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MASS ENDOMORPHISM, SURGERY
AND PERTURBATIONS

by Bernd AMMANN, Mattias DAHL,
Andreas HERMANN & Emmanuel HUMBERT

Abstract. — We prove that the mass endomorphism associated to the Dirac
operator on a Riemannian manifold is non-zero for generic Riemannian metrics.
The proof involves a study of the mass endomorphism under surgery, its behavior
near metrics with harmonic spinors, and analytic perturbation arguments.
Résumé. — Nous montrons que l’endomorphisme de masse associé à l’opéra-

teur de Dirac sur une variété riemannienne est non nul pour une métrique générique.
La preuve s’appuie sur l’étude du comportement par chirurgie de l’endomorphisme
de masse, de son comportement au voisinage d’une métrique possédant des spineurs
harmoniques et par des arguments de perturbations analytiques.

1. Introduction

Let (M, g) be a compact Riemannian spin manifold. We always assume
that a spin manifold comes equipped with a choice of orientation and spin
structure. Assume that the metric g is flat in a neighborhood of a point
p ∈ M and has no harmonic spinors. Then the Green’s function Gg at p
for the Dirac operator Dg exists. The constant term in the expansion of
Gg at p is an endomorphism of ΣpM called the mass endomorphism. The
terminology is motivated by the analogy to the ADM mass which is the
constant term in the Green’s function of the Yamabe operator. The non-
nullity of the mass endomorphism has many interesting consequences. In
particular, combining the results presented here with inequalities in [7] and
[14], one obtains a solution of the Yamabe problem.
Finding examples for which the mass endomorphism does not vanish is

then a natural problem. In [12], see also [13], it is proven that for a generic
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metric on a manifold of dimension 3, the mass endomorphism does not
vanish in a given point p. The aim of this paper is to extend this result to
all dimensions at least 3, see Theorem 2.4.

2. Definitions and main result

The goal of this section is to give a precise statement of the main results.
At first, the mass endomorphism is defined. Then, in Subsection 2.2, we
define suitable sets of metrics to work with. Further, in Subsection 2.3, we
explain some well known facts on the α-genus. Finally, in Subsection 2.4
we state Theorem 2.4, which is the main result of this article.

2.1. Mass endomorphism

In this section we will recall the mass endomorphism introduced in [7].
Let (M, g) be a compact Riemannian spin manifold of dimension n > 2 and
let p ∈M . Assume that the metric g is flat in a neighborhood of p and that
the Dirac operator Dg is invertible. The Green’s function Gg(p, ·) = Gg(·)
of Dg at p is defined by

DgGg = δp IdΣpM ,

where δp is the Dirac distribution at p and Gg is viewed as a linear map
which associates to each spinor in ΣpM a smooth spinor field on M \ {p}.
The distributional equation satisfied by Gg should be interpreted as∫

M

〈Gg(x)ψ0, D
gϕ(x)〉 dvg(x) = 〈ψ0, ϕ(p)〉

for any ψ0 ∈ ΣpM and any smooth spinor field ϕ. Let ξ denote the flat
metric on Rn, it then holds that

Gξψ = − 1
ωn−1|x|n

x · ψ.

at p = 0, where ωn−1 is defined as the volume of Sn−1. The following
Proposition is proved in [7].

Proposition 2.1. — Let (M, g) be a compact Riemannian spin mani-
fold of dimension n > 2. Assume that g is flat on a neighborhood U of a
point p ∈M . Then, for ψ0 ∈ ΣpM we have

Gg(x)ψ0 = − 1
ωn−1|x|n

x · ψ0 + vg(x)ψ0,

where the spinor field vg(x)ψ0 satisfies Dg(vg(x)ψ0) = 0 in a neighborhood
of p.
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MASS ENDOMORPHISM, SURGERY AND PERTURBATIONS 469

This allows us to define the mass endomorphism.

Definition 2.2. — The mass endomorphism αg : ΣpM → ΣpM for a
point p ∈ U ⊂M is defined by

αg(ψ0) := vg(p)ψ0.

In particular, we have

αg(ψ0) = lim
x→0

(
Gg(x)ψ0 + 1

ωn−1|x|n
x · ψ0

)
.

The mass endomorphism is thus (up to a constant) defined as the zero
order term in the asymptotic expansion of the Green’s function in normal
coordinates around p.

2.2. Metrics flat around a point

Let M be a connected spin manifold, p ∈ U where U is an open subset
of M . A Riemannian metric on U will be called extendible if it possesses a
smooth extension to a (not necessarily flat) Riemannian metric on M .

Fix a flat extendible metric gflat on U . The set of all smooth extensions
of gflat is denoted by

RU,gflat(M) := {g | g is a metric on M such that g|U = gflat}.

Inside this set of metrics we study those with invertible Dirac operator

Rinv
U,gflat

(M) := {g ∈ RU,gflat(M) |Dg is invertible}.

The main subject of the article is the set

R6=0
p,U,gflat

(M) := {g ∈ Rinv
U,gflat

(M) | the mass endomorphism at p is not 0}.

Note that Rinv
U,gflat

(M) can be empty (see Subsection 2.3). We say that a
subset A ⊂ RU,gflat(M) is generic in RU,gflat(M) if it is open in the C1-
topology and dense in the C∞-topology in RU,gflat(M).

