1)%™ ® det (A) this is possible only for evendimensional E.
We write dim (E) = : 2n.

(1) LemMA [2; p. 10]. — In (E, o) we can introduce a basis ey, .. ., e,
S ..., f"sothatforalli,k=1,...,n

ole;, e) = O'(fisfk) =0 , o-(ei,f") == O'(fk, e) = 5;’"-

In the following the elements of (E, o) are written x = 2(&%e; + &,f7),

and the basis of E is chosen such that o(x, y) = ETJ;{, where J is the 2n x 2n
id,

matrix (—id,, 0

). The automorphism group of (E, o) is called the
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symplectic group Spl (2n, R, E). It consists of all invertible 2z x 27 matrices
which invariant the bilinear form o:

(2) Spl(2n,R,E) = {SeGl(2n, R, E)/o(Sx, Sy) = o(x,y) forallx,ye E}.

The defining condition is in matrix form STJS = J. The (abstract)
symplectic group is a n(2n + 1)-dimensional, noncompact, simple, infinitely
connected, connected Lie group; with the help of the exponential mapping
we get its Lie algebra which is the derivation Lie algebra of (E, o)

(3 spl (2n, R, E)={ Regl (2n, R, E)/a(Rx, y)+0(x, Ry)=0 Vx, yeE},

Herein the defining relation is in matrix form RT3 + JR = 0.

Every matrix of Spl (2n, R, E) is multiplicatively generated by J and
id,
0
matrix [3;p. 140]. From this follows det (S) = + 1forall S € Spl (2», R, E)

and center (Spl (27, R, E)) = { +id;,}. The set of all matrices ( u V) R

symplectic matrices of the type( 11:) , where B is a symmetric n x n

-V U
where U and V are real n x n matrices with UVT = VUT and
UTU + VTV =id,, is a subgroup of Sp! (2, R, E). The correspondence
to the unitary matrix group in n dimensions is given by
U V) .U

@) U+iV|—>(_V U

[4; p. 350]. Here (U + iV) is unitary iff UeSpl (2n, R, E). It is easy
to see that this correspondence is a Lie group isomorphism; we call this
2n-dimensional representation U of the unitary group in n dimensions

—-K L
with L a real antisymmetric, K a real symmetric n x n matrix, form a
Lie algebra u(n, R, E), the correspondence to the unitary matrix Lie algebra
in n dimensions being given by 4). The maximal compact subgroup of
Spl (2n, R, E) is U(n, R, E). This follows from [4; Lemma 4.3, p. 345] and

©) U(n, R, E) = Spl (21, R, E) N SO(2n, R, E).

U(n,R,E). Similar results hold for the Lie algebras: the matrices ( L K) ,

Every R espl (2n, R, E) can be decomposed uniquely

R = %(R + IRIT) + %(R — JRJIT)

- () G2
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where K, A and B are symmetric » X n matrices, and L is antisymmetric.
The first part is in u(n, R, E), the second not. According to this decompo-
sition we have spl(2n, R, E) = u(n, R, E) @ p where the vector space p
is the intersection of spl(2n, R, E) with the (Jordan algebra of) symmetric
matrices in 2n dimensions. It is not a Lie algebra but a so-called Lie triple
system [4; p. 189, 5; p. 78]. Actually it is the eigenspace of eigenvalue — 1
of the involutive automorphism R > JRIT of spl(2n, R, E). Since for
R espl(2n, R, E) we have (RJ)T = RJ, the mapping R > RJ defines
a bijection of spl(2n, R, E) onto the n(2n + 1)-dimensional Jordan algebra
of symmetric 2n x 2n matrices. By means of this bijection William-
son [6; p. 911] has proved that every S € Spl(2n, R, E) can be written uni-
quely in the form S = exp(«R) exp (BR’) with R, R’ espl(2n, R, E) and
o, BeR. A one parameter subgroup exp(«R) of Spl(2n, R, E) is compact
iff Reu(n, R, E). The one parameter subgroup

6) exp («J) = (cos a) id,, + (sin a)J

is isomorphic as a Lie group to the one-dimensional torus in the usual
normtopology on U(2n, E), given by

| A| : = (dim (B)) " 4/Spur (ATA) for all A € U@2n, E).

§ I-2: The Oscillator Group and the Heisenberg Group.

Let e™® with « € R and R egl(2n, R, E) be a one parameter subgroup

of GI(2n, R, E). The topological manifold ¢*® x E x R becomes a Lie
group if we define

(D (€, x, BT, 3, B = %, x + &Ry, o(x, e®y) + § + )

and iff R espl(2n, R, E). The identity element is (id,,, 0, 0), the inverse
of (€™, x, B) is (™™, — e™*®x, — B). The Lie group given by R = J is
called oscillator group Osz(2n). Its dimension is 2n + 2. We have the
subgroups (™, 0, 0) = €™, and (e, 0, 0) (id,,, 0, R) & ¢™ ® R, and the
normal subgroups (id,,, 0, R) = R (the center), and (id,,, E, R). The
latter we call Heisenberg group Heis(2n). It is a 2n + 1-dimensional Lie
group on the manifold E x R, connected and simply connected with
composition

® (x, B, B): = (x +y, o(x, y) + B+ ﬂ’)°

Every group ™ x E x R is the semidirect product of ™ and Heis(2#).
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In the product topology on e™ x E x R, given by the usual topology
on Gl (2n, R, E), the normtopology | x |: = (6(3x, x))*/? on E, and the
usual topology on R, the groups e** x E x R and Heis (2n) are noncompact
and connected. The commutant of two elements is

©) (% x, PE™, y, BIE™, x, )T, p, B
= (id;y, (id, — e*)x — (id,, — ™)y, o(x, €*y) + o(e**x, y)
= o(x, y) + o(e*"x, €%y) + a(e**x, x) + o(p, €*y)).

