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ORTHOGONAL FORMS OF KAC–MOODY GROUPS
ARE ACYLINDRICALLY HYPERBOLIC

by Pierre-Emmanuel CAPRACE & David HUME (*)

Abstract. — We give sufficient conditions for a group acting on a geodesic
metric space to be acylindrically hyperbolic and mention various applications to
groups acting on CAT(0) spaces. We prove that a group acting on an irreducible
non-spherical non-affine building is acylindrically hyperbolic provided there is a
chamber with finite stabiliser whose orbit contains an apartment. Finally, we show
that the following classes of groups admit an action on a building with those prop-
erties: orthogonal forms of Kac–Moody groups over arbitrary fields, and irreducible
graph products of arbitrary groups - recovering a result of Minasyan–Osin.
Résumé. — Nous fournissons des conditions suffisantes garantissant qu’un

groupe donné opérant par isométries sur un espace métrique géodésique soit à
hyperbolicité acylindrique. Diverses applications aux groupes d’isométries d’es-
paces CAT(0) sont mentionnées. Nous montrons en outre qu’un groupe d’auto-
morphismes d’un immeuble irréductible non-sphérique et non-affine est à hyperbo-
licité acylindrique s’il existe une chambre à stabilisateur fini dont l’orbite contienne
un appartement. Ce critère est finalement appliqué aux formes orthogonales des
groupes de Kac–Moody sur des corps arbitraires. Il s’applique également aux pro-
duits graphés irréductibles de groupes arbitraires, ce qui fournit une nouvelle dé-
monstration d’un résultat récent de Minasyan–Osin.

1. Introduction

An acylindrically hyperbolic group, defined by Osin [28], is a group G

which admits a non-elementary acylindrical action on a hyperbolic space.
This notion is a far-reaching generalisation of Gromov’s relative hyper-

bolicity. The class of groups satisfying this includes many widely-studied
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2614 Pierre-Emmanuel CAPRACE & David HUME

families of finitely generated groups: mapping class groups, outer automor-
phism groups of free groups, groups acting properly and essentially on irre-
ducible finite-dimensional CAT(0) cube complexes and small cancellation
groups, see [28] and references therein.
However, a remarkable feature of the definition of acylindrical hyperbol-

icity is that it also allows for examples which are not finitely generated.
It follows from results of Cantat–Lamy [8] that the Cremona group (i.e.
the group of bi-rational transformations of the complex projective plane) is
acylindrically hyperbolic, using an action of this group on an infinite dimen-
sional hyperbolic space. This provides the first example of a (non-locally
compact) connected Hausdorff topological group which is acylindrically hy-
perbolic.

One goal of this paper is to provide more examples of connected topo-
logical groups which are acylindrically hyperbolic. Our examples are or-
thogonal forms of Kac–Moody groups over arbitrary fields; by definition,
Kac–Moody groups over fields are taken in the sense of Tits [32], and their
orthogonal forms are defined as the centraliser of the Chevalley involution
(cf. Definition 2.1).

Main Theorem. — LetA be a generalized Cartan matrix of irreducible,
non-spherical, non-affine type, and GA(F ) be a Kac–Moody group of type
A over a field F .
Then the orthogonal form KA(F ) is acylindrically hyperbolic.

If we set F to be the field of order 2, thenKA(F ) is isomorphic to theWeyl
groupW , and the property of acylindrical hyperbolicity is not new: indeed,
all irreducible, infinite, non-affine Coxeter groups act properly cocompactly
on a CAT(0) space with rank 1 elements (see [9, Cor. 4.7]), and this is a
sufficient condition for acylindrical hyperbolicity (see [30] or Proposition 3.2
below). However, the main motivating situation is when the ground field
F is the field of real numbers. In that case the orthogonal form KA(R) is a
factor in the Iwasawa decomposition of GA(R) and is a connected Hausdorff
topological group when endowed with the Kac–Peterson topology (see [20]
and references therein). We remark that, over R, the orthogonal forms have
only recently been shown to be not simple. This is in stark contrast to the
situation for real simple Lie groups, where the centraliser of a Chevalley
involution is a compact group, and is simple in many cases [21, pp. 520–
534]. Non-trivial quotients were first constructed on the Lie algebra level by
physicists for certain types [7, 15]; their arguments were later extended, and
promoted to the group level, in [19, 17]. The quotient maps Ξ: KA(R) →
Q contructed in this way are called maximal spin representations of the
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orthogonal form KA(R). The quotient group Q happens to be a (finite-
dimensional) compact Lie group. Our result on acylindrical hyperbolicity
provides many more quotients of those orthogonal forms KA(R), of a very
different flavour: indeed, it is proved in [14, Th. 8.5] that all acylindrically
hyperbolic groups have non-trivial proper free normal subgroups, and are
even SQ-universal, which means that every countable group embeds in one
of their quotients.
Moreover, the criteria for acylindrical hyperbolicity that will be estab-

lished below applies not only to the orthogonal form KA(R), but also to
many of its subgroups. In particular it will follow that the kernel Ker(Ξ)
of the maximal spin representation is acylindrically hyperbolic (hence SQ-
universal), see Corollary 1.5.
The Main Theorem will follow from a general criterion of acylindrical

hyperbolicity for groups acting on buildings, described below, which also
yields the following result on graph products (see Section 6.2 for the defi-
nitions). This was first proved by Minasyan–Osin [25, Corollary 2.13] using
a different method.

Corollary. — An irreducible graph product of arbitrary groups is
acylindrically hyperbolic or virtually cyclic.

1.1. Intermediate results

The Main Theorem and the Corollary above are deduced from the three
following results, which should be of independent interest.

The definition of an acylindrically hyperbolic group requires an action
of that group on some hyperbolic space. In our setting, it is more natu-
ral to consider the actions of Kac–Moody groups on buildings, which are
only hyperbolic when the underlying Weyl group is hyperbolic. In order to
cover group actions on buildings of arbitrary non-spherical and non-affine
type, we use the projection complexes introduced by Bestvina–Bromberg–
Fujiwara which build actions of groups on quasi-trees [3]. In doing so, we
obtain sufficient conditions for the existence of non-trivial hyperbolically
embedded subgroups from the action of a group on a wider range of ge-
odesic metric spaces. The following statement was implicitly contained in
the work of Bestvina–Bromberg–Fujiwara [3] and now appears explicitly as
Theorem H in [4].

Theorem 1.1 (Bestvina–Bromberg–Fujiwara). — Let G be a group
which acts by isometries on a geodesic metric space X. Suppose h ∈ G

TOME 65 (2015), FASCICULE 6



2616 Pierre-Emmanuel CAPRACE & David HUME

is of infinite order, has positive translation length and satisfies the follow-
ing conditions.

(i) The action of h on X is weakly properly discontinuous (or WPD
for short): for every D > 0 and x ∈ X there exists some m > 0
such that

{g ∈ G | d(x, gx) < D and d(hmx, ghmx) < D}

is finite.
(ii) TheX-orbit ofH = 〈h〉 is strongly contracting: there exists a point

x ∈ X with associated closest point projection πx : X → H(x) such
that

sup {diam(πx(B(y; r))) | B(y; r) ∩H(x) = ∅}

is finite.
Then there is a subgroup H ′ containing H as a finite index subgroup which
is hyperbolically embedded in G. Moreover, G is either virtually cyclic or
acylindrically hyperbolic.