2.3. The α-genus

The α-genus is a ring homomorphism α : Ωspin
∗ (pt) → KO∗(pt) where

Ωspin
∗ (pt) is the spin bordism ring andKO∗(pt) is the ring of coefficients for

KO-theory. In particular, the well-definedness of the map means that the
α-genus α(M) of a spin manifoldM depends only on its spin bordism class,
and the homomorphism property means that it is additive with respect to
the disjoint union and multiplicative with respect to the product of spin
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manifolds. We recall that if the dimension ofM is n then α(M) ∈ KOn(pt)
and as groups we have

KOn(pt) ∼=


Z if n ≡ 0 mod 4;
Z/2Z if n ≡ 1, 2 mod 8;
0 otherwise.

Let (M, g) be a compact Riemannian spin manifold. The Atiyah-Singer
index theorem states that the Clifford index of Dg coincides with α(M),
see [16]. This implies that a manifold M with α(M) 6= 0 cannot have
a metric with invertible Dirac operator. If M is not connected, one can
apply the argument in each connected component. Thus there are many
non-connected examples M , with α(M) = 0, but admitting no metric with
invertible Dirac operator.
However, the converse holds true under the additional assumption that

M is connected, see [4]. The proof of the converse relies on a surgery con-
struction preserving invertibility of the Dirac operator together with Stolz’s
examples of manifolds with positive scalar curvature in every spin bordism
class [20]. Special cases were proved previously in [18] and [8]. For our pur-
poses, it is more convenient to use a slightly stronger version, presented
in [5]:

Theorem 2.3. — LetM be a connected compact spin manifold and let
p ∈ M . Let U be an open subset of M , p ∈ U 6= M , and let gflat be a flat
extendible metric on U . Then Rinv

U,gflat
(M) 6= ∅ if and only if α(M) = 0.

Using real analyticity one obtains that Rinv
U,gflat

(M) is open and dense in
RU,gflat(M).

2.4. Main result

The main result of this paper is the following: If α(M) = 0, so that the
mass endomorphism is defined for metrics in the non-empty setRinv

U,gflat
(M),

then a generic metric has a non-zero mass endomorphism.

Theorem 2.4. — Let M be a compact connected n-dimensional spin
manifold with n > 3 and with vanishing α-genus. Let p ∈ M and assume
that gflat is an extendible metric which is flat around p. Then there exists
a neighborhood U of p for which R6=0

p,U,gflat
(M) is generic in RU,gflat(M).

Theorem 2.4 will follow from Theorems 4.1 and 7.1 below.
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2.5. The relation to the ADM mass

Let (M, g) be a compact spin manifold of dimension n > 3. Assume that
g is flat in a neighborhood U of a point p ∈ M . The conformal Laplacian
is then defined by

Lg := 4(n− 1)
n− 2 ∆g + scalg,

where ∆g is the non-negative Laplacian and where scalg is the scalar cur-
vature of the metric g. As for the Dirac operator Dg, we say that a function
Hg ∈ L1(M) ∩ C∞(M \ {p}) is the Green’s function for Lg if

LgHg = δp

in the sense of distributions. Assume that the metric g is conformal to a
metric with positive scalar curvature. Then it is well known (see for instance
[17]) that the Green’s function Hg of Lg exists, is positive everywhere and
has the following expansion at p:

Hg(x) = 1
4(n− 1)ωn−1 dg(x, p)n−2 +Ag + o(x),

where Ag ∈ R and o(x) is a smooth function with o(p) = 0.
Set M̃ = M\{p} and g̃ = H

4
n−2 g. Schoen [19] observed that the complete

non-compact manifold (M̃, g̃) is asymptotically flat and its ADM mass is
anA

g, where an > 0 depends only on n. We recall that an asymptotically
flat manifold, if interpreted as a time symmetric spacelike hypersurface of
a Lorentzian manifold, is obtained by considering an isolated system at a
fixed time in general relativity. The ADM mass gives the total energy of
this system. With this remark, the number Ag is often called the mass of
the compact manifold (M, g). By analogy, the operator αg(p), which is by
construction the spin analog of Ag, is called the "mass endomorphism" of
(M, g) at p. We will also see in Subsection 2.6 that the mass endomorphism
plays the same role as the number Ag in a Dirac operator version of the
Yamabe problem.

2.6. Conclusions of non-zero mass

In this Subsection we will summarize why we are interested in metrics
with non-zero mass endomorphism.

Let (M, g) be a compact Riemannian spin manifold of dimension n > 2.
For a metric g̃ in the conformal class [g] of g, let λ1(g̃) be the eigenvalue of

TOME 64 (2014), FASCICULE 2
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the Dirac operator Dg with the smallest absolute value (it may be either
positive or negative). We define

λ+
min(M, [g]) = inf

g̃∈[g]
|λ1(g̃)|Vol̃g(M)1/n.

For this conformal invariant λ+
min(M, [g]) it was proven in [1, 3] and [6] that

0 < λ+
min(M, [g]) 6 λ+

min(Sn) = n

2 ω
1/n
n .

The strict inequality

λ+
min(M, [g]) < n

2ω
1/n
n (2.1)

has several applications, see [2, 6, 7]:

• Inequality (2.1) implies that the invariant λ+
min(M, [g]) is attained

by a generalized metric, that is, a metric of the form |f |2/(n−1)g

where f ∈ C2(M) can have some zeros;
• Inequality (2.1) gives a solution of a conformally invariant partial
differential equation which can be read as a nonlinear eigenvalue
equation for the Dirac operator, a type of Yamabe problem for the
Dirac operator;

• using Hijazi’s inequality [14] one obtains a solution of the standard
Yamabe problem which consists of finding a metric with constant
scalar curvature in the conformal class of g in the case of n > 3.

