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NORMALITY AND NON-NORMALITY OF GROUP
COMPACTIFICATIONS IN SIMPLE PROJECTIVE

SPACES

by Paolo BRAVI, Jacopo GANDINI,
Andrea MAFFEI & Alessandro RUZZI

Abstract. — Given an irreducible representation V of a complex simply con-
nected semisimple algebraic group G we consider the closure X of the image of G
in P(End(V )). We determine for which V the variety X is normal and for which V
is smooth.
Résumé. — Étant donné une représentation irreductible V d’un groupe com-

plexe semi-simple et simplement connexe G, nous considérons l’adhérence X de
l’image de G dans P(End(V )). Nous déterminons les représentations V pour les-
quelles X est normale, respectivement lisse.

Introduction

Consider a semisimple simply connected algebraic group G over an alge-
braically closed field k of characteristic zero. If λ is a dominant weight (with
respect to a fixed maximal torus T and a fixed Borel subgroupB ⊃ T ) and if
V (λ) is the simple G-module of highest weight λ, then End

(
V (λ)

)
is a sim-

ple G×G-module. Let Iλ ∈ End
(
V (λ)

)
be the identity map and consider

the variety Xλ ⊂ P
(

End(V (λ))
)
given by the closure of the G×G-orbit of

[Iλ]. In [7], S. Kannan studied for which λ this variety is projectively nor-
mal, and this happens precisely when λ is minuscule. In [12], D. Timashev
studied the more general situation of a sum of irreducible representations,
giving necessary and sufficient conditions for the normality and smooth-
ness of these compactifications; however the conditions for normality are
not completely explicit. In this paper we give an explicit characterization

Keywords: semisimple algebraic groups, group compactifications.
Math. classification: 14L30, 14M17.
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of the normality of Xλ, which allows to simplify the conditions for the
smoothness as well.
To explain our results we need some notation. Let ∆ be the set of simple

roots (w.r.t. T ⊂ B) and identify ∆ with the vertices of the Dynkin dia-
gram. Define the support of λ as the set Supp(λ) = {α ∈ ∆ : 〈λ, α∨〉 6= 0}.

Theorem A (see Theorem 2.10). — The variety Xλ is normal if and
only if λ satisfies the following property:

(?) For every non-simply laced connected component ∆′ of ∆, if
Supp(λ) ∩ ∆′ contains a long root, then it contains also the short
root which is adjacent to a long simple root.

In particular, if the Dynkin diagram of G is simply laced then Xλ is
normal, for all λ. In the paper we will prove the theorem in a more general
form, for simple (i.e. with a unique closed orbit) linear projective compacti-
fications of an adjoint group (see section 1.4). We will make use of the won-
derful compactification of Gad, the adjoint group of G, and of the results on
projective normality of these compactifications proved by S. Kannan in [7].
These results hold in the more general case of a symmetric variety; however
our method does not apply to this more general situation (see section 4.2).

Theorem B (see Theorem 3.6). — The variety Xλ is smooth if and
only if λ satisfies property (?) of Theorem A together with the following
properties:

i) For every connected component ∆′ of ∆, Supp(λ)∩∆′ is connected
and, in case it contains a unique element, then this element is an
extreme of ∆′;

ii) Supp(λ) contains every simple root which is adjacent to three other
simple roots and at least two of the latter;

iii) Every connected component of ∆ r Supp(λ) is of type A.

Theorem B can be generalized to any simple and normal adjoint sym-
metric variety. Following a criterion of Q-factoriality for spherical varieties
given by M. Brion in [2], properties i) and ii) characterize the Q-factoriality
of the normalization of Xλ (see Proposition 3.4), while property iii) arises
from a criterion of smoothness given by D. Timashev in [12] in the case of
a linear projective compactification of a reductive group.
As a corollary of Theorem B, we get that Xλ is smooth if and only if its

normalization is smooth.
The paper is organized as follows. In the first section we introduce the

wonderful compactification of Gad and the normalization of the variety
Xλ. In the second section we prove Theorem A, and in the third section

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2437

Theorem B. In the last section we discuss some possible generalizations of
our results.

1. Preliminaries

1.1. Notation

Recall that G is semisimple and simply connected. Fix a Borel subgroup
B ⊂ G, a maximal torus T ⊂ B and let U denote the unipotent radical of
B. Lie algebras of groups denoted by upper-case latin letters (G,U,L, . . .)
will be denoted by the corresponding lower-case german letter (g, u, l, . . .).
Let Φ denote the set of roots of G relatively to T and ∆ ⊂ Φ the basis
associated to the choice of B. For all α ∈ ∆ let eα, α∨, fα be an sl(2)-triple
of T -weights α, 0,−α. Let Λ denote the weight lattice of T and Λ+ the
subset of dominant weights. For all α ∈ ∆, denote by ωα the corresponding
fundamental weight.
If λ ∈ Λ, recall the definition of its support:

Supp(λ) = {α ∈ ∆ : 〈λ, α∨〉 6= 0}.

If I ⊂ ∆, define its border ∂I, its interior I◦ and its closure I as follows:

∂I = {α ∈ ∆ r I : ∃β ∈ I such that 〈β, α∨〉 6= 0};

I◦ = I r ∂(∆ r I);

I = I ∪ ∂I.
For λ ∈ Λ, denote by Lλ the line bundle on G/B whose T -weight in the

point fixed by B is −λ. For λ dominant, V (λ) = Γ(G/B,Lλ)∗ is an irre-
ducible G-module of highest weight λ; when we deal with different groups
we will use the notation VG(λ).
Denote by Π(λ) the set of weights occurring in V (λ) and set Π+(λ) =

Π(λ) ∩Λ+. Let λ 7→ λ∗ be the linear involution of Λ defined by (V (λ))∗ '
V (λ∗), for any dominant weight λ.

The weight lattice Λ is endowed with the dominance order 6 defined as
follows: µ 6 λ if and only if λ − µ ∈ N∆. If β =

∑
α∈∆ nαα ∈ Z∆, define

its support over ∆ (not to be confused with the previous one) as follows:

Supp∆(β) = {α ∈ ∆ : nα 6= 0}.

We introduce also some notations about the multiplication of sections.
Notice that, for all λ, µ ∈ Λ, Lλ ⊗ Lµ = Lλ+µ. Therefore, if λ, µ are

TOME 61 (2011), FASCICULE 6



2438 Paolo BRAVI, Jacopo GANDINI, Andrea MAFFEI & Alessandro RUZZI

dominant weights and n ∈ N, the multiplication of sections defines maps
as follows:

mλ,µ : V (λ)× V (µ)→ V (λ+ µ) and mn
λ : V (λ)→ V (nλ).

We will also write uv for mλ,µ(u, v) and un for mn
λ(u). Since G/B is irre-

ducible, mλ,µ and mn
λ induce the following maps at the level of projective

spaces:

ψλ,µ : P(V (λ))× P(V (µ))→ P(V (λ+ µ)) and ψnλ : P(V (λ))→ P(V (nλ)).

The following lemma is certainly well known; however we do not know
any reference.

Lemma 1.1. — Let λ, µ be dominant weights.
i) If Supp(λ) ∩ Supp(µ) = ∅, then the map ψλ,µ : P(V (λ)) ×

P(V (µ))→ P(V (λ+ µ)) is a closed embedding.
ii) For any n > 0, the map ψnλ : P(V (λ)) → P(V (nλ)) is a closed

embedding.

Proof. — i). Fix highest weight vectors vλ ∈ V (λ), vµ ∈ V (µ) and
vλ+µ = vλvµ ∈ V (λ+ µ).
If V is irreducible, then P(V ) has a unique closed orbit, namely the orbit

of the highest weight vector. Consequently, since P(V (λ)) × P(V (µ)) has
a unique closed orbit, in order to prove the claim it suffices to prove that
ψλ,µ is smooth in x = ([vλ], [vµ]) and that the inverse image of [vλ+µ] is x.
The second claim is clear for weight reasons.
In order to prove that ψλ,µ is smooth in x, consider T -stable complements

U ⊂ V (λ), V ⊂ V (µ) and W ⊂ V (λ+ µ) of k vλ, k vµ and k vλ+µ. So in a
neighbourhood of x the map ψλ,µ can be described as

ψ : U × V −→W where ψ(u, v) = uvµ + vλv + uv.

The differential of ψλ,µ in x is then given by the differential of ψ in (0, 0),
thus it is described as follows:

dψx(u, v) = uvµ + vλv.