Notice that no assumption is made on the group G, just on the action.
The strongly contracting property asks that X has, in some sense, a ‘hy-
perbolic direction’.
When the first version of this paper was written, Theorem 1.1 did not

appear explicitly in the existing versions of [4] or [3] so a proof was given
in this paper. It remains here for completeness.
In Section 3 below, we present various applications to Theorem 1.1 for

groups acting properly on CAT(0) spaces and containing rank 1 isometries
(i.e. hyperbolic isometries whose axes do not bound a half-flat). We show
that a CAT(0) group contains rank 1 isometries if and only if it is acylin-
drically hyperbolic or virtually cyclic (see Corollary 3.4). Moreover, any
(possibly non-uniform) lattice in the isometry group of a proper cocompact
CAT(0) space is acylindrically hyperbolic as soon as the ambient space ad-
mits rank 1 isometries (Corollary 3.6). We also point out an application to
groups acting properly on (possibly non-proper) finite-dimensional CAT(0)
cube complexes (Corollary 3.8). Most of those applications seems to be new.
They imply moreover that certain lattices appearing in the realm of Kac–
Moody groups over finite fields are acylindrically hyperbolic (Remark 3.7).
It should however be emphasized that, in all those applications, the WPD
hypothesis required by Theorem 1.1 is guaranteed by the fact that the
action of the ambient group under consideration is metrically proper.

ANNALES DE L’INSTITUT FOURIER
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However, the Main Theorem typically involves groups whose action on
the associated building is not proper. Indeed, for Kac–Moody groups over
the reals, the action of the orthogonal form K(R) on its building is not
metrically proper. In fact the stabiliser in K(R) of any singular point, i.e.
any point which is not in the interior of a chamber, is an uncountable com-
pact subgroup. The key property of those actions, which we shall exploit
and which will turn out to be sufficient to prove acylindrical hyperbolicity,
is that the stabiliser of every regular point (i.e. a point lying in the interior
of a chamber) happens to be finite.
Those considerations naturally lead us to the second part, where we

find conditions on a (not necessarily proper) group action on a building
which ensure that the group has a WPD element. Let X be a building of
type (W,S). Throughout, the generating set S is assumed finite. An au-
tomorphism h ∈ Aut(X) is said to be regular if it is hyperbolic and if it
has an axis ` contained in an apartment A such that ` is not contained
in a bounded neighbourhood of any wall of A. One shows that, in that
case, every h-axis is contained in the apartment A, see Lemma 4.1 below.
Therefore, it makes sense to define the combinatorial hull of h, as the com-
binatorial convex hull of `, i.e. the smallest gallery-convex set of chambers
containing `. If the building is thick, this coincides with the intersection of
all apartments containing `. One verifies that this is indeed independent
of the choice of ` (see Lemma 4.1 below). The shape of the combinatorial
hull can be very different depending on the type of the building. Indeed,
if the building is Euclidean, the combinatorial hull of h is a whole apart-
ment (hence, a maximal flat of X). If X is thick, non-Euclidean and h is
a rank 1 isometry, then the combinatorial hull is contained in a bounded
neighbourhood of `.

Theorem 1.2. — Let G be a group acting on a building X. Let h ∈ G
be a regular element whose combinatorial hull contains a chamber with
finite stabiliser in G. Then the action of h on X is WPD.

By assumption, the building X must be non-spherical. The hypothesis
on chamber stabilisers is critical for the WPD condition.
In the third part, we combine Theorems 1.1 and 1.2 in order to establish

the following criterion of acylindrical hyperbolicity for groups acting on
buildings.

Theorem 1.3. — Let X be a building of irreducible non-spherical, non-
affine type (W,S), and letG 6 Aut(X). Assume that there exists a chamber
with finite stabiliser, and whose G-orbit contains a subset of an apartment

TOME 65 (2015), FASCICULE 6
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which is an orbit under a finite index subgroup of the Weyl group W (e.g.
the G-orbit of that chamber contains an apartment).

Then G is acylindrically hyperbolic.

The Main Theorem is deduced from Theorem 1.3 by showing that or-
thogonal forms of Kac–Moody groups satisfy its hypotheses, see Proposi-
tion 6.1 below. The key point is that the orthogonal form KA(F ) has a
natural action with finite chamber stabilisers on a building X, which con-
tains moreover an apartment A such that the stabiliser W̃ = StabKA(F )(A)
is transitive on the chambers of A. The group W̃ is called the extended
Weyl group, and is isomorphic to an extension of the Weyl group W by an
elementary abelian group of order 2n, where n is the size of the generalized
Cartan matrix A. Therefore, Theorem 1.3 implies the following sharper
version of the Main Theorem.

Corollary 1.4. — Let KA(F ) be as in the Main Theorem. Any sub-
group H 6 KA(F ) containing a finite index subgroup of the extended Weyl
group W̃ is acylindrically hyperbolic (hence non-simple).

In their recent work [17], Ghatei–Horn–Köhl–Weiß have shown that in
case A is simply laced (i.e. all off-diagonal entries belong to {0,−1}), the
image of the extended Weyl group under the maximal spin representation
Ξ: KA(R) → Q is finite. In other words, this means that Ker(Ξ) contains
a finite index subgroup of the extended Weyl group W̃ . Therefore, the pre-
vious corollary implies that Ker(Ξ) is acylindrically hyperbolic. This could
alternatively be deduced from the fact that any infinite normal subgroup
of an acylindrically hyperbolic group is itself acylindrically hyperbolic, see
Corollary 1.5 in [28]. Hence we obtain the following.

Corollary 1.5. — Any infinite normal subgroup of KA(F ) is
acylindrically hyperbolic (hence non-simple).

1.2. Plan of the paper

We introduce orthogonal forms in Section 2, recalling the fundamen-
tals of Kac–Moody algebras and groups, twin buildings and BN pairs as
part of this. Sections 3, 4 and 5 deal with the proofs of Theorems 1.1,
1.2 and 1.3 respectively. Section 3 also contains applications showing that
various groups acting properly on CAT(0) spaces are acylindrically hyper-
bolic. Those examples include several families of lattices in locally finite
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buildings constructed from Kac–Moody groups over finite fields. In the fi-
nal section 6.1 we come back to orthogonal forms of Kac–Moody groups
and show that they satisfy the hypotheses of Theorem 1.3. We also point
out that graph products of arbitrary groups fall within the scope of Theo-
rem 1.3, thereby deducing the Corollary stated above.

2. Orthogonal forms

Let A = (Aij), i, j ∈ {1, . . . , n}, be a generalised Cartan matrix: an n×n
matrix where Aii = 2 for each i, Aij is a non-negative integer whenever
i 6= j and Aij = 0 if and only if Aji = 0.
We define a Kac–Moody algebra gA as the Lie algebra over C (or R)

generated by 3n elements ei, fi, hi satisfying the relations
— [hi, hj ] = 0 and [ei, fj ] = δijhi,
— [hi, ej ] = Aijej and [hi, fj ] = −Aijfj ,
— (ad ei)1−Aijej = 0 and (ad fi)1−Aijfj = 0, whenever i 6= j.

Each triple {ei, fi, hi} generates a subalgebra gi of gA, which is isomorphic
to sl2. The hi generate an abelian subalgebra, called the Cartan subalgebra,
which we denote by h.
The algebra gA admits an involutory automorphism called the Chevalley

involution ω, defined by

ω(ei) = −fi, ω(fi) = −ei, ω(hi) = −hi.

The subalgebra of elements fixed by ω is denoted by kA. This is often
referred to as the maximal compact subalgebra.
Now let F be an arbitrary field. The (simply connected) Tits’ functor,

defined by Tits [32], associates a unique Kac–Moody group GA(F ) to the
Lie algebra gA, where each gi is associated to a subgroup Gi of GA(F )
isomorphic to SL2(F ) and h is associated to an abelian subgroup T ∼=
(F×)n . In some of the literature Kac–Moody groups which arise in this
way are called split minimal. We briefly recall some properties of that
construction.
There are injective homomorphisms ψi : SL2(F )→GA(F ) and η : (F×)n→

GA(F ) with images Gi and T respectively. The diagonal matrices in each
Gi are identified with elements of T by the relations

ψi

(
y 0
0 y−1

)
= η

(
y(δ1i, . . . , δni)

)
.