The first two applications can for several reasons be interpreted as a spin
analog of the Yamabe problem, see [1]. The third application says that a
non-zero mass endomorphism can be used in the Yamabe problem instead
of the positivity of the mass Ag defined in Subsection 2.5.
Now, let us reconnect to the subject of this paper. In [7], we prove

that a non-zero mass endomorphism implies Inequality (2.1). In partic-
ular we see with Theorem 2.4 that Inequality (2.1) holds for generic metric
in RU,gflat(M). As a consequence, for generic metrics in RU,gflat(M), we
have all the applications stated above.
This can be compared to the Yamabe problem: Schoen proved that the

positivity of the number Ag, that is the mass of (M, g) defined in Subsec-
tion 2.5, implies a solution of the standard Yamabe problem. The positive
mass theorem implies that Ag > 0. Hence, we get a solution of the Yamabe
problem as soon as Ag 6= 0. In particular, the mass endomorphism plays
the same role in the Yamabe problem for the Dirac operator as the ADM
mass in the classical Yamabe problem.
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2.7. Overview of the paper

We here give a short overview of the paper. In Section 3 we introduce
notation and collect basic facts concerning spinors and Dirac operators.
In Section 4 we explain how to find one metric with non-zero mass endo-
morphism on a given manifold, this uses the results of the following two
sections. In Section 5 we show that under certain assumptions the mass
endomorphism tends to infinity when the Riemannian metric varies and
approaches a metric with harmonic spinors. In Section 6 we show that the
property of non-zero mass endomorphism can be preserved under surgery
on the underlying manifold. Finally, in Section 7 we use analytic pertur-
bation techniques to show that the existence of one metric with non-zero
mass endomorphism implies that a generic metric has this property.

3. Notations and preliminaries

3.1. Notation and some basic facts

In this article we use the following notations for balls and spheres:
Bk(R) := {x ∈ Rk | ‖x‖ < R}, Bk := Bk(1), Sk(R) := {x ∈ Rk | ‖x‖ = R},
Sk := Sk(1).
As background for basic facts on spinors and Dirac operators we refer to

[16] and [11]. For the convenience of the reader we summarize here a few
definitions and facts. On a compact Riemannian spin manifold (M, g) one
defines the Dirac operator Dg acting on sections of the spinor bundle. The
Dirac operator is essentially self-adjoint and extends to a self-adjoint op-
erator H1 → L2 where H1 is the space of L2-spinors whose first derivative
is L2 as well, and L2 is the space of square integrable spinors. A smooth
spinor is called harmonic, if it is in the kernel of the Dirac operator Dg. Any
L2-spinor satisfying Dgϕ = 0 in the weak sense, is already smooth, thus it
is a harmonic spinor. If the kernel of Dg is trivial, then the Dirac operator
is invertible with a bounded inverse L2 → H1. The inverse has an integral
kernel called the Green’s function of Dg. The Green’s function of Dg has
already been used in Subsection 2.1 to define the mass endomorphism.

3.2. Comparing spinors for different metrics

Let g and h be Riemannian metrics on the spin manifold M . The goal of
this section is to recall how spinors on (M, g) are identified with spinors on
(M,h) using the method of Bourguignon and Gauduchon [10], see also [4].

TOME 64 (2014), FASCICULE 2
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Given the metrics g and h there exists a unique bundle endomorphism
agh of TM which satisfies g(aghX,Y ) = h(X,Y ) for all X, Y ∈ TM .
It is g-self-adjoint and positive definite. Define bgh := (agh)−1/2, where
(agh)1/2 is the unique positive pointwise square root of agh. The map bgh
maps g-orthonormal frames to h-orthonormal frames and defines an SO(n)-
equivariant bundle morphism bgh : SO(M, g) → SO(M,h) of the principal
bundles of orthonormal frames. The map bgh lifts to a Spin(n)-equivariant
bundle morphism βgh : Spin(M, g)→ Spin(M,h) of the corresponding spin
structures. From this we obtain a homomorphism of vector bundles

βgh : ΣgM → ΣhM (3.1)

which is a fiberwise isometry with respect to the inner products on ΣgM
and ΣhM . We let the Dirac operator Dh act on sections of ΣgM by defining

Dh
g := (βgh)−1Dhβgh.

In [10, Thm. 20] an expression for Dh
g is computed in terms of a local

g-orthonormal frame {ei}ni=1. The result is

Dh
gϕ =

n∑
i=1

ei · ∇gbg
h

(ei)ϕ+ 1
2

n∑
i=1

ei · ((bgh)−1∇hbg
h

(ei)b
g
h −∇

g
bg
h

(ei)) · ϕ, (3.2)

where for any vector fieldX the operator (bgh)−1∇hXb
g
h−∇

g
X is g-antisymme-

tric and therefore considered as an element of the Clifford algebra. It follows
that

Dh
gϕ = Dgϕ+Ahg (∇gϕ) +Bhg (ϕ), (3.3)

where Ahg and Bhg are pointwise vector bundle maps whose pointwise norms
are bounded by C|h− g|g and C(|h− g|g + |∇g(h− g)|g) respectively.

4. Finding one metric with non-vanishing mass
endomorphism

The goal of this section is to prove the following Theorem.

Theorem 4.1. — Let M be a compact connected spin manifold of di-
mension n > 3 and let p ∈ M . Assume that α(M) = 0. Then there exists
a neighborhood U of p and a flat metric gflat on U such that R6=0

p,U,gflat
(M)

is non-empty.