Suppose that dψx is not injective. Since it is T -equivariant, consider a
maximal weight η ∈ Π(λ+ µ) r {λ + µ} such that there exists a couple
of non-zero T -eigenvectors (u, v) ∈ ker dψx with weights respectively η− µ
and η−λ. Suppose that η−µ ∈ Π(λ)r{λ} is not maximal and take α ∈ ∆
such that η − µ+ α ∈ Π(λ) r {λ} and eαu 6= 0: then

(eαu)vµ + vλ(eαv) = eα(uvµ + vλv) = 0

ANNALES DE L’INSTITUT FOURIER
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and η + α ∈ Π(λ+ µ) r {λ+ µ}, against the maximality of η. Thus η − µ
is maximal in Π(λ) r {λ} and similarly η − λ is maximal in Π(µ) r {µ}.
Therefore, on one hand it must be

η − µ = λ− α

with α ∈ Supp(λ), while on the other hand it must be

η − λ = µ− β

with β ∈ Supp(µ). Since Supp(λ) ∩ Supp(µ) = ∅, this is impossible and
shows that, if (u, v) ∈ ker dψx, then it must be u = 0 or v = 0. Suppose
now that (u, 0) ∈ ker dψx: then uvµ = 0 and by the irreducibility of G/B
also u = 0. A similar argument applies if v = 0.
ii). Suppose that v, w ∈ V (λ) are such that vn = wn: then v = tw for

some t ∈ k. Thus ψnλ is injective. Let us show now that ψnλ is smooth;
it is enough to show it in x = [vλ] where vλ ∈ V (λ) is a highest weight
vector. Let V ⊂ V (λ) be the T -stable complement of kvλ, identified with
the tangent space TxP(V (λ)). If v ∈ V , the differential d(ψnλ)x is described
as follows

d(ψnλ)x(v) = nvn−1
λ v.

Thus d(ψnλ)x is injective and ψnλ is smooth. �

1.2. The variety Xλ

If λ is a dominant weight, denote by E(λ) the G×G-module End(V (λ))
and set Xλ the closure of the G×G-orbit of [Iλ] ∈ P(E(λ)). More generally
if λ1, . . . , λm are dominant weights we define

Xλ1,...,λm = G×G([Iλ1 ], . . . , [Iλm ]) ⊂ P(E(λ1))× · · · × P(E(λm)).

Since E(λ) is an irreducible G × G-module of highest weight (λ, λ∗), as a
consequence of Lemma 1.1 we get that if λ and µ have non-intersecting
supports and if n ∈ N then

Xλ+µ ' Xλ,µ and Xnλ ' Xλ.

As a consequence we get the following proposition:

Proposition 1.2. — Let λ, µ be dominant weights. Then Xλ ' Xµ as
G×G-varieties if and only if λ and µ have the same support. Moreover, if
Supp(λ) = {α1, . . . , αm} then

Xλ ' Xωα1 ,...,ωαm
.

TOME 61 (2011), FASCICULE 6
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Proof. — By the discussion above we have to prove only that the con-
dition is necessary. This follows by noticing that if Xλ and Xµ are G×G-
isomorphic then also their closed G × G-orbits are isomorphic, which is
equivalent to the fact that λ and µ have the same support. �

1.3. The wonderful compactification of Gad and the
normalization of Xλ

When λ is a regular weight (i.e. Supp(λ) = ∆) the variety Xλ is called
the wonderful compactification of Gad and it has been studied by C. De
Concini and C. Procesi in [6]. We will denote this variety byM : it is smooth
and the complement of its open orbit is the union of smooth prime divisors
with normal crossings whose intersection is the closed orbit. The closed
orbit of M is isomorphic to G/B×G/B and the restriction of line bundles
determines an embedding of Pic(M) into Pic(G/B×G/B), that we identify
with Λ×Λ as before; the image of this map is the set of weights of the form
(λ, λ∗). Therefore Pic(M) is identified with Λ and we denote byMλ a line
bundle onM whose restriction to G/B×G/B is isomorphic to Lλ�Lλ∗ . If
D ⊂M is a G×G-stable prime divisor then the line bundle defined by D
is of the formMαD , where αD is a simple root. The map D 7→ αD defines
a bijection between the set of G×G-stable prime divisors and ∆, and we
denote by Mα the prime divisor which corresponds to a simple root α. We
denote by sα a section ofMα whose associated divisor is Mα; notice that
such a section is G×G-invariant. More generally if ν =

∑
α∈∆ nαα ∈ N∆,

set sν =
∏
α∈∆ snαα ∈ Γ(M,Mν). Then, given any λ ∈ Λ, the multiplication

by sν injects Γ(M,Mλ−ν) in Γ(M,Mλ).
If λ is a dominant weight, the map Gad −→ P(E(λ)) extends to a map

qλ : M −→ P(E(λ)) (see [6]) whose image is Xλ and such that Mλ =
q∗λ(OP(E(λ))(1)). If we pull back the homogeneous coordinates of P(E(λ))
toM , we get then a submodule of Γ(M,Mλ) which is isomorphic to E(λ)∗;
by abuse of notation we will denote this submodule by E(λ)∗.
If λ ∈ Λ, in [6, Theorem 8.3] the following decomposition of Γ(M,Mλ)

is given:

Γ(M,Mλ) =
⊕

µ∈Λ+ :µ6λ

sλ−µE(µ)∗.

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2441

Consider the graded algebra A(λ) =
⊕∞

n=0An(λ), where An(λ) =
Γ(M,Mnλ), and set X̃λ = ProjA(λ). We have then a commutative di-
agram as follows:

M
pλ // //

qλ     A
AA

AA
AA

A X̃λ

rλ
����

Xλ

In [7], it has been shown that A(λ) is generated in degree 1 and in [5] that
r = rλ is the normalization ofXλ. Notice that the projective coordinate ring
of Xλ ⊂ P(E(λ)) is given by the graded subalgebra B(λ) =

⊕∞
n=0Bn(λ)

of A(λ) generated by E(λ)∗ ⊂ Γ(M,Mλ).

1.4. The variety XΣ

We consider now a generalization of the variety Xλ. Let Σ be a finite set
of dominant weights and denote E(Σ) =

⊕
µ∈ΣE(µ); let xΣ = [(Iµ)µ∈Σ] ∈

P(E(Σ)) and define XΣ as the closure of the G×G-orbit of xΣ in P(E(Σ)).
If Σ = {λ}, then we get the variety Xλ, while if Σ = Π+(λ) we get its
normalization X̃λ. Notice that the diagonal action of G fixes the point xΣ
so we have a G × G equivariant map G −→ XΣ given by g 7−→ (g, 1)xΣ.
This map induces a map from Gad to XΣ if and only if the action of the
center of G × G on E(λ) is the same for all λ ∈ Σ or equivalently if Σ is
contained in a coset of Λ modulo Z∆. In this case we say that XΣ is a
semi-compactification of Gad. If Gad is a simple group and and Σ 6= {0}
then XΣ is a compactification of Gad, while if Gad is not simple we can
only say that is a compactification of a group which is a quotient of Gad.

We say that Σ is simple if there exists λ ∈ Σ such that Σ ⊂ Π+(λ) or
equivalently if Σ contains a unique maximal element with respect to the
dominance order 6. Notice also that if λ ∈ Σ is such that for all µ ∈ Σ
different from λ the vector µ−λ is not in Q>0[∆] then is easy to construct a
cocharacter χ : k∗ −→ G×G such that limt→0 χ(t)xΣ is the highest weight
line in P(E(λ)). In particular XΣ is a simple G×G semi-compactification
of Gad if and only if Σ is simple.

By the description of the normalization of Xλ if Σ is simple and λ ∈ Σ
is the maximal element, then we get

X̃λ

r // XΣ // Xλ

TOME 61 (2011), FASCICULE 6
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In particular, it follows that r = rΣ : X̃λ −→ XΣ is the normalization of
XΣ.
If Σ is simple, denote B(Σ) =

⊕∞
n=0Bn(Σ) the projective coordinate

ring of XΣ ⊂ P(E(Σ)): it is the subalgebra of A(λ) generated by E(Σ)∗ ⊂
Γ(M,Mλ).

Remark 1.3. — The discussion above and the fact that in P(E(λ)) there
is only one point fixed by the diagonal action of G (the line of scalar matri-
ces) proves that any G×G linear projective compactification of Gad is of the
form XΣ. A projective G×G-variety X is said to be linear if there exists an
equivariant embedding X ⊂ P(V ) where V is a finite dimensional rational
G×G-module. In particular as a consequence of Sumihiro’s Theorem (see
for example [9, Corollary 2.6]) all normal projective compactifications are
linear. In this paper we study only linear compactifications.