TOME 65 (2015), FASCICULE 6



2620 Pierre-Emmanuel CAPRACE & David HUME

Moreover the group GA(F ) is generated by T ∪ (
⋃n

i=1Gi). We refer the
reader to [32] for a full description of the defining relations of GA(F ) with
respect to that generating set.
A Kac–Moody group GA(F ) admits a (saturated) twin BN pair

(B+, B−, N), i.e. a triple of subgroups satisfying the following conditions:
— G = 〈B+, N〉 = 〈B−, N〉,
— T = B+∩B− = B+∩N = B−∩N ∼= (F×)n is a normal subgroup

of N ,
— W = N/T is a rank n Coxeter group generated by a set of reflec-

tions S,
— for every w ∈W , s ∈ S and ε ∈ {+,−}, we have sBεw ⊆ BεwBε∪

BεswBε,
— for every s ∈ S and ε ∈ {+,−}, we have sBεs 6⊆ Bε.

Using the notation above, the subgroup B+ (resp. B−) contains T and
all elements of the form

ψi

(
1 y

0 1

)
resp. ψi

(
1 0
y 1

)
while N is generated by T and all elements of the form

ri = ψi

(
0 1
−1 0

)
,

which represent elements of the generating set S in W = N/T .
The coset spaces G/B+ (resp. G/B−) can be viewed as the set of cham-

bers of a building X+ (resp. X−) of type (W,S). Letting G act diagonally
by left translation on X+ × X− we recover Bε as the stabiliser of the
chamber Cε associated to the trivial coset Bε and T is the stabiliser of
the standard twin chamber (C+, C−). The two buildings X+ and X− are
related by a so-called twinning; the twin chamber (C+, C−) is contained in
a unique twin apartment A, called the standard twin apartment. We then
recover N as the stabiliser of A. The elements ri defined above stabilise
A and act as the reflections across the walls of the standard chambers C+

and C−.
Via the Tits’ functor, we may also define a Chevalley involution on a

Kac–Moody group, also denoted by ω. On each subgroup Gi
∼= SL2(F ) it

acts as transpose-inverse, on T it acts by taking inverses. This defines ω
on a generating set of GA(F ); one verifies that all the defining relations are
indeed preserved. As a result it swaps B+ and B−.

Definition 2.1. — Let GA(F ) be a Kac–Moody group and let ω be the
Chevalley involution described above. The orthogonal form of GA(F ) is the

ANNALES DE L’INSTITUT FOURIER
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subgroup
KA(R) = {g ∈ GA(F ) | ω(g) = g } .

3. Acylindrical hyperbolicity

In this section we combine known results of [3] and [14] to give a suffi-
cient condition for a group to be acylindrically hyperbolic which does not
require any restriction on the class of groups studied. We then discuss some
applications concerning groups acting on CAT(0) spaces.

Let (X, d) be a metric space and let Y ⊆ X. We will use Nε(Y ) to denote
the ε-neighbourhood of Y , that is the set of all x ∈ X for which there is
some y ∈ Y with d(x, y) < ε.

3.1. A criterion for acylindrical hyperbolicity

The original definition of acylindrical hyperbolicity for a group requires
the existence of a non-elementary acylindrical action on a hyperbolic
space [28]. Here we will use the following equivalent definition (cf. [14,
Theorems 4.42, 6.14]).

Definition 3.1. — Let G be a group which acts by isometries on a
hyperbolic metric space Q, and let H be a subgroup of G. Suppose that
the following conditions hold.

(i) H acts properly on Q.
(ii) There is some s ∈ Q such that the H-orbit of s is quasi-convex in

Q.
(iii) H is geometrically separated: there exists some s ∈ Q such that

for every ε > 0 there exists an R > 0 such that

diam (H(s) ∩Nε(gH(s))) > R

implies g ∈ H.
Then we say that H is hyperbolically embedded in G. If G admits an
infinite, proper subgroup H which is hyperbolically embedded (i.e. H is
a non-degenerate hyperbolically embedded subgroup in the terminology
from [14]), we say that G is acylindrically hyperbolic.

We note that in the above two conditions it is equivalent to say that this
holds for some s ∈ Q or for every s ∈ Q, however it is certainly not the
case in general that R may be chosen independently of s.

We are now ready to establish our criterion for acylindrical hyperbolicity.

TOME 65 (2015), FASCICULE 6
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Proof of Theorem 1.1. — By [3, Proposition 4.7], the subgroup H ′ con-
sisting of all elements g ∈ G such that H(s) and g(H(s)) are at finite
Hausdorff distance is virtually cyclic and contains H as a finite index sub-
group.
The hypotheses of Theorem 1.1 are precisely those of [3, Theorem 4.26],

so we deduce that G admits an action by isometries on a specific quasi-
tree Q. To complete the proof we now show that this action satisfies the
hypotheses of Definition 3.1.
The quasi-tree Q is constructed from a collection of copies of R indexed

by the left cosets of H ′ in G, attached in such a way that the resulting
space Q is connected and each RgH′ is totally geodesically embedded, i.e.
the only geodesic between two points in RgH′ is the one inside this line.
The element h acts on L = RH′ by translation, so the action of H is proper
and the H ′-orbit of a point on this line is quasi-convex.
The stabiliser of L in G is preciselyH ′. If g 6∈ H ′ then gH ′(s) is contained

in RgH′ . From the construction of Q it follows that any path between two
distinct copies of R must meet two balls of fixed radius with their centres
on the two lines: this follows from [4, Lemma 3.9] and is explicitly proved
in [22, Proposition 2.6]. Therefore, for any ε > 0, the set H ′(s)∩Nε(gH ′(s))
has finite diameter depending only on ε. Thus, (iii) holds. We may now
apply [14, Theorem 4.42] and deduce that H ′ is hyperbolically embedded
in G.
Finally, the group G is acylindrically hyperbolic if H ′ is proper, so it

suffices to ensure G 6= H ′, or equivalently, that G is not virtually cyclic. �

3.2. Groups acting on CAT(0) spaces with rank 1 elements

An isometry g of a CAT(0) space X is called a rank 1 isometry if no
g-axis bounds a half-flat. When the space X is proper, every rank 1 isom-
etry is strongly contracting: this is proved in [5, Th. 5.4]. In particular,
Theorem 1.1 readily implies the following fact, which was first observed by
A. Sisto [30].

Proposition 3.2. — Let G be a discrete group acting properly by
isometries on a proper CAT(0) space X. If G contains a rank 1 isome-
try, then G is acylindrically hyperbolic or virtually cyclic. �

The following noteworthy consequence of another result of A. Sisto shows
that if G acts cocompactly, then the hyperbolically embedded cyclic sub-
groups essentially coincide with the cyclic subgroups generated by rank 1
elements.

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.3. — Let G be a discrete group acting properly and
cocompactly by isometries on a proper CAT(0) space X. Given an element
g ∈ G of infinite order, the following conditions are equivalent:

(i) g is rank 1.
(ii) g is contained in a hyperbolically embedded virtually cyclic sub-

group of G.

Proof. — As noticed above, it is a consequence of Theorem 1.1 that (i)
implies (ii). Conversely, if g is not rank 1, then g is a hyperbolic isometry
(because g is of infinite order and G is a discrete cocompact group of isome-
tries) having an axis which bounds a half-flat. Since G is quasi-isometric
to X, we infer that G contains quasi-geodesics joining points of 〈g〉 that do
not remain within bounded distance of 〈g〉. By Theorem 1 from [31], this
implies that (ii) fails. �

The following consequence is immediate.

