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The motion of a falling particle
in a Schwarzschild field

K. N. SRINIVASA RAO

(Université de Mysore, Inde).

Ann. Inst. Henri Poincaré,

Vol. V, n° 3, 1966, t

Section A : .

Physique theorique.

In the wake of the problem of the motion of the perihelion of a planet [1-3]
in the General Theory of Relativity it is interesting to consider the simpler
but nevertheless instructive problem of a falling particle in a Schwarzschild
field. Whittaker [4] discusses a similar rectilinear motion and gives expres-
sions for the velocity and acceleration of a particle in terms of an arbitrary
constant. We shall, however, obtain an expression for the velocity of such
a falling particle which is projected with an initial velocity u and show that
it reduces to the Newtonian formula in the limit c ~ oo or what is the same

thing, as S - 0 where S = is the Schwarzschild radius. On thec
otherhand, in a differential region round a point of interest where the gravi-
tational field could be treated as uniform, the second approximation wherein
we neglect terms containing S2 but retain those containing S, yields a motion
which follows from the Special Theory of Relativity, thus providing an
illustration of Einstein’s Principle of Equivalence [2]. In particular, a fur-
ther approximation leads to the well-known Hyperbolic motion [5-6].
Assuming that the particle is « falling » along the line 8 = 0 (or along

q = constant in the plane 0 = 7r/2 to keep correspondence with the problem
of perihelion motion), the Schwarzschild metric becomes,
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where, for convenience in notation we denote the coordinate time by r rather
than t which will denote physical time. Thus, if dl and dt are respectively
the elements of length and time, we have [4],

It is clear that in the limit S - 0, we can take I = r. With I = 10 at r = ’0,
we have

from the mean value theorem of the integral calculus. If we regard S as
so small that its square may be neglected, we can obviously write, approxi-
mately

The equations of the geodesic reduce, with 8 = 0, to

where

The integral of (6) is

and one can check that ( 1 ) already provides an integral of (5). Thus from ( 1 )
and (8) we obtain

If r is the velocity of the particle, we have, from (2)
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Let the particle have the initial velocity u (i. e., at t = 0) at r = ro. Evaluat-

ing the constant k and simplifying, we obtain

giving an exact expression for the velocity of the falling particle.

Bearing in mind that S - 2GM , we can rewrite 11) asc2

which clearly goes over into the Newtonian formula (for S - 0)

since r ~ 1 as S - 0. 

’ ’

We now proceed to an approximation of (11) which yields the motion
according to the Special Theory of Relativity. We recall [5] that the motion
of a freely falling particle in a uniform field is the well known Hyperbolic
motion given by

which is the solution of the differential equation

If we drop the stipulation that the force on the particle is constant and

equal to mog, we should really have

Simplifying, we get

Integration of (17) yields
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If v = u at t = 0, we obtain, on evaluating the constant

Writing L = dx and with x = 0 at t = 0, an integration of (18) immediately
gives

We shall now arrive at (19) as an approximation from (11). On taking
logarithms, we have

Consider now a differential region at r = ro wherein second and higher

powers of To - r may be regarded as negligible. We then have
ro

or

from (4)
Substituting into (20), we get

u

With an obvious notation which has special reference to the earth’s gravita-
tional field, we define cc g » by the relation GM and we get

or, equivalently
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.

1. e.,

or

Since

we have

Multiplying (25 b) by u/c and adding to (25 a), we get

Taking logarithms, we obtain the formula (19) of the Special Theory of
Relativity :

In order to arrive at the equation describing Hyperbolic motion, we start
from (26) and retain terms, only upto the second power in x and t. Thus

and on simplification, we have
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which is clearly the equation of a hyperbola in x - t space. With u = 0,
equation (27) reduces to the familiar equation (14). We remark that (27)
results from

showing that hyperbolic motion is a consequence, only of a constant [6]
force acting on the particle.
Taking the square root, we can rewrite equation (23) as

Multiplying by mo, we have

Thus mv = mv(x), a function of position only and our reference system of
interest is conservative [7]. Indeed, if we take

we have

and

which is the energy equation.
We finally observe that equations ( 18), ( 19) and (23) may be regarded as

the relativistic analogues of the Galilean laws for a falling body. Equa-
tion (18), for example, would show that the « time of rise )) of a particle
thrown « vertically up » is

while (23) would give, for the maximum height attained

One can similarly arrive at other results which are equivalent in content
to those derivable from the Galilean laws.
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SUMMARY

It is shown that the rectilinear motion of a particle in a Schwarzschild

field reduces to the Newtonian law in the limit S - 0 where S = 2GM isc2

the Schwarzschild radius and that it reduces to a motion according to
Special Relativity in a differential region if S2 is neglected, thus illustrating
Einstein’s Principle of Equivalence. Relativistic analogues of the Galilean
laws for a falling body are incidentally obtained.
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