2. Normality

In this section we determine for which simple Σ the variety XΣ is normal,
proving in particular Theorem A. In the following, by λ we will always
denote the maximal element of Σ.

Let ϕλ ∈ E(λ)∗ be a highest weight vector and set X◦Σ ⊂ XΣ the open
affine subset defined by the non-vanishing of ϕλ. In particular, we set X̃λ =
XΠ+(λ) and notice that X̃◦λ = r−1(X◦Σ). Notice that X◦Σ is B × B-stable
and, since it intersects the closed orbit, it intersects every orbit: therefore
XΣ is normal if and only if X◦Σ is normal if and only if the restriction
r
∣∣
X̃◦
λ

: X̃◦λ → X◦Σ is an isomorphism. Denote by B̄(Σ) the coordinate ring

of X◦Σ and by Ā(λ) the coordinate ring of X̃◦λ; then we have

Ā(λ) = { ϕ
ϕnλ

: ϕ ∈ An(λ)} ⊃ { ϕ
ϕnλ

: ϕ ∈ Bn(Σ)} = B̄(Σ)

and XΣ is normal if and only if Ā(λ) = B̄(Σ). The rings Ā(λ) and B̄(Σ)
are not G×G-modules, however since X◦Σ is an open subset of XΣ we still
have an action of the Lie algebra g⊕ g on them.
By [7], Ā(λ) is generated by the elements of the form ϕ/ϕλ with ϕ ∈

A1(λ). In particular we have the following lemma.

Lemma 2.1. — The variety XΣ is normal if and only if for all µ ∈ Λ+

such that µ 6 λ there exists n > 0 such that

sλ−µE(µ+ (n− 1)λ)∗ ⊂ Bn(Σ).

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2443

Proof. — Let ϕµ ∈ sλ−µE(µ)∗ be a highest weight vector and suppose
that XΣ is normal. Then, by the descriptions of Ā(λ) and B̄(Σ), for every
dominant weight µ 6 λ there exist n > 0 and ϕ ∈ Bn(Σ) such that
ϕ/ϕnλ = ϕµ/ϕλ or equivalently ϕ = ϕµϕ

n−1
λ ∈ Bn(Σ). Since ϕ is a highest

weight vector of the module sλ−µE(µ+ (n− 1)λ)∗ the claim follows.
Conversely assume that for every dominant weight µ 6 λ there exists n

such that
sλ−µE(µ+ (n− 1)λ)∗ ⊂ Bn(Σ);

in particular ϕ = ϕµϕ
n−1
λ ∈ Bn(Σ). Let’s prove that ϕ/ϕλ ∈ B̄(Σ) for

every ϕ ∈ sλ−µE(µ)∗; this implies the thesis since Ā(λ) is generated in
degree one. If ϕ = ϕµ this is clear. Using the action of the Lie algebra g⊕g

on B̄(Σ), let’s show that if ϕ/ϕλ ∈ B̄(Σ) then fα(ϕ)/ϕλ ∈ B̄(Σ): indeed
we have

fα(ϕ)
ϕλ

= fα( ϕ
ϕλ

) + ϕ

ϕλ
· fα(ϕλ)

ϕλ

and the claim follows since fα(ϕλ) ∈ E(λ)∗ ⊂ B1(Σ). �

We can describe the set Bn(Σ) more explicitly. Indeed, as in [5] or in [7], it
is possible to identify sections of a line bundle onM with functions onG and
use the description of the multiplication of matrix coefficients. Recall that
as a G×G-module we have k[G] =

⊕
λ∈Λ+ E(λ)∗ '

⊕
λ∈Λ+ V (λ)∗⊗V (λ).

More explicitly if V is a representation of G, define cV : V ∗ ⊗ V −→ k[G]
as usual by cV (ψ⊗ v)(g) = 〈ψ, gv〉. If we multiply functions in k[G] of this
type then we get

cV (ψ ⊗ v) · cW (χ⊗ w) = cV⊗W
(
(ψ ⊗ χ)⊗ (v ⊗ w)

)
:

in particular we get that the image of the multiplication E(λ)∗⊗E(µ)∗ −→
k[G] is the sum of all E(ν)∗ with V (ν) ⊂ V (λ)⊗ V (µ).
As a consequence we obtain the following Lemma:

Lemma 2.2 ([7, Lemma 3.1] or [5]). — Let ν, ν′ be dominant weights,
then the image of E(ν)∗ ⊗ E(ν′)∗ in Γ(M,Mν+ν′) via the multiplication
map is ⊕

V (µ)⊂V (ν)⊗V (ν′)

sν+ν′−µE(µ)∗.

Proof. — Indeed let π : G → M be the map induced by the inclusion
Gad ⊂M . Then any line bundle on G can be trivialized so that the image
of π∗ : E(λ)∗ ⊂ Γ(M,Mν) −→ k[G] is the image of cV (λ) and the claim
follows from previous remarks. �

Together with Lemma 2.1, this gives the following

TOME 61 (2011), FASCICULE 6
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Proposition 2.3. — The variety XΣ is normal if and only if, for every
µ ∈ Λ+ such that µ 6 λ, there exist n > 0 and λ1, . . . , λn ∈ Σ such that

V (µ+ (n− 1)λ) ⊂ V (λ1)⊗ · · · ⊗ V (λn).

2.1. Remarks on tensor products

By Proposition 2.3, in order to establish the normality (or the non-
normality) of XΣ, we need some results on tensor product decomposition.

Lemma 2.4. — Let λ, µ, ν be dominant weights and let ∆′ ⊂ ∆ be such
that Supp∆(λ + µ − ν) ⊂ ∆′; let L ⊂ G be the standard Levi subgroup
associated to ∆′. If π ∈ Λ+, denote by VL(π) the simple L-module of
highest weight π. Then

V (ν) ⊂ V (λ)⊗ V (µ) ⇐⇒ VL(ν) ⊂ VL(λ)⊗ VL(µ).

Proof. — If a is any Lie algebra, denote U(a) the corresponding universal
enveloping algebra.
Suppose that VL(ν) ⊂ VL(λ)⊗VL(µ); fix maximal vectors vλ ∈ VL(λ) and

vµ ∈ VL(µ) for the Borel subgroup B∩L ⊂ L and fix p ∈ U(l∩u−)⊗U(l∩u−)
such that p (vλ⊗vµ) ∈ VL(λ)⊗VL(µ) is a maximal vector of weight ν. Since
VL(λ) ⊗ VL(µ) ⊂ V (λ) ⊗ V (µ), we only need to prove that p (vλ ⊗ vµ) is
a maximal vector for B too. If α ∈ ∆′ then we have eαp (vλ ⊗ vµ) = 0 by
hypothesis. On the other hand, if α ∈ ∆ r ∆′, notice that eα commutes
with p, since by its definition p is supported only on the fα’s with α ∈ ∆′.
Since vλ ⊗ vµ is a maximal vector for B, then we get

eαp (vλ ⊗ vµ) = p eα(vλ ⊗ vµ) = 0;

thus p (vλ ⊗ vµ) generates a simple G-module of highest weight ν.
Assume conversely that V (ν) ⊂ V (λ)⊗ V (µ) and fix p ∈ U(u−)⊗ U(u−)

such that p (vλ⊗ vµ) ∈ V (λ)⊗V (µ) is a maximal vector of weight ν. Since
Supp∆(λ + µ − ν) ⊂ ∆′, we may assume that the only fα’s appearing in
p are those with α ∈ ∆′; therefore p (vλ ⊗ vµ) ∈ VL(λ) ⊗ VL(µ) and it
generates a simple L-module of highest weight ν. �

Lemma 2.5. — Fix λ, µ, ν ∈ Λ+ such that V (ν) ⊂ V (λ)⊗ V (µ). Then,
for any ν′ ∈ Λ+, it also holds

V (ν + ν′) ⊂ V (λ+ ν′)⊗ V (µ).
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Proof. — Fix a maximal vector vν′ ∈ V (ν′) and consider the U -equiva-
riant map

φ : V (λ)⊗ V (µ) −→ V (λ+ ν′)⊗ V (µ)
w1 ⊗ w2 7−→ mλ,ν′(w1, vν′)⊗ w2

The claim follows since, if vν ∈ V (λ) ⊗ V (µ) is a U -invariant vector of
weight ν, then φ(vν) ∈ V (λ+ ν′)⊗ V (µ) is a U -invariant vector of weight
ν + ν′. �

We now describe some more explicit results. When we deal with explicit
irreducible root systems, unless otherwise stated, we always use the num-
bering of simple roots and fundamental weights of Bourbaki [1].

