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THE CLASS GROUP
OF A ONE-DIMENSIONAL AFFINOID SPACE

by Marius van der PUT

Introduction.

The field k is supposed to be complete with respect to a non-
archimedean valuation. Moreover we will assume that k is algebraically
closed. An affinoid space Y over k is the set of maximal ideals of an
affinoid algebra. The standard affinoid algebra is k<{T,,...,T,>= the

set of all power series Za,T;' -+ T," converging on the closed polydisk

{@y,...1,)ekMalllt] < 1}.

An affinoid algebra is a residue class ring of some k{T,,...,T,>. An
algebraic variety over k can be studied locally by its analytic structure over
k, that is by means of affinoid spaces.

We show that a one-dimensional, normal, connected affinoid space Y is
an affinoid subset of a non-singular, complete curve C over k (Thm 1.1). If
Y has a trivial classgroup then Y is in fact an affinoid subset of P!
(Thm 2.1). A curve is locally a unique factorization domain (U.F.D.
for short) if and only the curve is a Mumford curve (ie. can be
parametrized by a Schottky group). In general the class group of Y
can be expressed in terms of the Jacobi-variety of C (prop. 3.1).

Some examples show the connection between the class group of Y and
the class group of the (stable) reduction of Y. For k-analytic spaces we refer
to [2],[3]. I thank A. Escassut for bringing the problem on unique
factorization on affinoid spaces to my attention. Related questions are treated

in [1].
1. Affinoid subspaces of an algebraic curve.

A curve C (non-singular and complete) over k has a natural structure as
(rigid) analytic space over k. This structure is given by a collection
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of subspaces Y of C, called affinoid, and a sheaf O = 0. with
respect to the Grothendieck topology of finite coverings by affinoids.
For any Y, @(Y) is an affinoid algebra (1-dim. and normal) over k
with Sp(0(Y)) = Y. We want to show :

1.1. — THEOREM. — Every 1-dimensional, normal, connected affinoid space
Y = sp(A) is an affinoid subspace of a non-singular complete curve.

Proof. — Y is called connected and normal if the algebra A has no
idempotents # 0,1 and A is integrally closed. We use the notations
A° = {feAl|flI<1}, A = {feAl||fll<1} and A = A°/A°°, where
IIfll = max {|f(y)| [ye Y} is the spectral norm on Y. The algebra A is of
finite type over k = the residue field of k and the algebraic variety
Y. = Max (A) is called the canonical reduction of Y. There is a natural
surjective map R : Y — Y_, also called the canonical reduction. A pure
covering of an analytic space X, is an allowed covering # = (U,) by
affinoid spaces, such that for every i #j with U, nU; # J, the set

U; n U; is the inverse image of a Zariski open set V;; in (U;), under the

map U,; - (Uy),. The reduction X, of X with respect to # is
obtained by glueing the affine algebraic varieties (U—,)c over the open
sets V;;. The result is an algebraic variety over k. If X is separated
then the U; nU; are also affinoid, the V; are affine and equal to

(U;nU), and X_q is separated. If X is non-singular, 1-dimensional,
connected and if X, is complete then X is a non-singular complete
curve over k (see [2] ch.IV 2.2).

Our proof consists of glueing affinoid spaces Y,,...,Y, to Y
such that the reduction of X =Y uY, u... Y, with respect
to the pure covering {Y,Y,,...,Y;} is complete. Then clearly Y is
an affinoid domain of the algebraic curve X. The 1-dimensional
space Y, lies in a complete 1-dimensional Z such that F =Z - Y,
is a finite set of non-singular points. Suppose that we can find for

every peF an affinoid space Y, with canonical reduction

R,:Y,»(Y).=Z where (Y_p)c is a neighbourhood of p and
such that

Y, >R M(Y,). nY)=R(Y,) nY)c Y.

Then we can glue Y, to Y. Thespace X = YU U Y, hasreduction Z

which is complete. So the glueing has to be done locally on Y and ?: The
component C of Z on which p lies can be projected into P?(k) such that
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(the image of) p is still non-singular. A good projection onto P! maps p
onto o and o is an unramified point for the projection. Replacing Y and

?c by neighbourhoods of p we may therefore suppose :

0(Y) = 0(Y,) = k[t,e(t)*,s)/(P),

where
1) e(t) = (t—a,) ... (t—a,) with a,, ...,a, different points of k* ; they
are the residues of a,, ...,a,€k°.

2) P is a monic irreducible polynomial of degree n with coefficients in

k[t].
dpP ., . .
3) I is invertible as element of k[t,(e(t))~1,s1/(P).

4) the point « p » corresponds to t = 0.

Then O(Y)° has the form k°¢T,U,S)/TE(T)U —1,Q) where
E(T) =(T—a,)...(T—-ay and Q=P.

Since Q is general with respect to the variable S, we can apply Weierstrass-
division and assume that Q is a monic polynomial of degree n in S with
coefficients in k°(T,UDATE(T)U —1). Suppose that we can find a monic
polynomial Q* of degree n in S and coefficients in k°¢T,V)/(E(T)V—1)
such that

k°( T, USYATE(T)U — 1,Q*) ~ O(Y)°.

Then Y, = Sp(k<{T,V,S)/(E(T)V —1,Q*)) has the required properties. So we
have to get rid of the negative powers of T in the coefficients of

Q=Sn+a"_lsn_l + - +ao.

1.2. — Lemma. — If Q*¥=S"+a*  S" '+ -+ +a¥  has
coefficients in A = k°(T,UY/(TE(T)U—1) and 6; = 6 = P, then

a) Q* is irreducible

b) Q* has a zero in O(Y)°

¢) k{T,U,S)/(TE(T)U —-1,Q*) ~ O(Y).