Proof. — We start by proving the theorem when the manifold is a torus.
Consider the torus Tn equipped with the Lie group spin structure for which

ANNALES DE L’INSTITUT FOURIER
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the standard flat metric g0 has a space of parallel spinors of maximal di-
mension. Choose p ∈ Tn and let U be a small open neighborhood of p.
Further, let gflat be the restriction of g0 to U .
Since n > 3 we have that α(Tn) = 0 so by [4] there is a metric g1 on

Tn with invertible Dirac operator. The construction of g1 is done through
a sequence of surgeries which starts with the disjoint union of Tn and
some other manifolds, and ends with the torus Tn. These surgeries can be
arranged so that they do not change the open set U in the initial Tn, so
the resulting metric satisfies g1 = g0 on U , or g1 ∈ Rinv

U,gflat
(Tn).

Define the family of metrics gt := tg1 + (1 − t)g0. Since the eigenvalues
of Dgt depend analytically on t it follows that Dgt is invertible except for
isolated values of t, it follows that gt ∈ Rinv

U,gflat
(Tn) except for isolated

values of t. Choose a sequence tk → 0 for which gtk ∈ Rinv
U,gflat

(Tn), we
can then apply Theorem 5.1 below to the sequence gtk converging to g0
and conclude that gtk ∈ R

6=0
p,U,gflat

(Tn) for k large enough. In particular
R 6=0
p,U,gflat

(Tn) is not empty, and we choose a metric h0 from this set.
Now letM be a manifold of dimension n as in the theorem. Since α(M) =

0 we know that there is a metric g on M with invertible Dirac operator.
We consider the disjoint union

M0 = Tn q (−Tn)qM.

Here −Tn denotes Tn with the opposite orientation, so that Tn q (−Tn)
is a spin boundary and M0 is spin bordant to M . Since M is connected
it follows that M can be obtained from M0 by a sequence of surgeries of
codimension 2 and higher, see [4, Proposition 4.3]. Again, these surgeries
can be arranged to miss the open set U in the first Tn. We equip M0 with
the Riemannian metric h0qh0qg ∈ R6=0

p,U,gflat
(Tnq (−Tn)qM) and when

we use Theorem 6.1 below for the sequence of surgeries we end up with a
metric g′ ∈ R6=0

p,U,gflat
(M).

Finally, the point p ∈M we end up with after the sequence of surgeries
might of course not be equal to the point p in the assumptions of the
theorem. If we set this right by a diffeomorphism we have proved that
R 6=0
p,U,gflat

(M) is non-empty. �

Note that this proof does not work in dimension 2. Indeed, we strongly
use that the α-genus of the torus Tn vanishes. This fact is only true in
dimension n > 3. If the flat torus T 2 is equipped with the Lie group spin
structure with two parallel spinors, then α(T 2) = 1. By the way, it is proven
in [7] that the mass endomorphism always vanishes in dimension 2.

TOME 64 (2014), FASCICULE 2
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5. Mass endomorphism of metrics close to a metric with
harmonic spinors

Finding examples of metrics with non-zero mass endomorphism seems to
be a difficult issue. The only explicit examples we have until now are the
projective spaces RPn, n ≡ 3 mod 4, equipped with its standard metric,
see [7]. The goal of this section is to show that metrics g ∈ Rinv

U,gflat
(M)

sufficiently close to a metric h ∈ Rp,U,gflat \ Rinv
U,gflat

(M) will under some
additional assumptions provide such examples. This is the object of The-
orem 5.1 below, which in our mind has an interest independently of the
application to Theorem 2.4.

Theorem 5.1. — Let U be a neighborhood of p ∈ M . Assume that
h ∈ RU,gflat(M) has kerDh 6= {0}. Further assume that the evaluation
map of harmonic spinors at p,

kerDh 3 ψ 7→ ψ(p) ∈ ΣhpM,

is injective. Set m := dim kerDh Let gk ∈ Rinv
U,gflat

(M), k = 1, 2, . . . , be a
family of metrics on M converging to h in the C1-topology.
Then the mass endomorphism αgk at p has at leastm eigenvalues tending

to ∞ as k →∞. In particular, gk ∈ R6=0
p,U,gflat

(M) for large k.

The proof of this theorem is inspired by the work of Beig and O’ Mur-
chadha [9]. In the hypothesis of Theorem 5.1, the injectivity of the evalua-
tion map kerDh 3 ψ 7→ ψ(p) ∈ ΣhpM, is quite restrictive: it is fulfilled for
instance when the space of harmonic spinors is 1-dimensional if p is not a
zero of the harmonic spinor. In Theorem 4.1 we applied the result to the
flat torus Tn.

Proof. — For the proof we choose a non-zero ψ ∈ kerDh. Set ψp :=
ψ(p) ∈ ΣhpM , by assumption we have ψp 6= 0. We will show that αgk(ψp)
tends to infinity.
Let Gk be the Green’s function of Dgk associated to ψp, that is Gk is a

distributional solution of
DgkGk = δpψp.

In coordinates around p we write (compare Proposition 2.1)

Gk = −η x

ωn−1rn
· ψp + vgk(ψp). (5.1)

Here η is a cutoff function which is equal to 1 near p and has support in
U . We shorten notation by writing vk for the spinor field vgk(ψp).

ANNALES DE L’INSTITUT FOURIER
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Step 1. We show that there are pk ∈ M for which |vk(pk)| → ∞. Let
the smooth function Ω : M \ {p} → (0, 1] satisfy

Ω(x) =
{
r(x) if x ∈ Bp(ε),
1 if x ∈M \Bp(2ε) .