Corollary 3.4. — Let G be a discrete group acting properly and co-
compactly by isometries on a proper CAT(0) space X. Assume that G is
not virtually cyclic (equivalently X is unbounded but not quasi-isometric
to the real line). Then the following conditions are equivalent:

(i) G contains a rank 1 isometry.
(ii) G is acylindrically hyperbolic.

Rank 1 isometries of CAT(0) spaces should be thought of as ‘regular’. In
particular, one expects that if the full isometry group of a CAT(0) space
contains rank 1 elements, then any sufficiently big subgroup should also
contain such. The following result provides an illustration of this paradigm.

Proposition 3.5. — Let X be a proper CAT(0) space, such that Is(X)
contains a rank 1 element. Let G 6 Is(X) be a subgroup whose limit set is
the full visual boundary ∂X. Then G also contains rank 1 elements.

Proof. — Let h ∈ Is(X) be rank 1 and ξ+, ξ− ∈ ∂X be its attracting and
repelling fixed points. Assume first that G fixes both ξ+ and ξ−. Then the
set of geodesic lines joining ξ+ to ξ− is G-invariant. Since h is rank 1, the
union of those lines is within a bounded neighbourhood of one of them. As
G is unbounded, it follows that G contains a hyperbolic isometry with an
axis parallel to the h-axes. In particular that isometry must be a rank 1
isometry, as desired.
Up to replacing h by its inverse, we may now assume that G does not

fix ξ+. Let (gn) be a sequence in G such that gnx converges to ξ+ for some
(hence all) x ∈ X. Upon extracting, we may assume that g−1

n x converges

TOME 65 (2015), FASCICULE 6



2624 Pierre-Emmanuel CAPRACE & David HUME

to some point η ∈ ∂X. If η = ξ+, then we choose an element γ ∈ G such
that γξ+ 6= ξ+.If η 6= ξ+, then we set γ = 1. Then we have limn gnγx = ξ+
and limn(gnγ)−1x = γ−1ξ+ 6= ξ+. By Lemmas III.3.2 and III.3.3 of [2], it
follows that gnγ ∈ G is rank 1 for all sufficiently large n. �

Corollary 3.6. — Let X be a proper CAT(0) space such that Is(X)
acts cocompactly, and contains rank 1 elements. Then every lattice Γ 6
Is(X) contains rank 1 elements. In particular, every lattice Γ 6 Is(X) is
acylindrically hyperbolic, unless X is quasi-isometric to the real line.
Proof. — By [11, Prop. 2.9], the limit set of Γ coincides with the limit

set of Is(X), which is full since Is(X) acts cocompactly. Hence the desired
conclusions follow from Proposition 3.5 and Proposition 3.2. �

Remark 3.7. — Many examples of groups satisfying the hypotheses of
Corollary 3.6 are provided by Kac–Moody groups over finite fields and
their buildings. Indeed, if X is the positive building of a Kac–Moody group
GA(F ) over a finite field F , then X is proper and Aut(X) acts cocompactly.
Moreover, by [9, Th. 1.1], it contains rank 1 elements as soon as it is of
irreducible, non-spherical and non-affine type. If the field F is large enough
(i.e. of order larger than the size of the defining Cartan matrix A), then
the subgroup B− 6 GA(F ) is known to be a lattice in Aut(X), see [29].
Further examples of lattices in Aut(X) can be constructed as centralisers
of suitable involutory automorphisms of GA(F ), see [18]. By Corollary 3.6,
all these lattices are thus acylindrically hyperbolic. In particular they are
not simple. This lies in sharp contrast with the Kac–Moody group GA(F )
itself, which is known to be mostly simple when F is finite, see [12].
We finally record that when the space X is a finite-dimensional, but not

necessarily proper, CAT(0) cube complex, then results from [13] ensure
the existence of strongly contracting elements for large families of auto-
morphism groups of X. We recall that the action of a group G 6 Aut(X)
on X is called essential if no G-orbit stays within a bounded distance from
a half-space.
Corollary 3.8. — LetX be a finite-dimensional (possibly non-proper)

irreducible CAT(0) cube complex and G 6 Aut(X) be a group acting
essentially, without a fixed point in the visual boundary ∂X. If the G-action
on X is metrically proper, then G is either virtually cyclic or acylindrically
hyperbolic.
Proof. — By [13, Th. 6.3], the group G contains a strongly contracting

isometry. Since the action of G is metrically proper, any hyperbolic element
of G is WPD. Therefore, the conclusion follows from Theorem 1.1. �
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4. Regular isometries of buildings

We will now move on to groups acting on buildings that are not nec-
essarily proper. The CAT(0) realisation of a building is always a finite-
dimensional CAT(0) space [16], and the existence of strongly contracting
isometries for large families of automorphism groups has been established
in [9, Th. 1.1]. The remaining difficulty is thus to ensure the existence of
sufficiently many WPD elements, without assuming that the action of the
ambient group is metrically proper. This is the content of Theorem 1.2,
whose proof is the focus of this chapter.
Throughout, we let (X, d) be the CAT(0) realisation of a building of

type (W,S), where S is finite. The nearest point projection (in the sense of
CAT(0) geometry) to a closed convex subset C of X is denoted by πC . We
recall that there is also a Weyl-distance δ from pairs of chambers to W :
we say δ(C,D) = w if there exists a minimal gallery C = C0, C1, . . . , Cn =
D in X such that Ci−1 and Ci are si-adjacent and w = s1 . . . sn. The
element w ∈ W is then independent of the choice of the minimal gallery.
We refer to [1] and [16] for general facts on the combinatorics and geometry
of buildings.

4.1. Regular points and regular lines

A point x ∈ X is called regular if it belongs to the interior of a chamber.
Equivalently x is regular if it is not contained in any wall of any apartment
containing x. Given ε > 0, we say that x is ε-regular if the open ball B(x; ε)
is entirely contained in the interior of a chamber. Equivalently x is ε-regular
if it lies at distance > ε from any wall of any apartment.
Recall that a geodesic line in X is always contained in an apartment. A

geodesic line ` is called regular if there exists an apartment A containing
` such that ` is not contained in a bounded neighbourhood of any wall of
A. It follows that ` contains regular points of A. In particular ` meets the
interior of some chamber c of A. Now, given any apartment A′ containing
`, the retraction ρA,c induces an isometry A′ → A fixing `. This implies
that ` is not contained in the bounded neighbourhood of any wall of A′.
Thus the defining property of ` holds for all apartments containing it.
Two geodesic lines are called parallel if they lie at bounded Hausdorff

distance of each other or, equivalently, if they have the same endpoints in
the visual boundary. The following fact is an important property of regular
lines. Before stating it, we recall that a set of chambers in a building is
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called combinatorially convex if each minimal gallery joining two chambers
of that set is entirely contained in the set. For example, apartments are
combinatorially convex.

Lemma 4.1. — Let ` be a regular geodesic line contained in an apart-
ment A. For any geodesic line `′ parallel to `, the combinatorial convex
hulls of ` and `′ coincide. In particular `′ is also contained in A, and `′ is
regular.

Proof. — Let C be the combinatorial convex hull of `. We have C ⊆
A. Moreover C is closed and convex in the CAT(0)-sense, since C is the
intersection of all half-apartments containing `.
By the Flat Strip Theorem [6, 2.13] the convex hull of `∪`′ is a Euclidean

rectangle R ∼= `× I for some geodesic segment I joining a point x on ` to
its closest point projection x′ on `′. The set R∩C is closed and convex and
contains `. Therefore, it is of the form `×J where J = [x, y] is some closed
subinterval of I containing x.