Calculating the successive commutants we see that e® x E x R is sol-
vable, and even nilpotent iff R is nilpotent. Heis (2#) is nilpotent but not
commutative.

The manifold R x E x R can be made a Lie group if we define

10) (2, x, )&, ¥, B): = (@ + &, x + e, o(x, eFy) + B + B)

and iff R e spl(2n, R, E). These groups have the same algebraic properties
as the corresponding groups above, but are simply connected for all R.
Since they have the same Lie algebras (see below) they are the universal
covering groups of the original ones. For R = J we get an infinite covering
of the infinitely connected Osz(2n). If the projection of R onto u(n, R, E)
vanishes the groups are homeomorphic [4; lemma 4.3, p. 345].

On the manifold e®™ x E we define a Lie group by
A1) (@R, )R )= (@R x + e®y) VRegl(2n, R, E)

with (e®®, x)™! = (e™®, — e¢”®x) and identity element (id,,, 0). If E
denotes the commutative additive group of elements of E, we have for this
group e®™® ® E. Its center is { (id,,, 0)}; it is solvable and for nilpotent R
even nilpotent.

(12) THEOREM. — For R espl(2n, R, E) the group €** x E x R is the
central extension of e®™ ® E by (id,,, 0, R), i. e. the sequence

{ (i 0,0) } = (idy, O, R) > e x Ex R 5 "D E — {(idsy, 0) }

is exact, the homomorphism ¢ being the restriction.

For the notation see [7]. The proof is straightforward. Without
difficulty we can define a class of locally isomorphis Lie groups on
e™ x E x Tor if we substitute the torus e® for R. In the same way
we get bigger Lie groups by inserting the whole group Spl(2n, R, E) instead
of e® which remain solvable if we restrict Spl(2n, R, E) to a commutative
subgroup.
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§ I-3: The Lie Algebras of Osz(21z) and Heis(2#).

(13) ProposiTION. — The Lie algebra of the group e®™ x E x R is the
vector space RR @ E @ R together with the Lie bracket

[GR, % B @R, 3, B)- = (0, 5 (@R - aRy), 20(x,5)).

Proof. — The Lie algebra is the tangential space of ¢®™ x e x R in
(id,,, 0, 0) [4; p. 88(f]. We calculate its elements with the help of the two

one parameter subgroups 0, 0: R—>e™ x E x R defined by 6:
u> (R, 0, 0) and 0°: ut> (id,y,, px, pf). From

d
Z €*,0,0)|,-0 =(R,0,0)

2 (15, 1) Lo = O, 5, )

follows the first statement. To get the Lie brackets consider the commutant
of the two one parameter subgroups 0 and ', which is (id,,, (id,, — €®)y,
o(y, e®y)) from (9). From the curve segment

p > (idyy (idz, — V2RV 1y, po(y, eVnry)) p=0

we get [4; p. 97] the tangent vector

d . - - -
[((ZR, 0’ 0)’ (0’ ) ﬂ)]— = Z‘ (ld2m (1d2n - e’\/uak)\/ﬂy, ﬂa(y’ e\/““Ry)) |“£0

= (0, - % aRy, 0).

By the same line of reasoning we get from the commutant of two different
elements of ' the element (id,,, 0, 20(x, »)), and from this the tangent
vector

(14) [, x, B, O, y, B’)]- = (0, 0, 20(x, y))’

These Lie brackets are just those of the Heisenberg subgroup. The
isomorphic Lie algebras of the groups R x E x R are found in a similar
way. We call the Lie algebra RI @ E @ R oscillator Lie algebra osz(2n) [8]
and the subalgebra E @ R Heisenberg Lie algebra heis(2n). The algebraic
facts of § I-2 immediately carry over to the Lie algebras; especially

(15) osz (2n) = RI 4> heis (2n).
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Inserting the basis from lemma 1) in the Lie algebra RR DE®R,
writing — 2(R, 0, 0) =: Hy, (0, e;, 0) =:4/2g;, (0, f*, 0) =: 4/2p' and
2(0, 0, 1) = : ¢ we get for the elements

£, + Z(é‘q. +Ep) + Eoc = ¢ &g + x
i=1

with &, &, € R the general Lie bracket relations

(16) [(rHr + x, ngHg + y]- = &Ry — mgRx + a(x, y)c,
which specializes in the case of 0sz(2n) to

(17 [Hy, ¢]- = = p', [Hyp'l- = g1 [95 01 =8/

(rest zero). The Lie algebra of the group (11) is calculated by the same
way. Its Lie bracket relations are

(18) [(rHg + x, ngHg + y]- = &rRy — ngRx.