In order to describe the simple subsets Σ ⊂ Λ+ which give rise to a
non-normal variety XΣ, we will make use of the following lemma.

Lemma 2.6. —

(1) Let G be of type Br. Then, for any n, V ((n− 1)ω1) 6⊂ V (ω1)⊗n.
(2) Let G be of type G2. Then, for any n, V (ω1 +(n−1)ω2) 6⊂V (ω2)⊗n.

Proof. — We consider only the first case, the second is similar. Fix a
highest weight vector v1 ∈ V (ω1). If α is any simple root and if 1 6 s 6 r,
notice that fα acts non-trivially on fαs−1 · · · fα1v1 if and only if α = αs.
The T -eigenspace of weight 0 in V (ω1) is spanned by v0 = fαr · · · fα1v1,
and similarly the T -eigenspace of weight (n− 1)ω1 in V (ω1)⊗n is spanned
by v⊗i−1

1 ⊗ v0 ⊗ v⊗n−i1 , where 1 6 i 6 n. Since the vectors

eαr (v⊗i−1
1 ⊗ v0 ⊗ v⊗n−i1 ) = v⊗i−1

1 ⊗ (eαrv0)⊗ v⊗n−i1

are linearly independent, there exists no maximal vector of weight (n−1)ω1
in V (ω1)⊗n. �

Dual results will be needed to describe the subsets Σ which give rise to a
normal variety XΣ, but before we need to introduce some further notation.
If Φ is an irreducible root system and ∆ is a basis for Φ we will denote

by η the highest root if Φ is simply laced or the highest short root if Φ
is not simply laced. For the convenience of the reader we list the highest
short root of every irreducible root system in Table 2.1.
Recall the condition (?) defined in the introduction: a dominant weight

λ satisfies (?) if, for every non-simply laced connected component ∆′ ⊂ ∆,
if Supp(λ) ∩ ∆′ contains a long root then it contains also the short root
which is adjacent to a long simple root.
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Table 2.1

type of Φ highest short root
Ar α1 + · · ·+ αr = ω1 + ωr
Br α1 + · · ·+ αr = ω1
Cr α1 + 2(α2 + · · ·+ αr−1) + αr = ω2
Dr α1 + 2(α2 + · · ·+ αr−2) + αr−1 + αr = ω2
E6 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 = ω2
E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = ω1
E8 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 = ω8
F4 α1 + 2α2 + 3α3 + 2α4 = ω4
G2 2α1 + α2 = ω1

Definition 2.7. — If ∆′ ⊂ ∆ is a non-simply laced connected compo-
nent, order the simple roots in ∆′ = {α1, . . . , αr} starting from the extreme
of the Dynkin diagram of ∆′ which contains a long root and denote αq the
first short root in ∆′. If λ is a dominant weight such that αq 6∈ Supp(λ)
and such that Supp(λ) ∩∆′ contains a long root, denote αp the last long
root which occurs in Supp(λ) ∩ ∆′; for instance, if ∆′ is not of type G2,
then the numbering is as follows:

q qq qq qpppppppppp pppppppppp q q
α1 αp αq αr

The little brother of λ with respect to ∆′ is the dominant weight

λlb
∆′ = λ−

q∑
i=p

αi =
{
λ− ω1 + ω2 if G is of type G2
λ+ ωp−1 − ωp + ωq+1 otherwise

where ωi is the fundamental weight associated to αi if 1 6 i 6 r, while
ω0 = ωr+1 = 0. The set of the little brothers of λ will be denoted by
LB(λ); notice that LB(λ) is empty if and only if λ satisfies condition (?)
of Theorem A. For convenience, define LB(λ) = LB(λ) ∪ {λ}, while if ∆ is
connected and non-simply laced set λlb = λlb

∆.

Lemma 2.8. — Assume G to be simple and let λ ∈ Λ+ r {0}. Denote η
the highest root of Φ if the latter is simply laced or the highest short root
otherwise.

(1) If λ satisfies the condition (?) then

V (λ) ⊂ V (η)⊗ V (λ).
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(2) If λ does not satisfy the condition (?) and if λlb is the little brother
of λ then

V (λ) ⊂ V (η)⊗ V (λlb).

Proof. — If ∆ is simply laced, then V (η) ' g is the adjoint representa-
tion: in this case the claim follows straightforward by considering the map
g ⊗ V (λ) → V (λ) induced by the g-module structure on V (λ), which is
non-zero since λ is non-zero.

Suppose now that ∆ is not simply laced. If λ satisfies condition (?), then
by Lemma 2.5 it is enough to study the case λ = ωα where α is a short
simple root:
Type Br: V (ωr) ⊂ V (ω1)⊗ V (ωr).
Type Cr: V (ωi) ⊂ V (ω2)⊗ V (ωi), with i < r.
Type F4: V (ω3) ⊂ V (ω4)⊗ V (ω3) and V (ω4) ⊂ V (ω4)⊗ V (ω4).
Type G2: V (ω1) ⊂ V (ω1)⊗ V (ω1).
If λ does not satisfy condition (?), by Lemma 2.5 we can assume that

λ = ωα with α a long root:
Type Br: V (ωi) ⊂ V (ω1)⊗ V (ωi−1), if 1 < i < r, and V (ω1) ⊂ V (ω1)⊗

V (0).
Type Cr: V (ωr) ⊂ V (ω2)⊗ V (ωr−2).
Type F4: V (ω1) ⊂ V (ω4)⊗ V (ω4) and V (ω2) ⊂ V (ω4)⊗ V (ω1 + ω4).
Type G2: V (ω2) ⊂ V (ω1)⊗ V (ω1).
The above mentioned inclusion relations for tensor products are essen-

tially known: let us treat the case of type Cr with λ = ωi and i < r, the
other cases are easier or can be checked directly.
Let v0 be a highest weight vector of V (ω2) and w0 be a highest weight

vector of V (ωi). Let f be the following product (in the universal enveloping
algebra U(u−))

f = fαi · · · fα1 · fαi+1 · · · fαr−1 · fαr · · · fα2 ,

and consider all the factorizations f = p · q such that p, q ∈ U(u−). If
β1, . . . , βj ∈ ∆, set

r(fβ1 · · · fβj ) = (−1)j2δfβj · · · fβ1 ,

where δ equals 0 (resp. 1) if αi occurs an even (resp. odd) number of times
in {β1, . . . , βj}. Then it is easy to check that the vector∑

p·q=f
p.v0 ⊗ rq.w0

is a U -invariant vector in V (ω2)⊗ V (ωi) of T -weight ωi. �
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If the Dynkin diagram of G is not simply laced we will need some further
properties of tensor products.
If ∆ is connected but not simply laced, we will denote by αS the short

simple root that is adjacent to a long simple root αL; moreover, we will
denote the associated fundamental weights by ωS and ωL. Finally, define ζ
as the sum of all simple roots and notice that ωS + ζ is dominant.

Lemma 2.9. — Let λ be a non-zero dominant weight.
(1) If G is of type F4 or Cr (r > 3) and if Supp(λ) contains a long root

then
V (λ+ ωS) ⊂ V (ζ + ωS)⊗ V (λ).

(2) If G is of type G2 and if λ does not satisfy (?) then

V (λ+ ω1) ⊂ V (ω2)⊗ V (λlb).

(3) If G is of type G2 and if αS ∈ Supp(λ) then

V (λ+ ω1) ⊂ V (ω2)⊗ V (λ).

Proof. — By Lemma 2.5 it is enough to check the statements for λ = ωα
with α a long root in the first two cases and α = αS in the last case.
Type Cr: by Lemma 2.5 it is enough to check that V (ωr−1) ⊂ V (ω1) ⊗

V (ωr).
Type F4: we have λ = ω1 or λ = ω2 and ωS + ζ = ω1 + ω4.
Type G2: we have λ = ω2 and λlb = ω1 in point (2) and λ = ω1 in

point (3). �

2.2. Normality and non-normality of XΣ

We are now able to state the main theorem.

Theorem 2.10. — Let Σ be a simple set of dominant weights and let λ
be its maximal element. The variety XΣ is normal if and only if Σ ⊃ LB(λ).