We next claim that I = J . Indeed, suppose the contrary. Let then `′′

be the geodesic line parallel to ` and containing y. We now show that `′′
is not contained in the union of all walls of A. If there is some wall M in
A containing at least two points of `′′ then `′′ is contained in M by [27,
Lem. 3.4], so as ` is regular, only countably many points of `′′ lie on walls
in A.
Up to replacing x by a neighbouring point on `, we may therefore assume

that y does not lie on any wall in A, and is thus a regular point. Therefore
there is some small ball around y contained in a chamber, hence in C,
contradicting the fact that y lies in the boundary of R ∩ C.
The claim implies that `′ ⊂ C, so that C′ ⊆ C and `′ is regular. By

symmetry we also have C ⊆ C′, and we are done. �

4.2. Regular automorphisms and combinatorial hulls

An automorphism h ∈ Aut(X) is called regular if it is hyperbolic and
has an axis which is a regular line. In that case all its axes are regular by
Lemma 4.1. We define the combinatorial hull H of h as the combinatorial
convex hull of some fixed axis ` of h. By Lemma 4.1, the combinatorial hull
does not depend on the choice of the axis `, and it contains all lines parallel
to `, in particular all h-axes.
The main result of this section is that combinatorial hulls of regular

elements enjoy a strong ‘attracting property’.
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Proposition 4.2. — Let h ∈ Aut(X) be a regular element and H be its
combinatorial hull. Given C > 0, there exists T > 0 such that the following
holds for all x, y ∈ X:
If d(x, `), d(y, `) < C and d(x, y) > 2T , then [x, y]∩H contains a geodesic

segment [x′, y′] such that d(x, x′), d(y, y′) < T .

The remainder of the section deals with the proof of Proposition 4.2,
which we build up through a collection of lemmas studying the properties of
geodesics neighbouring a regular axis. Throughout this it will be important
to keep track of regular points. The first relevant result was Lemma 4.1
above on geodesic lines. We will now move on to geodesic rays.

The following notation is fixed for the rest of this section. We let h ∈
Aut(X) be a regular element with axis `, and H be its combinatorial
hull. Then H is combinatorially convex, hence it is an intersection of half-
apartments, and is thus also closed and convex for the CAT(0) metric. This
will be used frequently below, without further comment. We denote by ξ+
(resp. ξ−) the attracting (resp. repelling) fixed point of h in the visual
boundary ∂X.

Lemma 4.3. — Let ρ : R+ → X be a geodesic ray pointing to ξ−. Then
there exists a constant T > 0 such that ρ(t) ∈ H for all t > T .

Proof. — Assume the contrary. Then ρ(t) 6∈ H for any t ∈ R+. Set

D = inf
t>0

d(ρ(t),H).

Since H is CAT(0)-convex, the distance to H is a convex function on X,
see [6, Cor. II.2.5]. In particular the map R+ → R+ : t 7→ d(ρ(t),H) is
non-increasing.
Upon replacing h by a suitable positive power of itself, we may assume

that the translation length of h is larger than 2. This implies that the
sequence (hnρ(n))n>0 converges to ξ+. Denote by πH the nearest point
projection to H and set

zn = πHh
nρ(n).

Since H is a closed subset of an apartment, it is a proper space. It follows
that, after extracting a subsequence, the sequence of geodesic rays [zn, ρ−)
converges uniformly on compact sets to a geodesic line `′ ⊂ H which is
parallel to `. In particular `′ is regular. Pick a regular point q ∈ `′. Then
there exists ε > 0 such that the ball B(q, 3ε) is entirely contained in H.

By construction, there is N > 0 such that for all n > N , there is
a point qn ∈ [zn, ξ−) with d(qn, q) < ε. Moreover, since the map t 7→
d(ρ(t),H) is non-increasing, we find some M > 0 such that for all n >M ,
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d(ρ(n), πHρ(n)) < D+ ε. The automorphism h commutes with the projec-
tion πH, since h stabilises H, so we deduce that

d(hnρ(n), zn) = d(hnρ(n), πHhnρ(n))
= d(hnρ(n), hnπHρ(n))
= d(ρ(n), πHρ(n))
< D + ε

for all n > M . In particular, for n > max{M,N}, there is a point q′n ∈
[hnρ(n), ξ−) with d(q′n, qn) < D+ε. We have d(q′n, q) 6 d(q′n, qn)+d(qn, q) <
D+ 2ε. Since B(q, 3ε) ⊂ H, we infer that the geodesic segment [q′n, q] con-
tains points of H at distance < D − ε from q′n. On the other hand, we
have

inf
t>0

d(hnρ(n+ t),H) = inf
t>0

d(ρ(n+ t),H) = D,

so that d(q′n,H) > D, a contradiction. �

Since the geodesic line ` is periodic and regular, it is easy to see that any
geodesic ray in an apartment A containing ` that remains in a bounded
neighbourhood of `, is itself regular. The following subsidiary fact pro-
vides a quantitative version of that fact, ensuring in particular that for a
fixed small ε > 0, the collection of ε-regular points on that geodesic ray is
equidistributed.

Lemma 4.4. — Let A be an apartment containing `. For any C > 0,
there exist ε ∈ (0, 1) and L > 1 such that the following holds for all
x, y ∈ A :
If d(x, `), d(y, `) < C and d(x, y) > L, then there is z ∈ [x, y] which is

ε-regular.

Proof. — Assume the contrary. Then there exist sequences (xn) and (yn)
in A such that d(xn, `), d(yn, `) < C, d(xn, yn) > n and every point z ∈
[xn, yn] is 1/n-close to a wall of A. Using the fact that the cyclic group 〈h〉
acts cocompactly on `, we may assume that the midpoint of [xn, yn] remains
in a bounded neighbourhood of a base point p ∈ `. Since A is proper,
upon extracting a subsequence we may assume that [xn, yn] converges to
a geodesic line `′ which is parallel to `. By construction every point of
[xn, yn] is 1/n-close to some wall of A. It follows that `′ does not contain
any regular point. In other words every point of `′ lies on a wall of A. Since
the collection of walls of A is locally finite, we see that two points of `′
must lie on the same wall. By [27, Lem. 3.4], this implies that `′ is entirely
contained in a wall, which contradicts the assumption that ` is regular. �
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Our next goal is to show that the constant T in Lemma 4.3 is bounded
above by a constant which depends only on the distance from ρ(0) to `.
This is achieved by the following.

Lemma 4.5. — Let p ∈ `. For each C > 0, there is some T = T (C) > 0
such that the following holds:
For any geodesic ray ρ : R+ → X pointing to ξ− with d(ρ(0), p) < C, we

have ρ(t) ∈ H for all t > T .

Proof. — Assume the contrary. Then there is C > 0 and, for each n > 0,
a geodesic ray ρn : R+ → X pointing to ξ− with d(ρn(0), p) < C such that
ρn(t) 6∈ H for all t ∈ [0, n]. Let xn = ρn(0). By Lemma 4.3, the intersection
[xn, ξ−) ∩H is a ray, say [yn, ξ−). Hence d(xn, yn) > n.
Set x′n = πH(xn). Recall that H is a subset of an apartment. Applying

Lemma 4.4, we find ε ∈ (0, 1) and L > 1 such that for all n > 2L + C,
the geodesic segment [x′n, yn] contains an ε-regular point qn such that L 6
d(yn, qn) 6 2L. In particular B(qn, ε) ⊂ H.