It will be shown in § I-6 that this Lie algebra RR +> Eisjust the « adjoint »
Lie algebra of RR @ E @ R.

§ I-4: Automorphisms and Derivations of Heis(2n).

Let G be a 2n x 2n matrix, « € R, bT a 2n row vector and a another 2n
. (G «a . .
column vector. Then the matrix (bT a) =: A is an automorphism of

heis(2n) iff det(A) # O and the defining relation for automorphisms
(19) A(lx, y1-) = [Ax, Ay]-
holds. From this we get the automorphism group of heis(2n)

(20) Aut (heis(2n)) = {AeGlQ2n + ,R,E® R)/a = 0,0 # xeR,
b an arbitrary 2n vector, o(Gx, Gy) = aa(x,y)}.

With the matrix £,: = (.0 id,

id, 0 ) the matrix A becomes

2 2
bT o

1) (\/m%(l_"'midh_l_g__ﬂ’lﬁ)zlgs 0)
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with S eSpl(2n, R, E). Here we used that because of £,73x, = -3
every antisymplectic matrix F (i. e. FT3F = — J) can be written X, S, where
now SeSpl 22 ; R, E). Proof ; Given FTJF = — J ; it follows

=, F)"IE,F) = — FTJF = J,

that is 2,F =: SeSpl(2n, R, E) and F = z,71S = X,S. We have
det (A) = |a |**1. Aut (heis (2n)) is a n(2n + 1) + 2n + 1-dimensional
matrix group which decomposes in two nonconnected pieces. We write
its general element A(S, b, | « |, sign ). For the identity component we
have
(22) AGS, b, |al, 1) A, b, |a [, 1) = A(SS, ST+ |a| b, |aa |, 1),
the inverse is in the both components respectively
A(S“, — la TS, e, 1)

Jo]
A(zls*zl, || 322,871 7p, I_:t_l’ - 1).

We get the following subgroups of the identity component

(23)

24) {AGS,0,1, 1)} = Spl (2n, R, E)

25 { A(id,,, 0, |« |, 1)} = : Dil (2n) dilatations on E
(26) { A(id,,, b, 1, 1)} =:F(@2n)

27 {AG, b, 1, 1)} = F(2n)  Spl (2n, R, E)

(28) {AGS,0,|«|, 1)} = Dil(2n) ® Spl (2n, R, E)

(29) { A(id,,, b, |« |, 1)} = Dil 2n) ® F(2n).

Note that the elements of F(2n) do not act as translations on E, as would
do the matrices (ldg" ‘11) for nonvanishing a. We write the discrete group
{id,,, Z.} =: Z,. Then we have

(30) Aut (heis 2n) = Z, ® (F(2n) ® (Spl (2n, R, E) ® Dil (2n)))
where (2n) is the group of inner automorphisms. Z, interchanges the
basiselements ¢; and p' of E. Therefore it is a good candidate for the

Legendre transformations known from classical mechanics. Spl(2n, R, E)
can be interpreted as the group of canonical transformations of a linear

phase space E.
Degl2n + 1, R, E@® R) is a derivation of heis(2n) iff

(31 D([x, y]-) = [Dx, yl- + [x, Dyl-.
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The derivations of heis(2r) form a Lie algebra of linear transformations
c e . . N
which is given by the set of matrices (pT /3) , Where p is an arbitrary 2n vec-
tor, BeR and N is a 2» x 2rn matrix subject to the condition

o(Nx,y) + a(x, Ny) = po(x, y).

Therefore

Der (heis (2n)) =

(V + % Bid,, 0)/p an arbitrary 2n vector,

P’ B/ Vespl (2n, R, E), BeR.
= A @) (spl 2n, R, B) S dil (2n),

(32)

where A(2n) is the Lie algebra of F(2n) and dil (2n) that of Dil (2n).

§ I-5: Automorphisms and Derivations
of the Oscillator Lie Algebras.

Given 0 # R espl 2n, R, E), the centralizer of R in spl (2n, R, E) is
(33) zent (R): = { Vespl 2n, R, E)/[V, R]- = 0}
and the centralizer of R in Spl (2n, R, E) U Z, Spl (2n, R, E) is
(34) Zent (R): = { G e Spl 21, R, E) U X, Spl (2n, R, E))GRG™* = R}.
Let 3¢ denote the vector space of all V e spl (2n, R, E) subject to
[V,R]l. = wR weR
where vy = 0 only for V = 0, and Z; the manifold of all

GeSpl(2n, R,E) U X, Spl (2n, R, E)
with
GRG™! = §5R 0#0geR

where g = 1 only for G = id,,. Then we have
(35) LeMMA. — The set of elements V € spl (2n, R, E) with
36 [V, R]l. = wR weR

is just the matrix Lie algebra zent (R) @ 3z.
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The set of elements G € Spl(2n, R, E) U Z, Spl(2n, R, E) with
37 GRG™! = §gR 0#dgeR

is just the matrix group Zent(R) x Zg.
In this Lie algebra (resp. Lie group) zent(R) (resp. Zent(R)) is an ideal
(resp. normal subgroup).