Theorem A stated in the introduction follows immediately by consider-
ing the case Σ = {λ}. The remaining part of this section will be devoted to
the proof of Theorem 2.10. The general strategy will be based on Proposi-
tion 2.3 and will proceed by induction on the dominance order of weights.
The ingredients of this induction will be the results proved in section 2.1
together with the description of the dominance order given by J. Stem-
bridge in [11]: the dominance order between dominant weights is generated
by pairs which differ by the highest short root for a subsystem of the root
system.
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If K is a subset of ∆, denote ΦK ⊂ Φ the associated root subsystem and,
in case K is connected, denote by ηK the corresponding highest short root.
Moreover, if β =

∑
α∈∆ nαα, set β|K =

∑
α∈K nαα. The result of [11] that

we will use is the following.

Lemma 2.11 ([11, Lemma 2.5]). — Let λ, µ be two dominant weights
with λ > µ; set I = Supp∆(λ− µ). Let ΦK be an irreducible subsystem of
ΦI (where K ⊂ I).

(a) If 〈(λ− µ)
∣∣
K
, α∨〉 > 0 for all α ∈ K ∩ Supp(µ), then µ+ ηK 6 λ.

(b) If in addition 〈µ+ηK , α∨〉 > 0 for all α ∈ IrK, then µ+ηK ∈ Λ+.

The next two lemmas are the main steps of our induction.

Lemma 2.12. — Suppose that Φ is irreducible; let λ, µ ∈ Λ+ such that
λ > µ and Supp∆(λ − µ) = ∆. Assume that either Φ is simply laced,
or there exists a short root α ∈ Supp(λ) such that 〈λ − µ, α∨〉 > 0, or
αS /∈ Supp(µ). Then there exists a connected subset K of ∆ such that

i) µ+ ηK 6 λ;
ii) µ+ ηK ∈ Λ+;
iii) K ∩ Supp(λ) 6= ∅.

Proof. — Set K1 = {α ∈ ∆ : 〈λ−µ, α∨〉 > 0}. Since λ > µ we have that
K1 ∩ Supp(λ) is non-empty. Notice also that Supp(µ) ⊃ ∆rK1. Define K
as follows:

a) If Φ is simply laced, let K be a connected component of K1 which
intersects Supp(λ).

b) If α ∈ Supp(λ) is a short root such that 〈λ − µ, α∨〉 > 0 let K be
the connected component of K1 containing α.

c) If Φ is not simply laced and there does not exist a short root α
as in b), let K be a connected component of K1 which intersects
Supp(λ).

Properties i) and iii) are then easily verified by Lemma 2.11(a) and by
construction.
To prove ii) notice that, if Φ is not simply laced, by the construction of

K it follows that if αL ∈ K then αS ∈ K as well: indeed, K is a connected
component of K1 and if there is no short root α as in b) then αS 6∈ Supp(µ)
implies αS ∈ K1. By the description of highest short roots in Table 2.1 we
deduce that, if α ∈ KrK◦, then the respective coefficient in ηK is 1: hence
〈ηK , α∨〉 = −1 for all α ∈ ∂K and, since Supp(µ) ⊃ ∆ rK1 ⊃ ∂K, we get
µ+ ηK ∈ Λ+. �
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In order to proceed with the induction, in the next lemma we will need
to consider the condition (?) also for a Levi subgroup of G. If K ⊂ ∆ let
LK be the associated standard Levi subgroup; we say that λ ∈ Λ+ satisfies
condition (?K) if, for every non-simply laced connected component K ′ of
K such that Supp(λ)∩K ′ contains a long root, Supp(λ)∩K ′ contains also
the short root adjacent to a long root. Notice that if λ satisfies (?) then it
also satisfies (?K) for all K ⊂ ∆.

Similarly we can also define the little brother of a dominant weight w.r.t.
the Levi subgroup LK : if K ′ is a connected component of K such that λ
does not satisfy (?K′), define the little brother λlb

K′ w.r.t.K ′ as in Definition
2.7 and denote by LBK(λ) the set of little brothers of λ constructed in this
way. Notice that if K ′ is a connected component of K such that λ does
not satisfy (?K′) and if ∆′ is the connected component of ∆ containing
K ′, then λ does not satisfy (?∆′) as well and λlb

K′ = λlb
∆′ . In particular

LBK(λ) ⊂ LB(λ).

Lemma 2.13. — Assume G to be simple and let λ, µ be two dominant
weights such that λ > µ and Supp∆(λ−µ) = ∆. Then there exist µ′ ∈ Λ+

and λ′ ∈ LB(λ) such that µ < µ′ 6 λ and

V (µ+ λ) ⊂ V (µ′)⊗ V (λ′).

Proof. — Suppose first that either Φ is simply laced or αS /∈ Supp(µ) or
there exists a short root α in Supp(λ) such that 〈λ − µ, α∨〉 > 0. Take K
as in Lemma 2.12 and set µ′ = µ+ ηK : then by Lemma 2.8 together with
Lemma 2.5 we get

VLK (µ+ λ) ⊂ VLK (µ′)⊗ VLK (λ′)

with λ′ ∈ LBK(λ). The claim follows by Lemma 2.4 together with the
inclusion LBK(λ) ⊂ LB(λ).
Suppose now that Φ is not simply laced, that αS ∈ Supp(µ) and that

there is no short root α ∈ Supp(λ) such that 〈λ− µ, α∨〉 > 0. Since λ > µ

there exists α ∈ Supp(λ) such that 〈λ − µ, α∨〉 > 0: therefore, Supp(λ)
contains at least a long root. Set µ′ = µ + ζ; notice that µ′ 6 λ and that
µ′ is dominant. The claim follows then by Lemma 2.8 and by Lemma 2.5
if Φ is of type B, while if Φ is of type C, F4 or G2 it follows by Lemma 2.9
and by Lemma 2.5. �

Proof of Theorem 2.10. — We prove first that the condition is necessary.
Assume that there exists a little brother µ = λlb

∆′ of λ which is not in Σ. We
prove that for every positive n and for every choice of weights λ1, . . . , λn ∈
Σ the module V (µ+ (n− 1)λ) is not contained in V (λ1)⊗ · · · ⊗ V (λn).
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We proceed by contradiction. Assume there exist weights λ1, . . . , λn as
above and notice that any of them satisfies µ 6 λi 6 λ: indeed, λ − µ =
nλ−(µ+(n−1)λ) > nλ−

∑
λi > λ−λi for every i. Therefore Supp∆(

∑
λi−

(µ+(n−1)λ)) ⊂ Supp∆(λ−µ). By Definition 2.7 together with Lemma 2.4,
it is enough to analyse the case G of type Br and Supp(λ) = {α1} or G of
type G2 and Supp(λ) = {α2}. We analyse these two cases separately.

Type Br: we have λ = aω1, µ = (a−1)ω1 and µ+ (n−1)λ = (na−1)ω1.
If a = 1 we notice that there are no dominant weights between λ and µ.
So the only possibility is λi = λ = ω1 for all i and this is in contradiction
with Lemma 2.6. If a > 1, notice that there is only one dominant weight
between λ and µ, namely ν = λ − α1 = (a − 2)ω1 + ω2; hence for all i it
must be λi = λ or λi = ν. Since

∑
λi > µ+ (n− 1)λ, at most one λi can

be equal to ν; therefore V (µ+ (n− 1)λ) ⊂ V (λ)⊗n or V (µ+ (n− 1)λ) ⊂
V (ν)⊗ V (λ)⊗(n−1). In the first case we obtain

V ((na− 1)ω1) = V (µ+ (n− 1)λ) ⊂ V (λ)⊗n ⊂ V (ω1)⊗na,

against Lemma 2.6. In the second case we notice that V (ω2) = Λ2V (ω1) ⊂
V (ω1)⊗2, hence V (ν) ⊂ V ((a− 2)ω1) ⊗ V (ω2) ⊂ V (ω1)⊗a and we can
conclude as in the first case.
Type G2: we have λ = aω2, µ = ω1 + (a− 1)ω2 and we proceed as in the

previous case.