We next observe that d(xn, x
′
n) 6 d(xn, p) < C. Therefore, by the

CAT(0) inequality for the geodesic triangle (xn, x
′
n, yn), we see that for

n sufficiently large, the point qn is ε/2-close to a point q′n belonging to
the segment [xn, yn]. Since qn is ε-regular, it follows that q′n ∈ H, whence
q′n = yn since by construction we have [xn, yn] ∩ H = {yn}. This implies
that d(yn, qn) 6 ε/2, so that L 6 ε/2 < 1, a contradiction. �

We are now ready to give the proof of Proposition 4.2.
Proof of Proposition 4.2. — Assume the contrary. There is a sequence

Mn > 2n, and two sequences (xn), (yn) inX such that d(xn, `), d(yn, `) < C

and d(xn, yn) = Mn for all n such that [xn, yn] ∩ H is a geodesic segment
of length at most Mn − n.
The cyclic group 〈h〉 acts cocompactly on `. Therefore, there is no loss of

generality in assuming that (xn) remains in a bounded neighbourhood of
some base point p ∈ `. Moreover, upon replacing h by its inverse, we may
then assume that (yn) converges to ξ−.

Let ρn be the geodesic ray joining xn to ξ−. By Lemma 4.5, there exists
T such that ρn(t) ∈ H for all t > T . By Lemma 4.4, there exists ε ∈ (0, 1),
L > 1 and tn ∈ [T, T + L] such that ρn(tn) is ε-regular. Set qn = ρn(tn),
so B(qn; ε) ⊂ H.
Now let y′n be the projection of yn to the ray {ρn(t)}t>T . Since d(yn, `) <

C, it follows that d(yn, y
′
n) is uniformly bounded. From the CAT(0)

inequality in the triangle (xn, yn, y
′
n), we infer that for n sufficiently large,

the geodesic segment [xn, yn] contains a point q′n which is ε/2-close to qn.
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Therefore q′n ∈ H. Moreover, d(xn, q
′
n) 6 d(xn, qn) + ε/2 6 T + L + ε/2.

Notice that the right-hand-side of the preceding inequality is independent
of n.

By interchanging the roles of xn and yn in the above argument, we find a
point r′n ∈ [xn, yn]∩H such that d(yn, r

′
n) 6 T+L+ε/2 for all n sufficiently

large. It follows that the length of the geodesic segment [xn, yn] ∩ H ⊇
[q′n, r′n] is at least Mn − 2T − 2L − ε for all n sufficiently large. This is a
contradiction. �

We finish this subsection by recording a subsidiary fact on combinatorial
hulls.

Lemma 4.6. — Let b ⊂ H be a chamber. For each C > 0, there exists
M = M(C) > 0 such that for any two chambers a, a′ ⊂ H with d(a, `) < C,
d(a′, `) < C and d(a, a′) > M , the combinatorial convex hull of {a, a′}
contains a chamber in the 〈h〉-orbit of b.

Proof. — Assume the contrary. Then there exist sequences (an) and (a′n)
of chambers in H such that d(an, `) < C, d(a′n, `) < C and d(an, a

′
n) > n,

such that the convex hull of {an, a
′
n} does not contain any chamber in the

〈h〉-orbit of b. Since H is locally finite, we may assume, upon extracting
and replacing an and a′n by other chambers in the same 〈h〉-orbit, that
an = a for all n. Upon extracting further, we may assume that a′n → ξ+.
Let then Cn denote the combinatorial convex hull of {a, a′n}. Using again
the local finiteness of H, we may extract once more in order to ensure
that for all r > 0, there exists N(r) such that for all m,n > N(r), we have
B(a, r)∩Cm = B(a, r)∩Cn, where B(a, r) denotes the ball of combinatorial
radius r around a in H.
We next set C =

⋃
k>0

⋂
n>k Cn. Then C is combinatorially convex, since

it is the union of an ascending chain of combinatorially convex subsets.
In particular C is also closed and convex in the CAT(0)-sense. Observe
moreover that the visual boundary ∂C contains the point ξ+. Indeed, let ρ
be a geodesic ray emanating from a point in the chamber a and pointing
to ξ+. Since a′n → ξ+ it follows that the intersection ρ ∩ B(a, r) ∩ CN(r) is
a geodesic segment whose length tends to infinity with r. Since B(a, r) ∩
CN(r) ⊂ C by construction, it follows that C contains ρ, thereby confirming
that ξ+ ∈ ∂C.

Now for each n > 0, we set Dn = h−nC. We have Dn ⊂ H and ξ+ ∈
∂Dn for all n. Using the local finiteness of H once more, we may extract
a subsequence of (Dn) to ensure that for all r > 0, there exists N ′(r)
such that for all m,n > N ′(r), we have B(a, r) ∩ Dm = B(a, r) ∩ Dn. We
then set D =

⋃
k>0

⋂
n>k Dn. Arguing similarly as above, we see that D is
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combinatorially convex, hence CAT(0)-convex, and that ∂D contains ξ−.
Hence {ξ+, ξ−} ⊂ ∂D, so that D contains a geodesic line parallel to `. From
Lemma 4.1 it follows that D = H. Hence there is somem such that b ⊂ Dm.
Therefore the chamber hmb is contained in C, hence in Cn for some n. This
is a contradiction. �

4.3. When regular automorphisms are WPD

We now complete the proof of our criterion for an automorphism of a
building to be WPD.

Proof of Theorem 1.2. — Let h ∈ G be a regular automorphism with
axis `, and H denote its combinatorial hull. By hypothesis there exists a
chamber b in H whose stabiliser Gb is finite.
We now fix some D > 0 and some x ∈ X. Applying Proposition 4.2 with

C = d(x, `) + D we obtain a constant T = Tx,D such that, for every m

sufficiently large and every pair of points y, z with d(x, y), d(hmx, z) < D

the geodesic segment [y, z] ∩ H contains a geodesic segment [y′, z′] with
d(y, y′), d(z, z′) < T . Applying Lemma 4.4 with the same constant C, we get
constants ε ∈ (0, 1) and L > 1 such that every geodesic segment of length >
L contained in the C-neighbourhood of ` in H contains an ε-regular point.
Upon enlarging m, we may assume that d(x, hmx) > M + 2δ + 2L + 2T ,
where M = M(C) is the constant afforded by applying Lemma 4.6 to the
chamber b ⊂ H, and δ denotes the diameter of a chamber.
Let P = {g ∈ G | d(x, gx) < D and d(hmx, ghmx) < D}. We need to

show that P is finite.
To this end, let x′ ∈ [x, hmx] (resp. y′ ∈ [x, hmx]) be the unique point

with d(x, x′) = T (resp. d(y′, hmx) = T ). By Proposition 4.2, we have
[x′, y′] ⊂ H. Since d(x′, y′) > M + 2δ+ 2L, there exist two ε-regular points
p, p′ ∈ [x′, y′] such that d(p, x′) 6 L and d(p′, y′) 6 L. In particular we
have d(p, x) 6 T + L and d(p′, hmx) 6 T + L. Moreover d(p, p′) >M + 2δ
since d(x, hmx) > M + 2δ + 2L+ 2T .
Let a, a′ ⊂ H be the unique chambers containing p, p′ respectively, so

that d(a, a′) >M . Hence Lemma 4.6 ensures that the convex hull of {a, a′}
contains a chamber b′ in the 〈h〉-orbit of b. In particular b′ has finite sta-
biliser. We claim that

P ⊆ {g ∈ G | ga ∪ ga′ ⊂ H and max{d(a, ga), d(a′, ga′)} 6 D} .

Indeed, let g ∈ P . Then d(gx, `) < C and d(ghmx, `) < C. Thus Propo-
sition 4.2 yields a segment [x′g, y′g] ⊂ [gx, ghmx] ∩H such that d(gx, x′g) <
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T and d(ghmx, y′g) < T . By the definition of x′ and y′, it follows that
[gx′, gy′] ⊂ [x′g, y′g] ⊂ H, since d(x, x′) = d(y′, hmx) = T . In particular
we have gp, gp′ ∈ [x′g, y′g], so that gp, gp′ ∈ H. The points gp and gp′ are
regular, so we infer that ga and ga′ are both chambers contained in H.
Since the displacement function z 7→ d(z, gz) is convex (see [6, Proposi-

tion II.6.2(3)]), we have

max{d(p, gp), d(p′, gp′} 6 max{d(x, gx), d(hmx, ghmx)} 6 D

Hence we deduce that max{d(a, ga), d(a′, ga′)} 6 D and the claim is veri-
fied.
The convex hull of {a, a′} is bounded and contains the chamber b′, so

the claim implies that there exists a constant D′ such that

P ⊆ {g ∈ G | gb′ ⊂ H and d(b′, gb′) 6 D′ } .