Note that Ω does not depend on k. We have

0 < |ψp|2 =
∫
M

〈Gk, Dgkψ〉 dvgk

=
∫
M

1
Ωn−1 〈Ω

n−1Gk, D
gkψ〉 dvgk

6
∫
M

1
Ωn−1 dv

gk‖Ωn−1Gk‖∞‖Dgkψ‖∞.

As the integral is bounded and the last factor tends to zero as k →∞, we
conclude that

lim
k→∞

‖Ωn−1Gk‖∞ =∞.

Let pk be points for which

|Ωn−1(pk)Gk(pk)| = ‖Ωn−1Gk‖∞.

Then

Ωn−1(pk)Gk(pk) = Ωn−1(pk)
(
−η x

ωn−1rn
· ψ0

)
(pk) + Ωn−1(pk)vk(pk),

here the first term on the right hand side is bounded so the second term
must tend to infinity. Since |Ωn−1(pk)vk(pk)| 6 |vk(pk)| we conclude that
|vk(pk)| → ∞ as k →∞, and Step 1 is proven.

To the spinor vk which is a section of ΣgkM the map βgkh described
in (3.1) associates a section wk := βgkh vk in the spinor bundle ΣhM . We
decompose this section as

wk = akϕk + w⊥k

where ϕk ∈ kerDh is normalized to have ‖ϕk‖Lp(ΣhM) = 1 , ak ∈ R, and
w⊥k is orthogonal to kerDh. We choose p large enough so that Hp

1 (ΣhM)
embeds into C0(ΣhM).
Step 2. We show that |ak| → ∞. Assume that the sequence |ak| is

bounded. From (5.1) it follows that Dgkvk = gradη · x
ωn−1rn

· ψp. This

TOME 64 (2014), FASCICULE 2
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together with the properties of βgkh gives

‖w⊥k ‖Hp1 6 C‖D
hw⊥k ‖Lp

= C‖Dhwk‖Lp

= C‖(βgkh )−1Dhβgkh vk‖Lp

= C‖Dh
gk
vk‖Lp

6 C‖Dgkvk‖Lp + C‖Ahgk(∇gkvk) +Bhgk(vk)‖Lp

6 C‖gradη · x

ωn−1rn
· ψp‖Lp + Cεk‖wk‖Hp1 ,

(5.2)

here the first term is bounded and εk → 0 by our assumption that gk → h

in the C1-topology. By assumption we also have

‖wk‖Hp1 6 ‖akϕk‖Hp1 + ‖w⊥k ‖Hp1
6 C + ‖w⊥k ‖Hp1 .

Together this gives

‖w⊥k ‖Hp1 6 C + Cεk + Cεk‖w⊥k ‖Hp1 ,

so ‖w⊥k ‖Hp1 is bounded. We conclude that ‖w⊥k ‖C0 is bounded, and the
assumption that |ak| is bounded then tells us that ‖wk‖C0 = ‖vk‖C0 is
bounded. This contradicts Step 1, so we have proved Step 2.
Step 3. Conclusion. Set ωk := a−1

k wk and ω⊥k := a−1
k w⊥k so that

ωk = ϕk + ω⊥k .

Then (5.2) tells us that

‖ω⊥k ‖Hp1 6 Ca
−1
k ‖gradη · x

ωn−1rn
· ψ0‖Lp + Cεk‖ωk‖Hp1 ,

where the first term now tends to zero. Since the ϕk are in kerDh and they
are normalized in Lp(ΣhM) it follows that they are bounded in Hp

1 (ΣhM).
From this we get

‖ωk‖Hp1 6 ‖ϕk‖Hp1 + ‖ω⊥k ‖Hp1
6 C + ‖ω⊥k ‖Hp1 .

It follows that

‖ω⊥k ‖Hp1 6 o(1) + Cεk‖ω⊥k ‖Hp1
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so ‖ω⊥k ‖Hp1 → 0 and ‖ω⊥k ‖C0 → 0. Finally we have

|αgk(ψp)| = |vk(p)|
= |wk(p)|
= ak|ωk(p)|

> ak(|ϕk(p)| − |ω⊥k (p)|)
= ak(|ϕk(p)|+ o(1)).

By our assumption that the evaluation map of harmonic spinors at p is
injective we know that |ϕk(p)| cannot tend to zero, so from Step 2 we
conclude that |αgk(ψp)| → ∞. This finishes the proof of Step 3 and the
theorem. �

6. Surgery and non-zero mass endomorphism
Let M̂ be obtained from M by surgery of codimension at least 2. We

assume that p ∈ M is not hit by the surgery, so we have p ∈ M̂ . As be-
fore R6=0

p,U,gflat
(M) denotes the metrics with invertible Dirac operator on

M which coincide with the flat metric gflat on U and whose mass en-
domorphism at p is not zero. The goal of this section is to prove that
R 6=0
p,U,gflat

(M) 6= ∅ implies R 6=0
p,U,gflat

(M̂) 6= ∅.
We start with a manifold M of dimension n and a point p ∈ M . We

will perform a surgery of dimension k ∈ {0, · · ·n − 2} on M . For this
construction, we follow the beginning of Section 3 in [4] and use the same
notation. So, we assume that we have an embedding i : Sk → M with a
trivialization of the normal bundle of S := i(Sk) in M , which thus can be
identified with Sk × Rn−k. The normal exponential map then defines an
embedding of a neighborhood of the zero section of the normal bundle of
S, in other words for small R > 0 the normal exponential map defines a
diffeomorphism f from Sk ×Bn−k(R) to an open neighborhood of S, and
f is an extension of Sk × {0} → Sk

i→ M . Furthermore, for sufficiently
small R > 0, the distance from f(x, y) to S = f(Sk × {0}) is |y|.