We now prove that the condition is sufficient, showing that for every
dominant weight µ 6 λ there exist n > 0 and weights λ1, . . . , λn ∈ LB(λ)
such that V (µ+ (n− 1)λ) ⊂ V (λ1)⊗ · · · ⊗ V (λn). To do this, we proceed
by decreasing induction with respect to the dominance order.
If µ = λ then the claim is clear, so we assume µ < λ. Let λ−µ = β1+· · ·+

βm where Supp∆(βi) are the connected components of Supp∆(λ− µ). Set
K = Supp∆(β1) and β′ = β2 + · · · + βm. Notice that µ + β1 is dominant:
indeed if α 6∈ K then 〈µ + β1, α

∨〉 = 〈µ, α∨〉 > 0, while if α ∈ K then
〈µ + β1, α

∨〉 = 〈λ − β′, α∨〉 > 〈λ, α∨〉 > 0. Notice moreover that, if ν ∈
LBK(µ+β1), then ν+β′ ∈ LB(λ). By Lemma 2.13 applied to the semisimple
part of the Levi L = LK associated to K, there exists a weight µ′ which
is dominant with respect to K such that µ < µ′ 6 µ+ β1 and there exists
ν ∈ LBK(µ+ β1) which satisfy

VL(µ+ β1 + µ) ⊂ VL(µ′)⊗ VL(ν).

By tensoring with VL(β′), which is a one dimensional representation, we get
VL(µ+ λ) ⊂ VL(µ′) ⊗ VL(λ′) with λ′ = ν + β′ ∈ LB(λ). Since 〈µ′, α∨〉 >
〈µ + β1, α

∨〉 for every α 6∈ K, µ′ is a dominant weight; by Lemma 2.4
we get then V (µ+ λ) ⊂ V (µ′) ⊗ V (λ′) and we may apply the induction

TOME 61 (2011), FASCICULE 6



2452 Paolo BRAVI, Jacopo GANDINI, Andrea MAFFEI & Alessandro RUZZI

on µ′ 6 λ. Therefore there exist weights λ1, . . . , λn ∈ LB(λ) such that
V (µ′ + (n− 1)λ) ⊂ V (λ1)⊗· · ·⊗V (λn). Finally by Lemma 2.5 we conclude

V (µ+ nλ) ⊂ V (µ′ + (n− 1)λ)⊗ V (λ′) ⊂ V (λ1)⊗ · · · ⊗ V (λn)⊗ V (λ′).

�

3. Smoothness

In this section we will study the variety X̃λ; in particular we will give
necessary and sufficient conditions on Supp(λ) for its Q-factoriality and for
its smoothness.
Thanks to Lemma 1.1, we may assume that G is a simple group. Indeed

suppose ∆ = ∪ni=1∆i is the decomposition in connected components and
write λ = λ1 + . . . + λn with Supp(λi) ⊂ ∆i: correspondingly we get a
decomposition Xλ = Xλ1 × . . . ×Xλn , and every Xλi is an embedding of
the corresponding simple factor of Gad if λi 6= 0 or a point if λi = 0. From
now on, we will therefore assume that Φ is an irreducible root system.
By the Bruhat decomposition, the group Gad has an open B×B−-orbit;

therefore it is a spherical G×G-homogeneous space. Following the general
theory of spherical embeddings (see [8]), its simple normal embeddings are
classified by combinatorial data called the colored cones. Here we will skip
an overview of such theory, and we will simply recall the definition of the
colored cone in the particular case of a simple normal embedding of Gad.
Recall that a normal variety X is said Q-factorial if, given any Weil

divisor D of X, there exists an integer n 6= 0 such that nD is a Cartier
divisor. In subsection 3.1, we will explicitly describe the colored cone of
X̃λ; then in subsection 3.2 we will study Q-factoriality of X̃λ following
[2]. Finally, in subsection 3.3, we will use Theorem 2.10 together with the
description of the colored cone of X̃λ to make more explicit the criterion of
smoothness given in [12] in the case of a linear projective compactification
of a reductive group.

3.1. The colored cone of X̃λ

Let X be a simple normal compactification of Gad, call Y its unique
closed orbit. Set D(Gad) the set of B × B−-stable prime divisors of Gad
and D(X) ⊂ D(Gad) the set of divisors whose closure in X contains Y . Let
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N (X) be the set of G × G-stable prime divisors of X, so that the set of
B ×B−-stable prime divisors of X is identified with D(Gad) ∪N (X).
Let Tad ⊂ Gad be the image of T ; then the character group X (Tad) coin-

cides with the root lattice Z∆, while the cocharacter group X∨(Tad) coin-
cides with the coweight lattice Λ∨. If V is a simple G×G-module denote by
V (B×B−) the subset of B×B−-eigenvectors. Notice that k(Gad)(B×B−)/k∗'
Z∆ and define a natural map ρ : D(Gad)∪N (X)→ Λ∨ by associating to a
B×B−-stable prime divisor of X the cocharacter associated to the rational
discrete valuation induced by D. If D ∈ N (X), then ρ(D) is the opposite
of a fundamental coweight, while if D ∈ D(Gad), then ρ(D) is a simple
coroot; moreover, ρ is injective and ρ(D(Gad)) = ∆∨ (see [12, § 7]).
Let C(X) be the convex cone in Λ∨Q generated by ρ

(
D(X)∪N (X)

)
; by the

general theory of spherical embeddings we have that C(X) is generated by
ρ(D(X)) together with the negative Weyl chamber of Φ. The colored cone
of X is then the couple

(
C(X),D(X)

)
: up to equivariant isomorphisms, it

uniquely determines X as a G×G-compactification of Gad.
In the case of the compactification X̃λ, then ρ(D(X)) = ∆∨ r Supp(λ)∨

(see [12, Theorem 7]).

3.2. Q-factoriality

In order to give a necessary and sufficient condition for the Q-factoriality
of X̃λ we need to determine the set of extremal rays of the associated cone
C(X̃λ).

Lemma 3.1. — If α ∈ ∆r Supp(λ), then α∨ generates an extremal ray
of C(X̃λ).

Proof. — If a simple coroot α∨ ∈ C(X̃λ) does not generate an extremal
ray, then we can write

α∨ =
∑

β∈∆r{α}

aββ
∨ −

∑
β∈∆

bβω
∨
β ,

with aβ , bβ > 0 for every β: this yields a contradiction since then it would
be 〈α, α∨〉 6 0. �

Recall that a convex cone is said to be simplicial if it is generated by
linearly independent vectors; the following proposition is a particular case
of a characterization of Q-factoriality that M. Brion gave in [2] in the
general case of a spherical variety. We recall it in the case of our interest.
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Proposition 3.2 (see [2, Proposition 4.2]). — The variety X̃λ is Q-
factorial if and only if C(X̃λ) is simplicial.

Therefore, since C(X̃λ) has maximal dimension, X̃λ is Q-factorial if and
only if the number of extremal rays of the associated cone equals the rank
of G. To describe such rays we need to introduce some more notation; the
description will be slightly more complicated if Φ is of type D or E.
Denote ∆e the set of extremal roots of ∆ and set ∆rSupp(λ) =

⋃n
i=1 Ii

the decomposition in connected components. Denote

Ie =
⋃

Ii 6=Ide
Ii∩∆e 6=∅

Ii,

where Ide is defined as follows. If ∆ is of type D or E, denote γde the
unique simple root which is adjacent to other three simple roots and, if it
exists, denote Ide ⊂ ∆ r Supp(λ) the unique connected component such
that γde ∈ Ide and |Ide ∩∆e| = 1, otherwise define Ide to be the empty set.
Denote I∗de ⊂ Ide the minimal connected subset such that γde ∈ I∗de and
I∗de ∩∆e 6= ∅, or define it to be the empty set otherwise. Finally define

J(λ) =
(
∆ r (Ie ∪ I∗de)

)
∪
(
∆e r Supp(λ)

)
.

Lemma 3.3. — The extremal rays of C(X̃λ) are generated by the simple
coroots α∨ with α ∈ ∆ r Supp(λ) and by the opposite of fundamental
coweights −ω∨α with α ∈ J(λ).

Proof. — Recall that C(X̃λ) is generated by the simple coroots α∨ with
α ∈ ∆rSupp(λ) together with the fundamental coweights −ω∨α with α ∈ ∆
and that every coroot α∨ with α ∈ ∆rSupp(λ) generates an extremal ray
of C(X̃λ).
A coweight −ω∨α does not generate an extremal ray if and only if it can

be written as follows

−ω∨α =
∑
β∈K

aββ
∨ −

∑
β∈H

bβω
∨
β

with aβ > 0 for every β ∈ K and with bβ > 0 for every β ∈ H, for suitable
non-empty subsets K ⊂ ∆ r Supp(λ) and H ⊂ ∆ r {α}. Since the right
member of the equality is negative against every simple root in ∂K, we get
∂K = {α}.

Notice that K is connected. Indeed if K ′ ⊂ K is a connected component
then ∂K ′ = {α} and

∑
β∈K′ aβ〈α, β∨〉 < 0: therefore if K contains two

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2455

connected components it must be∑
β∈K

aβ〈α, β∨〉 6 −2.