Since H is proper and the stabiliser of b′ is finite, we conclude that P is
indeed finite. Hence h is WPD. �

We record the following immediate consequence of Theorems 1.1 and 1.2.

Corollary 4.7. — Let X be a building of type (W,S), with S finite,
and let G 6 Aut(X) be a group acting with finite chamber stabilisers. If
G contains a strongly contracting, regular automorphism, then G is either
virtually cyclic or acylindrically hyperbolic. �

A sufficient condition for G to act with finite chamber stabilisers is that
the G-action is metrically proper. However, the latter condition is much
stronger: for example, the orthogonal forms of real Kac–Moody groups
will be shown below to act on their building with finite chamber stabilis-
ers, but their action is not metrically proper. Similarly, the action of a
graph product of infinite groups on the associated right-angled building
(see Proposition 6.2 below) is not metrically proper.

5. Acylindrical hyperbolicity for groups acting on
buildings

The goal of this chapter is to prove Theorem 1.3. The subtlety here is in
ensuring that a strongly contracting axis is regular. We begin by studying
this in the simplest case of the action of a Coxeter group on its Davis
complex.
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5.1. Regular strongly contracting elements of Coxeter groups

Proposition 5.1. — Let (W,S) be an irreducible, non-spherical, non-
affine Coxeter system with S finite. Then W contains an element w acting
as a regular, strongly contracting, automorphism of the Davis complex X.

Proof. — It is proved in [9, Cor. 4.7] that W contains rank 1 elements:
in fact, any Coxeter element, defined as the product of all elements of S
taken in an arbitrary order, is rank 1. Since X is proper, rank 1 elements
are strongly contracting (see [5, Th. 5.4]). However, an extra argument is
needed to ensure the existence of such elements that are also regular. One
possible way to do so would be to show that the Coxeter elements are reg-
ular, i.e. no non-zero power of a Coxeter element stabilises a wall. This is
proved to be the case in [23, Lem. 3.4] under the extra hypothesis thatW is
the Weyl group of a Kac–Moody algebra, i.e. W is crystallographic, in the
sense that the only Coxeter numbers involved in the Coxeter presentation
of W with respect to S belong to the set {2, 3, 4, 6,∞}. It is very likely
that Coxeter elements are regular in all irreducible, non-spherical, non-
affine Coxeter groups. Nevertheless, in order to deal with general Coxeter
groups, we will follow an alternative approach, using CAT(0) cube com-
plexes. Notice however that the case of crystallographic Coxeter groups is
the only relevant one for the Main Theorem and the Corollary from the
introduction.
By Lemma 5.2 below, the W -action on its Niblo–Reeves CAT(0) cube

complex Y is essential, without a fixed point at infinity. Moreover Y is
irreducible and finite-dimensional. It then follows from [13, Prop. 5.1] that
Y contains a pair of distinct hyperplanes ĥ, ĥ′ such that no hyperplane
crosses both of them. The same property therefore holds in the Davis com-
plex X. Now let g ∈ W be the product of the two reflections associated
with ĥ and ĥ′. Let V + be a neighbourhood of its attracting fixed point in
∂X (resp. V − be a neighbourhood of its repelling fixed point) containing
no boundary point of ĥ or ĥ′. By [9, Prop. 3.5 and Cor. 4.7] there exists
a rank 1 element w ∈ W whose attracting and repelling fixed points be-
long respectively to V + and V −. If w were not regular, then its attracting
and repelling fixed points would belong to the boundary of a hyperplane.
By construction, that hyperplane would cross both ĥ and ĥ′, which is a
contradiction. �

Lemma 5.2. — Let (W,S) be an irreducible, non-spherical, non-affine
Coxeter system with S finite and let Y be the associated CAT(0) cube
complex, as constructed by Niblo–Reeves [26]. Then Y is an irreducible,
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proper, finite-dimensional cube complex. Moreover the W -action on Y is
proper, essential, without a fixed point in ∂Y .

Proof. — The assertions that Y is proper, finite-dimensional, and that
the W -action is proper, are proved in [26]. That W acts essentially follows
from [10, Lem. 2.19], which ensures that every hyperplane belongs to an
infinite set consisting of those hyperplanes bounded by an infinite chain of
half-spaces. Given a point ξ ∈ ∂Y , consider a hyperplane ĥ which is trans-
verse to a geodesic ray pointing to ξ. Then the reflection of W associated
with ĥ swaps the corresponding two half-spaces of Y , and therefore it does
not fix ξ.

It remains to show that Y is irreducible. If that were not the case, then
by [13, Lem. 2.5] the set of hyperplanes of Y would be partitioned into two
subsets H1tH2 such that every hyperplane in H1 crosses every hyperplane
in H2. By [10, Cor. F], there is a pair of reflections r, r′ in W such that
the group 〈r, r′〉 is not contained in any proper parabolic subgroup of W .
The two hyperplanes ĥ and ĥ′ respectively stabilised by r and r′ must
be disjoint. Therefore, upon exchanging H1 and H2, we may assume that
they both belong to H1. In particular so do all hyperplanes in the 〈r, r′〉-
orbit of ĥ. As remarked above, every hyperplane belongs to an infinite set
consisting of those hyperplanes bounded by an infinite chain of half-spaces.
In particular H2 must also contain such an infinite set of hyperplanes. We
now invoke the Grid Lemma from [10, Lem. 2.8]. This implies that W is of
affine type, which is a contradiction. �

5.2. Straight elements and their combinatorial hulls

Let (W,S) be a Coxeter system. An element w ∈ W is called straight if
`S(wn) = n`S(w) for all n, where `S denotes the word length with respect
to the generating set S. Various criteria ensuring that an element is straight
are provided by T. Marquis’ paper [24]. We extract the following.

Lemma 5.3. — Let w ∈W be an element acting as a regular automor-
phism of the Davis complex of (W,S). Then w is straight if and only if it
is of minimal length in its conjugacy class.

Proof. — By Lemma 4.1 from [24], any straight element is of minimal
length in its conjugacy class.

Suppose conversely that w is of minimal length in its conjugacy class.
Let Σ denote the Davis complex, and c0 be the fundamental chamber (cor-
responding to the trivial element of W ). Since w is regular, it has an axis
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meeting the interior of some chamber c of Σ. Therefore w has a conjugate
element v with an axis meeting the interior of c0. By Remark 4.4 from [24],
it follows that v is straight. Thus v is also of minimal length within its con-
jugacy class. Hence `S(v) = `S(w). Therefore, Lemma 4.2 from [24] ensures
that w is straight as well. �

We also record a criterion ensuring that a chamber of a building is con-
tained in the combinatorial hull of a given automorphism.

Lemma 5.4. — Let X be a building of type (W,S). Let h ∈ Aut(X) and
let b be a chamber of X such that the Weyl-distance w = δ(b, hb) ∈ W is
straight, of minimal length in its conjugacy class, and is a regular isometry
of the Davis complex of (W,S). Then the following hold.

(i) h is a regular automorphism of X.
(ii) b is contained in the combinatorial hull of h.
(iii) If w is strongly contracting on the Davis complex of (W,S), then

h is strongly contracting on X.