Proof. — Every element V with (36) can be decomposed uniquely into
V =V, + V, where now V,ezent (R) and Ve3. By definition from
V e zent(R) N 3z follows V = 0, i. e. the vector space sum of zent(R)
and 3 is direct. From the Jacobi identity follows that zent (R) is an ideal.
The proof for the group theoretical statement is similar. M

For the physical interesting R the vector space 3 is one-dimensional
or zero. Then the matrix Lie algebra of the V espl(2n, R, E) with (36)
is zent(R) <+> 3z or only zent(R). The corresponding facts hold for the
groups.

(38) THEOREM. — Given 0 # R espl(2n, R, E), R? # 0, an element of
Gl(2n + 2,R,R® E @ R)isin Aut (RR x E x R)iff it has the form

o 0 0
1 0#6€eR
_EGRJb G 0 0#acRR
T bt «o

where we have GRG™! = §R, i. e. GeZent(R) x Z, and

— ((1 +si . — si
(39) G=\/Ia|i“#i)1d2n+(182——lngl S,
S e Spl (2n, R, E).
6 d¥ vy
Proof. — We insert the matrix (c G a) into the automorphism condi-
T b o«

iion (19) of the Lie algebra relations (16). This gives for & # 0, y # 0,
rest zero

(@ o(3d,Ry) =0 forall yeE
(b) GRy = 6RGy — 6(3d, y)Rc forallyeE
(¢) a(3b, Ry) = o(c, Gy) forall yeE,
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for x # 0, y # 0, rest zero

@ y=0
(e) 0(3d, x)RGy — o(Jd, Y)RGx = o(x, y)a forall x, yeE
(f) o(Gx, Gy) = ao(x, y) for all x, y € E,

and for x # 0, n, # 0, rest zero
(® 0(Gx,a)=0 for all x € E.

From (f) we have det (G) = o”; since every automorphism must be inver-
tible from (g) it follows that @ = 0iff G invertible. Let G be not invertible:
i.,e.a# 0and« = 0. From (e) we have for x = Rz and y = Ro with the
help of (a) for all v, ze E: 0 = 6(Rz, Rv)a = — d(z, R%)a, i. e. R = 0,
which is not true. So G must be invertible. From (b) we get with the
help of (a) for y = Rz and all zeE: 0 # GR?z = 6RGRz, i. €. § # 0
and RGR # 0. For x = Rz we get therefore from (e) for all y, z€E,
0(Jd, Y)RGR = 0,i. e. d = 0. The result for the vector ¢ follows from (c)
and (f), and the rest of the theorem from lemma 35) and 21) /. m

(40) TuEOREM. — Given 0 # R espl(2n, R, E), R? # 0, an element of
glCn+2,R,R®E @ R)is in der(RR @ E @ R) iff it has the form

v 0 0
—RY)p V+%ﬂid2,, 0
p p’ B

where [V, R]. = vR,i.e. Vezent (R) ® 3z < spl 2n, R, E).
The proof is similar to the proof above. For the special case R = J
(the harmonic oscillator) we get

(41) CorOLLARY. — Aut(osz(2n)) is given by all matrices of the form

signa 0 O
%‘Gb G 0 0#aelR
T b o«

where G is subject to (39) and S € Zent (J) = U(n, R, E).
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der(osz(2n)) is given by all matrices of the form

0 0 0
p V+ -12— pid,, O V e u(n, R, E)
p P’ B

Proof. — From [V, 3] = vJand V'3 + IV = Ofollows V 4+ VT = vid,,.
Since id,, ¢ spl(2n, R, E) we have v = 0. For the group we have
STS =4 (sign «) id,,, from which we have § =sign «, since STS € Spl (21, R, E)
is positive definite. The rest follows from (5). H

§ 1-6: « Self »-representations and adjoint representations.

The invertible matrices (E being the column vector corresponding to x)

1 0 o0
42) E S 0]=:MGS,x B
B &3S 1

are the elements of the group Spl (2», R, E) ® Heis (2n) with the composi-
tion law
(43) MG, x, p) M(U, y, ') = M(SU, x + Sy, a(x, Sy) + B + B')

iff S, Ue Spl(2n, R, E). ForS = e® and U = ¢*® we get a 2n + 2-dimen-
sional faithful representation of ™ x E x R, for R = 0 of Heis (2n)-
The lie algebra of this matrix group is given by the matrices

0 0 0
44 E V 0o)=:NW,x B
B EI 0

which have the commutation relations
45) IN(V, x, ), N(Z, y, B)]- = N(IV, Z]-, Vy — Zx, 20(x, y))

iff V,Zespl (2n,R,E). ForV = &R and Z = nzR we have the commuta-
tion relations of proposition 13). So (44) gives faithful representations
of the Lie algebras RR @ E @ R, for R = J of osz (2n), and for R =0
of heis (2n).
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The adjoint representation ad: RR @ E @ R — inder(RR @ E @ R)
onto the inner derivations ad (RR @ E @ R), the kernel of which is the
center (0, 0, R), is given by

0 0 0
(46) GEHp+x > | —RE &R 0
0o &3 o

These matrices form a faithful 2n + 2-dimensional representation of the
Lie algebra (18); they are an ideal in der(RR @ E @ R). The exact
sequence from theorem 12), read in the Lie algebraic form, is thus nothing
else than the well known exact sequence of the adjoint algebra of a Lie
algebra.