On the other hand 〈α, ω∨β 〉 = 0 for every β ∈ H, therefore if K is not
connected it follows

−1 = −〈α, ω∨α〉 =
∑
β∈K

aβ〈α, β∨〉 6 −2.

Since ∂K is one single root, K contains an extreme of ∆, thus we get
K ⊂ Ie ∪ Ide. Suppose that γde ∈ K ⊂ Ide: then we get a contradiction
since it would be |∂K| = 2. Therefore we get K ⊂ Ie ∪ (I∗de r {γde}) and
α ∈ Ie ∪ I∗de. Such a subset K cannot exist if α ∈ ∆e r Supp(λ), otherwise
it would be K = ∆r{α} which intersects Supp(λ). We get then that every
−ω∨α with α ∈ J(λ) generates an extremal ray of C(X̃λ).
Suppose conversely that α 6∈ J(λ). Then we can construct a connected

subset K ⊂ Ie ∪ (I∗de r {γde}) such that ∂K = {α}. If γ ∈ K ∩∆e, consider
the fundamental coweight (ωKγ )∨ associated to γ in the irreducible root
subsystem associated to K: then we get

(ωKγ )∨ =
∑
β∈K

aββ
∨ = ω∨γ −mω∨α ,

where aβ > 0 are rational coefficients and where m > 0 is an integer.
Therefore −ω∨α does not generate an extremal ray of C(X̃λ). �

Proposition 3.4. — The variety X̃λ is Q-factorial if and only if the
following conditions are fulfilled:

i) Supp(λ) is connected;
ii) If Supp(λ) contains a unique element, then this element is an ex-

treme of ∆;
iii) If ∆ is of type D or E, then Supp(λ) contains γde and at least two

simple roots adjacent to γde.

Proof. — By Proposition 3.2 together with Lemma 3.3 X̃λ is Q-factorial
if and only if |Supp(λ)| = |J(λ)|.
Suppose that X̃λ is Q-factorial. Consider the dominant weight λ′ =∑
α6∈Ie∪I∗de

ωα: then J(λ′) = J(λ) and

|∆| = |J(λ)|+ |∆ r Supp(λ)| > |J(λ′)|+ |∆ r Supp(λ′)| > |∆|,

which implies Supp(λ) = Supp(λ′). This shows ∆ r Supp(λ) = Ie ∪ I∗de,
and we get the following decomposition of J(λ):

J(λ) ∩ Supp(λ) = ∆ r (Ie ∪ I∗de), J(λ) r Supp(λ) = ∆e r Supp(λ).

TOME 61 (2011), FASCICULE 6



2456 Paolo BRAVI, Jacopo GANDINI, Andrea MAFFEI & Alessandro RUZZI

If Ide 6= ∅, set Ide ∩ ∆e = {αde}. Define a surjective map F : J(λ) r
{αde} −→ Supp(λ) as follows: F is the identity on J(λ)∩ Supp(λ), while if
α ∈ J(λ) r Supp(λ) consider the connected component K ⊂ ∆ r Supp(λ)
containing α and define F (α) by the relation ∂K = {F (α)}: since α 6= αde,
it must be |∂K| = 1. Therefore F is well defined and it is surjective since
Supp(λ) r J(λ) = ∂Ie. Therefore ∆ r Supp(λ) = Ie and we get i). Being
surjective, F has to be injective as well; this easily implies both ii) and iii).
Suppose conversely that Supp(λ) is connected, or equivalently that ∆ r

Supp(λ) = Ie: then ii) and iii) imply |∆e r Supp(λ)| = |∂Ie|. This shows
that X̃λ is Q-factorial, since then |J(λ)|+ |∆ r Supp(λ)| = |∆|. �

Corollary 3.5. — If X̃λ is Q-factorial, the extremal rays of C(X̃λ) are
generated by:

i) the coroots α∨ with α ∈ ∆ r Supp(λ),
ii) the coweights −ω∨α with α ∈ Supp(λ)◦ ∪

(
∆e r Supp(λ)

)
.

3.3. Smoothness

Suppose that Σ = {λ, λ1, . . . , λs} is a simple set of dominant weights,
where λ is the maximal one. In this section we will prove the following
generalization of Theorem B.

Theorem 3.6. — The variety XΣ is smooth if and only if Xλ is normal,
Q-factorial and every connected component of ∆ r Supp(λ) has type A.

Corollary 3.7. — XΣ is smooth if and only if Xλ is smooth.

To prove Theorem 3.6, we will make use of a characterization of smooth-
ness for arbitrary group compactifications given by D. Timashev in [12].
For convenience, we will use a generalization of it which can be found in
[10] in the more general context of symmetric spaces. We recall it in the
case of a simple group compactification.

Theorem 3.8 (see [10, Theorem 2.2], [12, Theorem 9]). — The variety
X̃λ is smooth if and only if the following conditions are fulfilled:

i) All connected components of ∆ r Supp(λ) are of type A and there
are no more than |Supp(λ)| of them.

ii) The cone C(X̃λ) is simplicial and it is generated by a basis of the
coweight lattice Λ∨.

iii) One can enumerate the simple roots in order of their positions at
Dynkin diagrams of connected components Ik = {αk1 , . . . , αknk} of
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∆ r Supp(λ) , k = 1, . . . , n, and partition the basis of the free
semigroup C(X̃λ)∨ ∩Z∆ into subsets {πk1 , . . . , πknk+1}, k = 1, . . . , p,
p > n, in such a way that 〈πkj , (αhi )∨〉 = δi,jδh,k and πkj −

j
nk+1π

k
nk+1

is the j-th fundamental weight of the root system generated by
{αk1 , ..., αknk} for all j, k.

Proof of Theorem 3.6. First, we prove that the conditions are necessary;
since we only have to prove that Xλ is normal, we may assume that ∆
is non-simply laced. By Theorem 3.8 i), Supp(λ) contains at least one of
the two simple roots αS , αL; suppose that Supp(λ) contains αL but not
αS . Denote K = {α1, . . . , αl} ⊂ ∆ r Supp(λ) the connected component
which contains αS and number its simple roots starting from αS : therefore
α1 = αS and αl ∈ ∆e, moreover K is either of type Cl+1 or of type G2. Set
ω∨ = (l + 1)(ωKl )∨, where (ωKl )∨ is the fundamental coweight associated
to αl in the root subsystem ΦK associated to K; then

ω∨ =
l∑
i=1

iα∨i = (l + 1)ω∨αl −mω
∨
αL .

where m = 2 if K is of type Cl+1 (with l > 1) and m = 3 if K is of type
G2.
If K is not of type B2, then ∆ is either of type Cr (with r > 2) or of type

F4 or of type G2 and every simple coroot β∨ ∈ ∆∨ is a primitive element in
Λ∨ (i.e. there does not exist π∨ ∈ Λ∨ which satisfies tπ∨ = β∨ with t > 1):
therefore by Lemma 3.3 together with Theorem 3.8 ii) {α∨1 , . . . , α∨l , ω∨αl}
is part of a basis of Λ∨ and we get a contradiction since then the equality
above would imply ω∨αL 6∈ Λ∨. Otherwise K is of type B2, thus ∆ is of type
Br and 1

2α
∨
S ∈ Λ∨: then we get a contradiction since by Theorem 3.8 iii)

there exists π ∈ C(X̃λ)∨ ∩ Z∆ such that 〈π, α∨S〉 = 1.
Let’s prove now that conditions of Theorem 3.8 are verified if Xλ is

normal, Q-factorial and ∆r Supp(λ) has type A. Set N = C(X̃λ)∩Λ∨ the
monoid generated by the primitive elements of the extremal rays of C(X̃λ).
To prove condition i), it is enough to notice as in Proposition 3.4 that,

since Supp(λ) is connected, we have ∆ r Supp(λ) = Ie and the number of
its connected components equals |∆e r Supp(λ)| 6 |J(λ)| = |Supp(λ)|.

To prove condition ii), let’s show that, if β ∈ ∆ r J(λ) = Ie r ∆e,
then −ω∨β ∈ N . Denote I = {α1, . . . , αl} ⊂ ∆ r Supp(λ) the connected
component which contains β in its closure and number its simple roots
starting from the extreme of I which is not an extreme of ∆; therefore
αl ∈ ∆e. Let j be such that β = αj or set j = 0 if β ∈ Supp(λ). Set
K = {αj+1, . . . , αl} and set ω∨ = (l − j + 1)(ωKl )∨, where (ωKl )∨ is the
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fundamental weight associated to αl in the root subsystem ΦK associated
to K; then

ω∨ =
l−j∑
i=1

iα∨j+i = (l − j + 1)ω∨αl + 〈β, α∨j+1〉ω∨β .