Proof. — We first claim for that all m < n ∈ Z, we have δ(hmb, hnb) =
wn−m. Indeed, there exists a gallery of length (n−m)`S(w) joining hmb to
hnb, whose type is the word wn−m. Since w is straight, it follows that the
word wn−m is reduced. Therefore the gallery we constructed is minimal.
The claim follows.
Therefore the set {hnb | n ∈ Z} is isometric (with respect to the Weyl-

distance) to a subset of an apartment, and is hence contained in some
apartment, say A. Let ρ = ρA,b be the retraction onto A based at b and let
γ = ρ ◦ h. We see that γ belongs to the automorphism group of the apart-
ment A, which is isomorphic to W . Viewing b as the fundamental chamber
of A, we obtain a specific isomorphism Aut(A) → W which maps each
chamber b′ to the unique element of W mapping b to b′. In particular this
isomorphism maps γ to w. We view that isomorphism as an identification,
so γ = w.

Notice that
⋂

n∈Z h
nA is non-empty (because it contains {hnb | n ∈ Z}),

closed, CAT(0)-convex and 〈h〉-invariant. Therefore it contains an h-axis,
say `. Since the retraction ρ fixes A pointwise, it follows that ` is also a
w-axis. By assumption, w is regular, so we see that ` is a regular line, hence
h is regular. This proves (i).
Since

⋂
n∈Z h

nA is also combinatorially convex, and contains `, it con-
tains the combinatorial hull H of h in X. In particular H ⊆ A. Moreover,
h and w share a common axis, implying that H is also the combinatorial
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hull of w. Therefore, it suffices to show that b belongs to the combinatorial
hull Hw of w.
Assume that this is not the case. Then there exists a half-apartment h

containing b but no chamber of Hw. Since the maximal number of pairwise
intersecting walls in A is bounded (this amounts to saying that the Niblo–
Reeves cube complex Y is finite-dimensional, see Lemma 5.2), there is some
m > 0 such that the half-apartments (wmih)i∈Z are pairwise disjoint. In
particular the wall ∂(wmh) does not separate b from w2mb, so the chamber
wmb does not lie on any minimal gallery between b and w2mb. This implies
that `S(w2m) < 2`S(wm), contradicting that w is straight. This proves (ii).
For Assertion (iii), observe that if h stabilises a residue R of type J ,

where J is a subset of S, then ` ⊂ R hence H ⊂ R, since residues are com-
binatorially convex. Thus R is the unique residue of type J containing H.
Hence R∩A is the unique residue of type J of the apartment A containing
H. Hence R ∩A is stabilised by w. The desired assertion now follows from
Theorem 5.1 in [9]. �

5.3. Strongly contracting WPD automorphisms of buildings

Proof of Theorem 1.3. — Let b be a chamber with finite stabiliser. By
hypothesis the G-orbit of b contains a subset of an apartment which is the
W0-orbit of a chamber, whereW0 is some finite index subgroup of the Weyl
group W . We may assume that W0 is normal in W .
Let w ∈ W be an element acting as a regular, strongly contracting au-

tomorphism of the Davis complex of (W,S), see Proposition 5.1. Upon
replacing w by a suitable power, we may assume that w ∈ W0. Replacing
w by a conjugate, we may also assume that w is of minimal length in its
conjugacy class. By Lemma 5.3, it follows that w is straight.
By hypothesis, the image of the map g 7→ δ(b, gb) containsW0. In partic-

ular, there exists some h ∈ G with δ(b, hb) = w. By Lemma 5.4 the element
h is regular and strongly contracting, and b is contained in its combinato-
rial hull. Theorem 1.2 implies that h is WPD. Now Theorem 1.1 ensures
that G is acylindrically hyperbolic or virtually cyclic. But the latter case
is impossible, because it would imply that G, and hence also W , is 0- or
2-ended. �
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6. Applications

6.1. Orthogonal forms of Kac–Moody groups

The goal of this section is to prove the Main Theorem from the Intro-
duction.

Proposition 6.1. — Let A be a generalized Cartan matrix of irre-
ducible, non-spherical, non-affine type, and GA(F ) be a Kac–Moody group
of type A over a field F . Let X+ be one of the two factors of the twin
building associated with GA(F ) and A+ be the standard apartment of X+.

Then StabKA(F )(A+) is chamber-transitive onA+; moreover every cham-
ber of A+ has finite stabiliser in KA(F ).

Proof. — Let C = (C+, C−) be the standard twin chamber and A =
(A+,A−) the standard twin apartment.
We first prove that StabKA(F )(A+) is transitive on the chambers of

A+. Indeed, for any i ∈ I, consider the rank 1 subgroup Gi
∼= SL2(F ).

By the definition of the Chevalley involution ω, we know that Gi is ω-
invariant and that ω acts on Gi as the transpose-inverse automorphism.
Therefore we have KA(F ) ∩ Gi = ψi(SO2(F )). In particular we have ri =

ψi(
(

0 1
−1 0

)
) ∈ KA(F ). By construction of the building X+, the ele-

ment ri stabilises A+ and maps the chamber C+ to the unique chamber of
A+ which is ri-adjacent to it. Therefore the subgroup W̃ = 〈r1, . . . , rn〉 6
KA(F ) stabilisesA+ and is transitive on the set of its chambers. This proves
the claim.
It remains to prove that the stabiliser in KA(F ) of every chamber of

A+ is finite. By the claim, it suffices to prove this for C+. For each g ∈
StabKA(F )(C+), we have g(C−) = gω(C+) = ωg(C+) = ω(C+) = C−.
Therefore StabKA(F )(C+) = StabKA(F )(C+, C−) = KA(F ) ∩ T . By con-
struction T ∼= (F×)n and ω preserves T and acts on it by taking inverses.
Therefore an element η(y1, . . . , yn) ∈ T is fixed by ω if and only if y2

i = 1
for all i. The latter polynomial equation has at most two roots in F , so
that |KA(F ) ∩ T | 6 2n. �

To complete the proof of the Main Theorem and of Corollary 1.4, we ap-
ply Theorem 1.3 to deduce that the orthogonal form K(F ), and more gen-
erally any subgroup containing a finite index subgroup of StabKA(F )(A+),
is acylindrically hyperbolic.
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6.2. Graph products

Let Γ = (V,E) be a finite simple graph with more than one vertex. Let
(Gv)v∈V be a collection of non-trivial groups indexed by V . The graph
product of the groups (Gv)v∈V along Γ is the group G defined as the
quotient of the free product ∗v∈V Gv by the relations [Gv, Gw] = 1, where
{v, w} runs over all pairs of vertices spanning an edge of Γ. We say that the
graph product is irreducible if Γ is not a join, i.e. if V has no non-trivial
partition V = V1 ∪ V2 such that every vertex in V1 is adjacent to every
vertex in V2. Notice that if Γ is not irreducible, then the graph product
G splits non-trivially as a direct product of groups, and thus cannot be
acylindrically hyperbolic (unless one of the factors is finite).
Define WΓ to be the right-angled Coxeter group indexed by Γ, i.e. the

graph product of groups of order 2 along Γ. An important feature of graph
products along Γ is that they act on right-angled buildings with Weyl group
WΓ.

Proposition 6.2. — The graph product G of the groups (Gv)v∈V along
the graph Γ acts by automorphisms on a right-angled building X with Weyl
group WΓ. The action on the set of chambers is free and transitive.

Proof. — See [16, Theorem 5.1]. �

Proof of the Corollary. — If Γ has exactly two vertices, then G is a non-
trivial free product. Therefore the G-action on the associated Bass–Serre
tree is acylindrical, and the desired result follows.
If Γ has more than two vertices, then the building X afforded by Proposi-

tion 6.2 is of irreducible, non-spherical and non-affine type. Proposition 6.2
therefore ensures that the hypotheses of Theorem 1.3 are satisfied. �
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