The adjoint representation Ad: exp (RR) x E x R —Int (RR ® E @ R)
onto the inner automorphisms of RR ® E ® R, the kernel of which is the
center (0, 0, R), is given by

1 0 0
~-R¢ 0

- %a(x, Rx) ETJe“R 1

47) e®, x, B)

These matrices form a faithful 2n + 2-dimensional representation of
the Lie group (11); they are a normal subgroup in Aut(RR @ E @ R).

Thus theorem 12) gives the exact sequence of the adjoint group ™ ® E
of exp (RR) x E x R [4; p. 116). The restriction to heis (2n) of the above
matrices gives for « = 0 the adjoint representation of heis (2n) and Heis (2n),
which correspond to A(2n) in (32) and to F(2n) in (30). Since

spl 2n, R, E) < sl (2n, R, E)

the determinant of the matrices (47) equals 1; therefore the groups
exp(RR) x E x R are unimodular [4; p. 366].

PART II
THE WEYL ALGEBRA

§ II-7: Definition of the Weyl Algebra.

Let ten(heis(2n)) be the tensor algebra of the vector space E @ Re
of heis(2n), ® the tensor multiplication, and ([a, 5]- — (@ ® b — b ® a))
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the two-sided ideal of ten(heis(2n)), which is generated by all elements
of the form [a, ] — (@ ® b — b ® a) with a, b € heis (2n) < ten (heis (2n)).
Then the infinite dimensional associative algebra

(48)  u(heis (2n)): = ten (heis (2n))/(o(x, y)c — (x @ y — y ® x))

is called universal enveloping algebra of heis (2n). For the notion of uni-
versal enveloping algebras and the following statements see [4; p. 90],
[9; p. 151}, [10; p. 26] and [11; exposé n° 1]:

(49) LeMMA. — heis(2n) is imbedded injectively in u (heis (2n)).

(50) LemMA. — We have inj (heis (2n)) N R1 = { 0}; here 1 is the identity
element of u (heis (2n)), and inj (heis (27)) is the isomorphic image of heis (2n)
in u (heis (2n)).

(51) LemMA. — A basis of u (heis (2n)) is given by the identity element
and the standard monomials of the basis elements of inj (heis (2n)).

Because of lemma (49) we identify heis (2rn) and inj (heis (2n)). Because
of lemma (50) we cannot identify the element inj (c¢) of inj (heis (2n)) with
the identity element of u (heis (2n)). But actually this always is done in
physical applications, for instance in the Poisson bracket Lie algebra of
position and momentum variables in classical mechanics, and the commuta-
tor Lie algebra of position and momentum operators in quantum mechanics.
Therefore we consider instead of u (heis (2n)) a different noncommutative
associative infinite dimensional algebra which identifies ¢ and the identity
element. Let (¢ — 1) be the two-sided ideal of u (heis (2n)) which is gene-
rated by the elements ¢ — 1 € (heis (2n)). Then the algebra

(52) weyl (E, 0): = u (heis 2n))/(c — 1)
is identical with the algebra
(53) ten (E)/(e(x, »)1 — (x ® y — y ® x)),

where ten (E) is the tensor algebra over the vector space E, 1 the identity
element of ten(E), and x, y€E < ten(E). We call this algebra Weyl
algebra of (E,0) [12;p. 148). heis (2n) is embedded injectively in weyl(E, o).
A basis of weyl(E, ) is given by the standard monomials of the basis
elements of E < weyl(E, 0) and 1. One should compare (53) with the
definition of the Clifford algebra over an orthogonal vector space [12; p 148],
[13, p. 367].

For the following we need two other universal algebras. Let
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sym (heis (2n)) be the universal enveloping algebra of the trivial Lie algebra
on the vector space E @ Rc of heis (2n), we get by demanding every Lie
bracket to vanish, i. e. for x, y € heis (2n) < ten (heis (2n))

(54) sym (heis (2n)): = ten (heis (2n))/(x @ y — y @ X).

It is clear that the universal enveloping algebra of the commutative
trivial Lie algebra on E, i. e.

(55 sym (E): = ten (E)/(x ® y — y ® x)
is isomorphic as an associative algebra to the algebra
(56) sym (heis (2n))/(c — 1).

Let us denote the inclusion sym (E) — sym (heis (2n)) by j, the projection
u(heis (2n)) — weyl (E, o) by = and the vector space in u (heis (2n)) generated
linearly by all monomials x;x,...x; (for all x; € heis (2n) < u (heis (2n)))
by u ;(heis(2n)) with u, (heis(2n)): = R1. The vector space

(&) W;: = u; (heis 2n))/(c — 1)

is generated linearly by the monomials x,x, ... x; with x, € E < weyl (E, o).
We have W, = R1. In the following we denote the product of X and Y
in sym (heis (2n)) by X.Y, and by A’ the mapping which we get by linear
continuation from

| I N .
AN xxy 000 % 1 S Kn¥e@ - Koy x; € heis (2n)

T€YK

(here 7y, denotes the symmetric permutation group of k objects).