As before we assume that U is an open neighborhood of p, on which
a flat extendible metric gflat exists. We assume further that p 6∈ S, and
by possibly restricting U to a smaller open set, we can also assume that
U ∩ S = ∅. Thus for small R > 0 one obtains

U ∩ f(Sk ×Bn−k(R)) = ∅.

As in Section 1 of [4] we define

M̂ =
(
M \ f(Sk ×Bn−k(R))

)
∪
(
Bk+1 × Sn−k−1

)
/∼,
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where ∼ identifies the boundary of Bk+1×Sn−k−1 with f(Sk×Sn−k−1(R))
via the map (x, y) 7→ f(x,Ry). Our constructions are carried out such that
U is both a subset of M and M̂ .
The main result of this section is the following Theorem.

Theorem 6.1. — If R6=0
p,U,gflat

(M) 6= ∅, then R6=0
p,U,gflat

(M̂) 6= ∅.

Proof. — We assume the requirements for p, U , f and k stated at the
beginning of this section, and let g ∈ R6=0

p,U,gflat
(M). The goal is to construct

a metric ĝ ∈ R6=0
p,U,gflat

(M̂) following the constructions in [4].
Theorem 1.2 in [4] allows us to construct a metric ĝ′ on M̂ with invertible

Dirac operator. We recall the scheme of the proof of this theorem. As in
the beginning of Section 3 of [4] we define open neighborhoods US(r) by

US(r) := f(Sk ×Bn−k(r))

for small r. Then we construct a family of metrics (gρ)ρ satisfying gρ = g

on M \ US(Rmax) for some small number Rmax. This family of metrics is
constructed in two steps. First, we use Proposition 3.2 in [4] to assume that
g has a product form in a neighborhood of S. Then, we do the construction
of Section 3.2 in [4] to get gρ. Once these metrics (gρ) are constructed, we
proceed by contradiction. We take a sequence (ρk)k∈N tending to 0 and we
assume that ker (Dgρk ) 6= 0 for all k, that is

∀k ∈ N, there exists a harmonic spinor ψk 6= 0 on (M̂, gρk). (6.1)

By showing that limk→∞ ψk converges in a weak sense to a non-zero limit
spinor in kerDg, we will obtain a contradiction. So the metric ĝ′ := gρ
satisfies the requirements of Theorem 1.2 in [4] as soon as ρ is small enough.
This proof actually allows us to require an additional property for the

metrics gδ, and make weaker assumptions on the spinors ψk.
• The number Rmax in the proof can be chosen arbitrarily small. So

set δ = Rmax and choose ρ := ρ(δ) small enough so that gδ = gρ
has an invertible Dirac operator. We obtain in this way a family of
metrics (gδ)δ∈(0,δ0) for some δ0 > 0 such that all Dgδ are invertible
and such that gδ = g on M \ US(δ).

• Let now (δk)k∈N be a sequence of positive numbers going to 0. We
make the following assumption:

∀k ∈ N, there exists a spinor ψk on (M̂, gδk) and a sequence
λk converging to 0 such that Dgδkψk = λkψk.

Working with these spinors instead of the ones given by assumption
(6.1), the same contradiction is obtained. This proves that there is a
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uniform spectral gap for (gδ)δ∈(0,δ0/2), or in other words that there
exists a constant C0 > 0 independent of δ ∈ (0, δ0/2) such that

SpecDgδ ∩ [−C0, C0] = ∅. (6.2)

Now, we prove that the metric ĝ := gδ for δ small enough satisfies the
requirements of Theorem 6.1. It is already clear that Dgδ is invertible for
δ small enough, and that gδ is flat on U for δ small enough. It remains
to show that αgδp 6= 0 for δ small enough. For this purpose we show that
αgδp → αgp as δ → 0. Since we assume αgp 6= 0 this gives the desired result.

So let us prove this fact. First, choose ψ0 ∈ Σgp(M) = Σgδp (M). To sim-
plify the notation, set γ := Ggψ0 and γδ := Ggδψ0. The proof will be
complete if we prove that

lim
δ→0

γ(p)− γδ(p) = 0. (6.3)

Note that the spinor γ − γδ, defined on M \ ({p} ∪ US(δ)), is smooth and
extends smoothly to p. Indeed, it is equal on U to vgp(x)ψ0−vgδp (x)ψ0 (with
the notations of Proposition 2.1 and Definition 2.2). Let ηδ ∈ C∞(M̂),
0 6 ηδ 6 1 be a cut-off function such that ηδ = 1 onM \US(3δ) and ηδ = 0
on US(2δ). Since on supp(ηδ) ⊂ M̂ \ US(2δ) = M \ US(2δ) we have gδ = g

we may assume that
|dηδ|g = |dηδ|gδ 6

2
δ
. (6.4)

From Equation (6.2), we have

C2
0 6

∫
M̂
|Dgδϕδ|2gδdv

gδ∫
M̂
|ϕδ|2gδdvgδ

for all smooth non-zero spinors ϕδ on (M̂, gδ). We evaluate this quotient
for ϕδ := ηδγ − γδ. Note that ϕδ is well defined on (M̂, gδ) and smooth
since γ is well defined on supp(ηδ). Since γ and γδ are harmonic, we have
Dϕδ = dηδ · γ, and since gδ = g on supp(ηδ), we get from Equation (6.4)
that∫

M̂

|Dgδϕδ|2gδdv
gδ =

∫
M̂

|dη|2g|γ|2gdvg

6
4
δ2 sup

x∈US(3δ0)

(
|γ(x)|2

)
Volg (US(3δ) \ US(2δ)) .