Since Xλ is normal, by Theorem A we get 〈β, α∨j+1〉 = −1; therefore by
Corollary 3.5 −ω∨β ∈ N .

Finally let’s show that condition iii) holds. Suppose that
K = {α1, . . . , αl} ⊂ ∆ r Supp(λ) is a connected component, where the
simple roots in K are numbered starting from the extreme of K which is
not an extreme of ∆, and define

πKi =
{

(α∨i )∗ if i 6 l
(−ω∨αl)

∗ if i = l + 1

where, if {v1, . . . , vr} is a basis of Λ∨, {v∗1 , . . . , v∗r} denotes the dual basis
of Λ. Therefore, if ωKj is the j-th fundamental weight of ΦK , we have
ωKj = πKj −

j
l+1π

K
l+1. �

4. Remarks and generalizations

In this section we will consider the more general situation of compactifi-
cations of symmetric varieties.

Let G be as before and σ : G→ G an involution of G. We denote by H◦
the subgroup of points fixed by σ and by H its normalizer. The notation
is not completely coherent with that of the previous sections: G plays now
the role that G × G played before, while H◦ has now the role that the
diagonal of G×G had before.

Let Ω+ be the set of dominant weights λ such that V (λ) has a non-
zero vector fixed by H◦ and Ω the sublattice of Λ generated by Ω+. The
monoid Ω+ (resp. the lattice Ω) is in a natural way the set of dominant
weights (resp. the set of weights) of a (possibly non-reduced) root system
Φ̃, which is called the restricted root system. For λ ∈ Ω+ we can consider
the (unique) point xλ ∈ P(V (λ)) fixed by H and define Xλ as the closure
of the G-orbit of xλ in P(V (λ)).
Proposition 1.2 generalizes to this more general situation without any

further comment.

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2459

4.1. Normality of Xλ and the closure of a maximal torus orbit.

Let T ⊂ G be a maximal torus such that the dimension of TH is maximal
and let Zλ = T xλ ⊂ Xλ. In [10], it is proved that when Xλ is normal then
Zλ also is normal. The converse of this result does not hold in general.
Indeed Zλ is always normal in the case of the G × G-compactification of
Gad.

4.2. Generalization to symmetric varieties: normality

The wonderful compactification has been defined in the more general
situation of symmetric varieties and the description of the normalization of
Xλ generalizes thanks to the results contained in [4] and [3] (which gener-
alize [7] and [5]). In particular, Lemma 2.1 holds here in general. However,
in the case of symmetric varieties we do not have a clear description of
the multiplication of sections as in Lemma 2.2. In particular, we have no
analogue of Proposition 2.3.
One may wonder whether the normality of Xλ is equivalent to the analo-

gous combinatorial condition on the weight λ, that is, λ satisfies condition
(?) w.r.t. the root system Φ̃; here is a counterexample.
Let G be of type B2 and let σ be the involution of type B I: thus G/H '

SO(5)/S
(
O(3)×O(2)

)
and ∆̃ = 2∆. Consider λ = 2ω1 ∈ Ω+; then Xλ is a

normal embedding of G/H.
Denote by 6σ the dominance order w.r.t. the root system Φ̃ and suppose

that Xλ is normal. Then λ satisfies
for all µ ∈ Ω+ such that µ 6σ λ there exists n ∈ N such
that V (µ+ (n− 1)λ) ⊂ Sn(V (λ)).

If one assumes that the multiplication map is as generic as possible, then
also the converse is true.

4.3. Generalization to symmetric varieties: smoothness

In the setting of normal compactifications of symmetric varieties G/H◦,
fix a maximal torus T such that TH◦ has maximal dimension and a Borel
subgroup B ⊃ T such that BH◦ ⊂ G is dense. If X is a simple normal
compactification of G/H, denote D(X) the set of B-stable and not G-stable
prime divisors of X which contain the closed orbit. Denote ρ : D(X) →
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Ω∨ the map defined by the evaluation of functions; by [13, Proposition
1] ρ(D(X)) is a basis of the restricted coroot system Φ̃∨. Since the map
ρ is not always injective, following the criterion of Q-factoriality in [2]
in order to generalize Proposition 3.4 we only need to assume that ρ is
injective on D(X), and the proof is the same. Such proposition is true also
for compactifications of G/H◦, and not only of G/H, since Q-factoriality
concerns no integrality questions.
Theorem 3.6 also can be generalized to this setting with the same proof,

but we do not have anymore the equivalence between property (?) and the
normality of Xλ. Thus the theorem has to be reformulated as follows (recall
that a simple normal spherical variety is always quasi-projective).

Theorem 4.1. — A simple normal compactification X of G/H is
smooth if and only if it is Q-factorial, ∆ r ρ(D(X)) satisfies (?) and every
connected component of ρ(D(X)) has type A.

BIBLIOGRAPHY

[1] N. Bourbaki, Éléments de mathématique, Fasc. XXXIV. Groupes et algèbres de
Lie. Chapitres IV, V, VI, Actualités Scientifiques et Industrielles, vol. 1337, Her-
mann Paris, 1968.

[2] M. Brion, “Variétés sphériques et théorie de Mori”, Duke Math. J. 72 (1993), no. 2,
p. 369-404.

[3] R. Chirivì, C. De Concini & A. Maffei, “On normality of cones over symmetric
varieties”, Tohoku Math. J. (2) 58 (2006), no. 4, p. 599-616.

[4] R. Chirivì & A. Maffei, “Projective normality of complete symmetric varieties”,
Duke Math. J. 122 (2004), p. 93-123.

[5] C. De Concini, “ Normality and non normality of certain semigroups and orbit
closures”, in Algebraic transformation groups and algebraic varieties, Encyclopaedia
Math. Sci., vol. 132, Springer, Berlin, 2004, p. 15-35.

[6] C. De Concini & C. Procesi, “Complete symmetric varieties”, in Invariant Theory,
Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, p. 1-44.

[7] S. Kannan, “Projective normality of the wonderful compactification of semisimple
adjoint groups”, Math. Z. 239 (2002), p. 673-682.

[8] F. Knop, “The Luna-Vust theory of spherical embeddings”, in Proceedings of the
Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (Madras), Manoj
Prakashan, 1991, p. 225-249.

[9] F. Knop, H. Kraft, D. Luna & T. Vust, “Local properties of algebraic group
actions”, DMV Sem. 13 (1989), p. 63-75.

[10] A. Ruzzi, “Smooth projective symmetric varieties with Picard number equal to
one”, To appear in Internat. J. Math.

[11] J. Stembridge, “The partial order of dominant weights”, Adv. Math. 136 (1998),
no. 2, p. 340-364.

ANNALES DE L’INSTITUT FOURIER



NORMALITY OF GROUP COMPACTIFICATIONS 2461

[12] D. Timashev, “Equivariant compactifications of reductive groups”, Sb. Math. 194
(2003), no. 3-4, p. 589-616.

[13] T. Vust, “Plongements d’espaces symétriques algébriques: une classification”, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 2, p. 165-195.

Manuscrit reçu le 17 mai 2010,
accepté le 15 octobre 2010.

Paolo BRAVI, Jacopo GANDINI, Andrea MAFFEI
& Alessandro RUZZI
Dip.to di Matematica
Università di Roma “La Sapienza”
P.le A. Moro, 5
00185 ROMA
ITALY
bravi@mat.uniroma1.it
gandini@mat.uniroma1.it
amaffei@mat.uniroma1.it
ruzzi@mat.uniroma1.it

TOME 61 (2011), FASCICULE 6

mailto:bravi@mat.uniroma1.it
mailto:gandini@mat.uniroma1.it
mailto:amaffei@mat.uniroma1.it
mailto:ruzzi@mat.uniroma1.it

	Introduction
	1. Preliminaries
	1.1. Notation
	1.2. The variety X
	1.3. The wonderful compactification of Gad and the normalization of X
	1.4. The variety X

	2. Normality
	2.1. Remarks on tensor products
	2.2. Normality and non-normality of X

	3. Smoothness
	3.1. The colored cone of X"0365X
	3.2. Q-factoriality
	3.3. Smoothness

	4. Remarks and generalizations
	4.1. Normality of X and the closure of a maximal torus orbit.
	4.2. Generalization to symmetric varieties: normality
	4.3. Generalization to symmetric varieties: smoothness

	Bibliography