(58) LEMMA. — The mapping
A’: sym (heis (2n)) — u (heis (2n))
is a vector space isomorphism (i. e. bijective and linear).

This lemma is due to Harish-Chandra [4; p. 98, p. 392]. Lemma (51),
the Birkhoff-Witt-theorem, shows that the total symmetrized standard
monomials form a basis of the commutative algebra sym (heis (2n)), and
from lemma (58) we have the same basis for u (heis (2n)). We define a
mapping A: sym (E) - weyl(E, 6) by A: = moA’oj, which is linear
and bijective. It follows that the total symmetrized standard monomials
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of the basis elements of E € weyl(E, o) and the identity element 1 form
a basis of weyl(E, g). Let us write in the following

1
(59 Axy...x:= 1 X1y ++ - Xy X% €E < weyl (E, o).

€Y1

The decomposition weyl(E, 6) = Rl + W; + W, + ... of weyl(E, o)
is not direct, since the vector spaces W; are not disjoint for different indexes;
for instance the element xy — yx is in Rl and in W,. We get a direct
decomposition of weyl(E, o) if we consider the vector spaces AW, defined
as linearly generated by the symmetrized standard monomials of degree i

(60) weyl(B,0) = RI®OEDP AW, AW, D ...,

instead of the W;. To prove this we apply the linear transformation

ad (pY)" ... ad (p")" ad (q))* ... ad (g,)*" of weyl(E, 6) on the equation
Col+ &g+ .. + &P+ ..+ EAGM L g Y L Y =0,

showing that ¢ = 0. Continuing this process causes all coefficients to
vanish, which is equivalent to the directness of the decomposition (60).
Even in this decomposition weyl(E, o) is not graded, i. e.

(61) AW, AW, =AW, s

for instance we have AxAy = Axy + % o(x, y)1. Instead we have a filtra-

tion on weyl(E, o) from which we can construct a graduation by standard
procedure [9] and [11; exposé n° 1]; but since the resulting algebra is com-
mutative (in fact it is isomorphic to sym (E), cf. [11]), it does not seem to be
interesting for physical applications. It is easy to prove the formula

1
(62) Axy ool XX 4y = m Z(sz(x) cee xt(r))xr(r+ 1)

Y41
with the help of which we get by induction
(63) [Axy ... x, ] = Alx, ... x,, )] x, y € E < weyl (E, o).
From this we have
(64) [AW,, E]. < AW,_;

from this and (60) follows that the center of weyl(E, o) is trivial [12, p. 148].

ANN. INST. POINCARE, A-X111-2 9
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§ 1I-8: Some Lie Algebras in weyl(E, o).

We now look for Lie algebras which are formed by linear and bilinear
polynomials of elements x, € E = weyl(E, 6). We have for W, @ AW,

(65 [Axy, Avzl- = a(x, v)Ayz+o(x, 2)Ayv+ o(p, v)Axz+6(y, 2)Axv

©66) [Axy,z]. = a(x, 2)y+0o(y, 2)x.
For x = y and v = z the first equation reduces to
67 [xx, zz]. = 4o(x, 2)Axz,

which is equivalent to the original, since by linearizing it twice (i. e. by
substituting x > x + y and z> v + z) we regain the original one. (For
commuting x and y we can drop A in Axy).

(68) LeMMA. — The normalizer of E in weyl(E, o) (i. e. the set

{Y e weyl (E, 0)/[Y, x]- €E for all xe E})

equals AW,.
The proof follows from (60), (63), (64) and (66). We have

1, . 1 1 ;
Axy = Z % i(é‘ﬂk + &nag + i(fiﬂk + &Enp'p* + i(fiﬂk + &EnHAg ot

ik

which suggests to introduce in AW, the n(2n + 1) basis elements

(69) Agqiq = Aquq;, APiPk = Ap*p!, Agip* # Agup;.

They have the commutation relations [14; p. 1203]

[AGigi Aqigml- = AP, Ap'p™- =0
[AQiPk, Aqp")- = 5;"Aqtpk - 5'{Aqip’"
(70)  [Aqigw AP'P™)- = 67Aqp’ + SiAgip™ + SiAgip™ + SpAgip'
[Agiqi, Aq,p™]- = 67'Aquqy + Sk Aqiq,
[Ap'", Aqip™)- = — 8\AP"P™ — SiA D™

We prove that the elements of AW, span the Lie algebra spl(2n, R).
First note that from the Jacobi identity in weyl(E, o) we have

(71) [ad (Axy), ad (Avz)]-
= o(x, v) ad (Ayz) + o(x, z) ad (Ayv) + a(y, v) ad (Axz) + o(p, z) ad (Avx)
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i. e. the 2n x 2n matrices ad (Axy) |g (ad restricted to E) form a Lie
algebra, which is a subalgebra of spl (2n, R, E) because of

(72) a(ad (Axy)v, z) + a(v, ad (Axy)z) = 0.