We have that Volg (US(3δ) \ US(2δ)) 6 Cδn−k where we used the conven-
tion (used throughout this proof) that C is a positive constant independent
of δ. Since k 6 n− 2, this leads to∫

M̂

|Dgδϕδ|2gδdv
gδ 6 C.
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Since ηδ = 1 on M \ US(3δ) and since gδ = g on this set, it follows that∫
M\US(3δ)

|ϕδ|2gδdv
gδ 6 C. (6.5)

Now, we proceed as in step 2 of the proof of Theorem 1.2 in [4]. Let Z > 0
be a large integer. By (6.5) the set {ϕδ}δ>0 is bounded in L2(M \US(1/Z)).
By Lemma 2.2 in [4] it follows that {ϕδ}δ>0 is bounded in C1,α(M \
US(2/Z)) for all α. We apply Ascoli’s Theorem and conclude there is a
subsequence (ϕδk) of {ϕδ}δ>0 which converges in C1(M \ US(2/Z)) to a
spinor Φ0. Similarly we construct further and further subsequences of (ϕδk)
converging to Φi in C1(M \US(2/(Z+ i))). Taking a diagonal subsequence
of these subsequences, we obtain a subsequence (ϕδk) which converges in
C1

loc(M \ S) to a spinor Φ. As ϕδ is Dg-harmonic on (M \ US(3δ)) the
C1

loc(M \ S)-convergence implies that DgΦ = 0 on M \ S. With (6.5) we
conclude that Φ ∈ L2(M). Thus Φ is L2 and smooth onM\S. The equation
DgΦ = 0 holds onM \S. We now apply Lemmas 2.1 and 2.4 of [4] and con-
clude that Φ is smooth on (M, g) and DΦ = 0 on M . Since kerD0 = 0, we
get that Φ ≡ 0 and in particular Φ(p) = 0. This implies Equation (6.3). �

7. From existence to genericity

The goal of this section is to prove the following Theorem.

Theorem 7.1. — Let M be a compact spin manifold of dimension n,
n > 3, let p ∈ M and let U be a neighborhood of p. If R 6=0

p,U,gflat
(M) is

non-empty then it is generic in RU,gflat(M).

7.1. Continuity of the mass endomorphism

The goal of this subsection is to prove that the mass endomorphism
depends continuously on g in the C1-topology.

Proposition 7.2. — Equip Rinv
U,gflat

(M) with the C1-norm. Then the
map

Rinv
U,gflat

(M) 3 g 7→ αg ∈ End(ΣpM)
is continuous.

It follows thatR6=0
p,U,gflat

(M) is open inRinv
U,gflat

(M) and thus inRU,gflat(M).
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Proof. — Let (gk)k∈N be a family of metrics in Rinv
U,gflat

(M) such that
gk → g in the C1-topology. For each k the operator

Dgk
g = (βggk)−1Dgkβggk

is invertible. We define
Pk := Dgk

g −Dg.

Further, let Ggk and Gg be the Green’s functions of Dgk and Dg. We define

Qk := (βggk)−1Ggkβggk −G
g.

Let ψ ∈ ΣpM . Using the equation (5.1) for Ggk and for Gg and using the
fact that gk|U = g|U = gflat we find that

Qkψ = (βggk)−1vgkβggkψ − v
gψ.

Therefore Qkψ has a smooth continuation to all of M . The equation
DgkGgk = DgGg = δp IdΣpM then tells us that

Qk = −(Dgk
g )−1PkG

g.

(Ggψ)(x) becomes singular as x → p. However we may take a smooth
function η which is equal to 1 near p and has support in U and since
gk|U = g|U = gflat we obtain

Pk(ηGgψ) = Dg(ηGgψ)−Dg(ηGgψ) = 0.

It follows that PkGgψ = Pk(1− η)Ggψ, where (1− η)Ggψ is smooth on all
of M . From (3.3) it follows that the sequence (Dgk

g )k∈N converges to Dg

with respect to the norm of bounded linear operators from C1(ΣgM) to
C0(ΣgM). Therefore ‖PkGgψ‖C0 → 0 as k →∞. Then it follows from [15,
Thm. IV-1.16] that ((Dgk

g )−1)k∈N converges to (Dg)−1 with respect to the
norm of bounded linear operators from C0(ΣgM) to C1(ΣgM). Therefore
‖Qkψ‖C1 → 0 as k → ∞. Evaluating Qk at p yields αgk − αg. Thus the
statement of the Proposition follows. �

7.2. Analyticity of the mass endomorphism

In this section M is a closed spin manifold.

Definition 7.3. — Let ε > 0. A family (gt)t∈(−ε,ε) of Riemannian met-
rics on M is called real analytic if there exist sections hk of the bundle of
symmetric bilinear forms on M , k ∈ N, such that for all t ∈ (−ε, ε) and for
all r ∈ N we have ‖gt −

∑N
k=0 t

khk‖Cr → 0 as N →∞.

TOME 64 (2014), FASCICULE 2



484 Bernd AMMANN, Mattias DAHL, Andreas HERMANN & Emmanuel HUMBERT

Let r, s ∈ N. A holomorphic family ϕ in Cr(ΣgM) is a map ϕ: Ω →
Cr(ΣgM), where Ω is an open subset in C and ϕ is differentiable in the
norm ‖.‖Cr(ΣgM). A holomorphic family P in the space of bounded oper-
ators B(Cr(ΣgM), Cs(ΣgM)) is a map P : Ω → B(Cr(ΣgM), Cs(ΣgM)),
where Ω is an open subset in C and P is differentiable in the operator
norm ‖.‖B(Cr(ΣgM),Cs(ΣgM)). The terminology we use here is the same
as in Kato’s book [15]. In particular we may use that a family P : Ω →
B(Cr(ΣgM), Cs(ΣgM)) is holomorphic if and only if it is weakly holo-
morphic, i.e. if and only if for every fixed ϕ ∈ Cr(ΣgM) the family Pϕ:
Ω→ Cs(ΣgM) is holomorphic. The restriction of a holomorphic family of
spinors or operators to a real interval will be called a real-analytic family.
We first show that for every real-analytic family (gt)t∈(−ε,ε) of Riemann-

ian metrics onM the family (Dgt
g )t∈(−ε,ε) of Dirac operators is real analytic.

The authors of the article [10] state a similar result, however they consider
the Dirac operator as a closed operator on the space of L2-spinors.

Lemma 7.4. — LetM be a closed spin manifold and let (gt)t∈(−ε,ε) be a
real analytic family of Riemannian metrics in Rinv

U,gflat
(M). Then the family

(Dgt
g )t∈(−ε,ε) is a real analytic family in B(C1(ΣgM), C0(ΣgM)).

Proof. — It is sufficient to show that for every fixed ϕ ∈ C1(ΣgM) the
family of spinors (Dgt

g ϕ)t∈(−ε,ε) is real analytic. As in section 3.2 we define
endomorphisms aggt and a

g
hk
, k ∈ N, of TM such that for all X, Y in TM

we have

g(aggtX,Y ) = gt(X,Y ), g(aghkX,Y ) = hk(X,Y ).

Note that aghk also exists if hk is not positive definite. Let |.| be the norm on
ΣgM induced by the inner product and let {ei}ni=1 be a local g-orthonormal
frame. Since (gt)t∈(−ε,ε) is real analytic it follows that

sup
X∈TM, |X|=1

|aggtX −
N∑
k=0

tkaghkX|

= sup
X∈TM, |X|=1

|
n∑
i=1

g(aggtX, ei)ei−
n∑
i=1

N∑
k=0

tkg(aghkX, ei)ei| → 0, N →∞

for all t ∈ (−ε, ε). From this calculation it follows that for every vector
field X of length 1 on M the vector field bggtX is also given by a convergent
power series and the convergence is uniform in X. Furthermore for any
vector fields X, Y the vector field ∇gtXY is also given by a convergent
power series as can be seen in local coordinates. The assertion now follows
from the formula (3.2) for Dgt

g . �
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Proposition 7.5. — If (gt)t∈(−ε,ε) is a real-analytic family of metrics
in Rinv

U,gflat
(M), then αgt is also real-analytic.

Proof. — It is sufficient to show that for every ψ ∈ ΣpM the family of
spinors

Qtψ := (βggt)
−1Ggtβggtψ −G

gψ

is a real analytic family in C0(ΣgM). As above we define Pt := Dgt
g −Dg

and we obtain
Qt = −(Dgt

g )−1PtG
g.

By the previous lemma the family of operators (Dgt
g )t∈(−ε,ε) is real analytic.

It follows from [15, VII-§1.1] that the family of operators ((Dgt
g )−1)t∈(−ε,ε)

is also real analytic. As in the proof of Proposition 7.2 one concludes that
for every t the spinor PtGgψ is smooth on all of M . Thus the family
(PtGgψ)t∈(−ε,ε) is a real analytic family in C1(ΣgM) and thus the fam-
ily (Qtψ)t∈(−ε,ε) is a real analytic family in C0(ΣgM). �

Consider a real analytic family (gt)t∈(a,b) of Riemannian metrics on M .
By unique continuation we immediately see: If there is a t0 ∈ (a, b) with
αgt0 6= 0, then the set

S := {t ∈ (a, b) |αgt = 0}

is a discrete subset of (a, b).
Two metrics in the same connected component of Rinv

U,gflat
(M) can be

joined by a piecewise real-analytic path of metrics. It follows that if a
connected component of Rinv

U,gflat
contains at least one metric with non-zero

mass endomorphism, then the metrics with non-zero mass endomorphism
are dense in this component. In order to obtain Theorem 7.1, we still have
to discuss families (gt)t∈(a,b) where Dgt is not invertible for some t. As the
mass endomorphism is not defined for these t, we complexify the parameter
t and pass around the metric with non invertible Dgt in the imaginary
direction. This is discussed in the following subsection.

7.3. Analytic continuation in the imaginary direction

Again let (gt)t∈(a,b) be a real-analytic family of metrics. We assume gt ∈
RU,gflat(M) for any t ∈ (a, b), but we do not assume that all Dgt are
invertible. Because of the real-analyticity ofDgt

g , the family can be extended
to a complex-analytic family of operators defined for t in an open subset
U ⊃ (a, b) of C. In this complexification the operators Dgt

g will no longer
be self-adjoint, instead we have (Dgt

g )∗ = D
g
t
g .
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As the set of invertible operators is open, we can assume without loss
of generality that Dgt

g is invertible on U \ (a, b). In other words we assume
that

T := {t ∈ U |Dgt
g is not invertible}

is contained in (a, b).
The arguments from above also yield that t 7→ αgt is a holomorphic

function on U \ T . As U \ T is connected, unique continuation implies the
following Proposition.

Proposition 7.6. — If the mass endomorphism αgt0 is non-zero for
any t0 ∈ (a, b) \ T , then

{t ∈ (a, b) \ T |αgt 6= 0}

is dense in (a, b).
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