It is straightforward to prove that the kernel of the Lie algebra homo-
morphism R: AW, — spl (2n, R, E) defined by

(73) Zad(Z) |z =:R(Z) ZecAW,

is zero. From a dimensional arguement now follows that this homo-
morphism is a Lie algebra isomorphism. It follows that the Lie algebra
R1 ® W; @ AW, is isomorphic to heis(2n) <+ spl (2n, R). Choosing now
a special element of AW, say Hg, we get the commutation relations (16)
of RR > heis(2n) where now

(74) R=RHy) =ad (Hy) [g HgeAW,.

This is for instance for the Hamilton operator of the harmonic oscillator

09 3=R(=3 > @ai+ o)) =2 (=3 > Ga + 5
i i

In the following we list some subalgebras of AW, and their images under
the action of the isomorphism R:
The n? elements N¥ : = Ag,p* form a subalgebra of AW, with

E

(76) [NF, N7]- = 67N} + SNT"
which under the action of R is gl(n, R, E) given by

-G 0 . .
7 R(N) = 0o GT G arbitrary n x n matrix,

and, using the matrix exponential mapping, we get

Gy~-1
(78) exp (R(N)) = ((e ) (eS)T) & Spl 21, R, E)

where N is some linear combination of the N¥,
1
The 3 n(n — 1) elements My : = Ag;p* — Agq,p' form a subalgebra of
this Lie algebra with
(19 [Ma, Mipl- = 6Migy + 87Mye + 6iM,, + 65EM,,
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which under the action of R is isomorphic to so(n, R, E) given by the above
matrices (77) for antisymmetric G. The corresponding matrix Lie group

is generated by the matrices (78) for orthogonal ¢®. The % n(n + 1) ele-

ments Hy: = A(g;q; + p'p*) form together with the M, another Lie algebra
in AW, with

[Hi, Hyl- = 6;M,, + 6I'My, + 5iM,, + 65M;,

(80) .
(Ha, M) = 67Hy + 07'Hyy ~ 6H;p — 0/Hpm

Under the action of R this Lie algebra is isomorphic to u(n, R, E):

Q) R =(; o) RaD=(¢ §)

with L a real antisymmetric and K a real symmetric # x n matrix (see § I-1),
and M resp. H a linear combination of the M, resp. the H,,. The corres-
ponding matrix group U(n, R, E) is given by the matrices (4).

§ 1I-9: Realization of some Derivations
and Automorphisms.

We want to identify derivations, resp. automorphisms, with elements of the
form ad(Z) |peis (2ny T€SP. €XP(ad(Z) |peis (2n) fOr suitable Z e weyl(E, o).

Besides the inner derivations of heis(2n), which are given by ad (E) |peis (20
we have the derivations ad (AW) |peis 20y Of heis(2n):

@)  ad (Axp)lx, yl- = [ad (Axp)o, 21 + [n, ad (Axy)zl-

(note (66)). In the notation of (32)

(5 Y-EEh Y remzeaw.

From (64) now follows that no elements of ad (weyl(E, 6)) |yeis 20y Can
be identified with derivations given by # % 0in (32). The corresponding
facts hold for automorphisms given by o # 1 in (21) and the special auto-
morphism A(id,,, 0, 1, — 1).

From (64) follows that there is no representation by elements of
ad (weyl(E, 0)) [rropor Of those derivations of RR @ E @ R which
are given by nonvanishing p and B in (40). The remaining derivations
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in (40) are given by the elements of ad (E) |gr o ee & and by those elements
Z € AW, which obey the conditions

(84) ad Z)Hg = vHy, ad (@) |g=V.

The corresponding automorphisms of the Lie algebras RR @ E @ R,
see (38), are now generated by the matrix exponential mapping of these
derivations.

§ II-ro: The Special Case
of the (Nonrelativistic) Free Particle.

We discuss the above results for the free particle whose Hamilton operator
is given by

1 0 —id,
6 Hei=iopbh  Rei=RED= (0 0%,

RZ = 0. Because of this nilpotency theorem (38) is not applicable.
We show that for n > 2 theorem (38) holds in the same form, i. e. that
the automorphism group of RRg +> heis(2n) is given by the matrices (38)
with O # 8 # 1in general. It follows that the elements of

der (RRg > heis (27))

are given by the matrices (40) with v # 0 in general. First note that
from () in the proof of theorem (38) we have for R? = 0 (multiplying
by R from the left) RGR = 0. So from (e) we have for x = Rz with the
help of (@) @ = 0. This is true for all R with R? = 0.

What remains to show is d = 0. From RgGRg = 0 and G invertible
A B

A) with A invertible. It follows

follows that G has the form (0

1
0
from (e) for x = d

() o(3d, d)RGy = o(3d, y)RGd for all x € E.

Writing y* = (y,T, y,7) and the same for d where now y,, y,, d,, d, are
n column vectors, from (a) follows d; = 0. Denoting the scalar product
in n dimensions by { , ), we have from (e’) since A is invertible for all n vec-
tors y, the condition { d,, d, ) y, = { d,, ¥, ) d,, from which for n > 2
follows d, = 0. To prove this we used two peculiarities of Rg, which will
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not hold in general for all R with R? = 0, namely d; = 0 and the special
form of G above.

The set of elements of spl (27, R, E) obeying the equation (36) for Ry
is the set of matrices (18 _BAT) with B= BT and A + AT = v id,.
For A —% vid,=: L we get L = — L'. The n® + l-dimensional Lie

. . L B 1 (id, O

algebra zent(RR)<J>ZRF is given by the matrices (0 L) + iv( 0 —i d,,)'
Contrary to the harmonic oscillator (R = J), where v = 0 from (41), for
the free particle v # 0. It is straightforward to show that because of
theorem (38) the automorphism group of RRy +> heis(2n) is given by the
set of matrices

(sign o) 0 0 0#aeR
@6) —iGRJb G 0 0<deR
T bt o« teR

where the 2n x 2n matrix G has the form
G=1/]a|
5 A B 5 C D
1 + sign (\/6 ) 1 —signa (\/5 )
———— A + - ,

1 1
2 2 0 ——C
VZ

0 —
V6

and the n x n matrices A, B, C, D are subject to the conditions ATA = id,,

C'C = id,, A™B and C'D symmetric.

id, 0

. . . 1
The one-dimensional Lie algebra QR( 0 —id,

)is the image of

LN
%RZAq,p' under the isomorphism R ; the ; n(n — 1)-dimensional Lie

I=1
algebra of the matrices ((I; I(j) is the R-image of the so(n, R) Lie alge-

bra (78), and the commutative % n(n + 1)-dimensional Lie algebra of the

matrices (g BO) is the R-image of the Ap'p*.

Note that the kernel of the homomorphism

(exp RRp) x E x R—>RRg X E x R
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defined by (id,, + aRg, x, f) > (o, x, f) is {(id,,, 0, 0)}. Therefore the
nilpotent group of the free particle, exp (RRg) x E x R, is simply connected
and global isomorphic to the group (10), contrary to the solvable group
(exp RJ) x E x R of the harmonic oscillator, which is infinitely connected
by (6).

The representations (42) and (47) of exp(RRg) x E x R and
exp(RRy) ® E may be extended to faithful 2# + 2-dimensional represen-
tations of the extended and the pure Galilei group in n dimensions by substi-
tuting exp(RRg) - 0(n, R, E) ® exp(RRp).

CONCLUSION

For completeness one should also know the automorphism group and
the derivation Lie algebra of those Lie algebras RR +> heis(2n) which
fulfill R? = 0, though there seem to be no more physical relevant Hamilton
operators H which are subject to R(H)?> = 0 (besides the free particle,
which was treated seperately and will be treated elsewhere for the relati-
vistic case). In addition it seems to be likely that the vector space 3 is
one-dimensional or zero. Then the set of solutions of equation (36) would
reduce to zent (R) G> Jr as it did in the special cases we calculated explicitely.
It would also be desirable to have a necessary and sufficient condition for
the vanishing of 3z, for instante « 3 = {0 } iff Ris invertible » or «zz = {0}
iff R2 # 0 ».

We were able to identify (some) derivations and automorphisms with
linear transformations realized by means of the adjoint representation of
weyl(E, ¢) and to identify (all) elements of the Lie algebras RR 1>heis (2n)
with elements of weyl(E, 6). It should be possible to construct a « closure »
weyl (E, 0) of weyl(E, ) by including « formal potence series » in such a
way that even the Lie groups exp (RR) x E x R or at least some covering
groups of them can be identified with some subsets of weyl (E, o) [15; p. 33]-
In addition it should be possible to find in weyl (E, o) a twofold covering
group of Spl (2n, R, E) the Lie algebra of which is given by AW, [16; p. 143].
The analogy to the case of the Clifford algebras and the covering groups
Spin(n) of the (pseudo-) orthogonal groups is obvious [I7; p. 64]. We
remark that this analogy is very farreaching if one regards orthogonal
vector spaces instead of symplectic ones, Jordan algebras instead of Lie
algebras and so on.
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By induction one proves that for x, y, z, ..., z,€E

@7 ad(Axp)Az; ...z, = Z {o(x, z)Ayzy ... Z4-1Zi4y ... 2, +
i=1

6(y, Z)AXZy ... Zy_1Zigy +-- 2 )

This together with the Jacobi identity shows that the restrictions of the
linear transformations ad ( ) of the vector space weyl(E, o) to the finite-
dimensional vector spaces AW, are representations of spl (2r, R) which are
monomorphic as is easily to check. The first one in W, is the trivial zero
representation, the second one in E the self-representation discussed above
and the third one in AW, the adjoint representation of spl(2n, R). A
similar representation of the orthogonal Lie algebras in W is well known
[16; p. 151].

The author is indebted to Dr. H. D. Débner for critical remarks. Some
of the above results are already to be found in his work [/]. This work
was supported in part by the Deutsche Forschungsgemeinschaft.
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