Proof. — a) Let Q* be reducible over the quotient field of A.
Since A is normal, Q* is a product of monic polynomials with

coefficients in A. This contradicts the irreducibility of @ = P.
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aQ*
" dS

b) First we show that {Q* } generates the unit ideal in A[S]. Let

*

d
%. If m nk®# 0 then m

m be a maximal ideal containing Q* and

induces a maximal ideal of k[t,(te(t))"'][S] = A[S] containing P and

dpP

= This contradicts our assumptions on P. So m corresponds to a
maximal ideal m,, of k{T,U)/(TE(T)U-—1)[S], containing Q* and
dQ*

ds

If m; nk(T,UDATE(T)U—1) # 0 then m,, is the kernel of a
homomorphism in k givenby T +— X, €k, S +— A, ek with

Ml <1,  MEQRII =1, Al <1

dp
since Q*(A,) = 0. From (P’K> = k[t,(te(t)~1,S] it follows that

dQ* .
Q=1+Za,s‘

Z,8)Q* + Z:8) g
i>0

for certain Z,, Z, € A[S] and q;€ A with |lg]| < 1. The substitution

T +—A;; S — A, makes 0 =1+ ) afA,)A,, whichisimpossible. So
i>0
m and m, correspond to anideal of L[S] with L the quotient field of A.

aQ*

Since Q* is irreducible, this means that

= 0. This is obviously in
- . dpP -
contradiction with P”Jg = k[t,te(t) " '].
We conclude the existence of Z;, Z, € A[S] with

1 =2Z,5Q* + Z,(S) Q"
-~ 2 ds .

By Newton’s method we will show that Q* has a zero in O(Y)°. Let

ne oY) satisfy |Q*(n)ll <1 (e.g. m is the residue of S mod Q in

d *
aVO). Then 1= Z,mQr = Zin)

m) and since
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*

1Z,(M)Q*M)Il <1 it follows that

ds
dQ* \7!
no=n- Q*(n)(fs (n)) - Then [IQ*(nyll < [IQ*M)II*. The usual

procedure and the completeness of O(Y)° show the existence of a root of Q*
in O(Y)°.

(m) is invertible. Put

¢) The quotient field of A[S]/Q* is contained in that of A[S]/Q,
because of (b). Both fields are extensions of degree n of the quotient field
of A. So they are equal. The rings k<{T,U,S)>/(TE(T)U —1,Q*) and O(Y)
are both the integral closure of k(T,U)/TE(T)U —1) in that field. So they
are equal.

End of the proof of 1.1. — We choose Q* with coefficients in
k°(T,V)/(VE(T)—1) and Q* = P.

1.3. — CorOLLARY. — Let Y beasin(1.1);then Y is affinoid in a curve X
(complete non-singular) such that X — Y, is afinite set of non-singular points.

2. Unique factorization.

We want to show the following :

2.1. — THEOREM. — Let Y = Sp A be a 1-dimensional connected affinoid
space. Then A has unique factorization if and only if Y is an affinoid subspace
of Pl(k).

Remarks. — 1) Since A has dimension 1 the condition « A has unique
factorization » is equivalent to « A is a principal ideal domain ».

2) It seems that this theorem has also been proved by M. Raynaud.

A connected affinoid subspace Y of P!(k) has clearly a U.F.D. as affinoid
algebra. Before we start the proof of 2.1, we like to state its algebraic analogue.
Itis :

2.2. — ProPOSITION. — Let A be a finitely generated algebra over an
algebraically closed field k. Suppose that A is 1-dimensional and a U.F.D.
Then A is isomorphic to the coordinate ring of a Zariski-open subset of P(k).

Proof. — A is the coordinate ring of a Zariski-open subset X of some
non-singular complete curve C; put X = C — {p;,...,p;}. Let D bea
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divisor of degree 0 on C; since A isa U.F.D. there is a rational function f

s

on C with D = (f) on X. This means that the map { Y. npin,eZ and

i=1
In = 0} —— J(C) = the Jacobi-variety of C, is surjective. If C isnota

rational curve then its Jacobi variety (or better its points in k) is not a finitely
generated group. Hence C ~ P!(k).

We prove the theorem in some steps.

2.3. — LEMMA. — Suppose that O(Y) isa U.F.D.and that Y isirreducible,
then H'(Y,0%) = 0.

Proof. — Y denotes the canonical reduction of Y. An element
£ € HY(Y,0*) corresponds to a projective, rank 1, @(Y)-module N; let F
be a free O(Y)-module, o : F —— F an idempotent endomorphism
withim o = N. Then F, o lift to similar things over O(Y)° since O(Y)°
is complete and O(Y) = O(Y)° ® k. So we find a projecture, rank 1,
O(Y)°-module M with M®k = N.

Further M ® O(Y) ~ @(Y) since O(Y) is a U.F.D. There exists a
Zariski-open covering of Y such that N is free on the sets of this covering.
That implies the existence of f,, ..., f, € O(Y)° such that

a) each ||fjl =1 and (f}, ...,£)O(Y)° = O(Y)°.
b) M ® O(X)°(SY/(Sf;—1) is a free O(X)°(SH/(Sf;—1)-module.
We identify M with M ® O(Y)° = O(Y) and we may suppose that

M < O(Y)°; max {||m||/me M} = 1 and M > AO(Y)° for certain A € k®,
A # 0. Then

M ® O(Y)SH/Sfi—1) = O(Y)XSH/(Sfi—1)

is generated by one element h. This element has norm 1 and it has no
zerosis {y e Y||f(Y)l = 1} = Y,. So h isinvertible in O(Y,). Its inverse
h~! has also norm 1 since Y; is irreducible and the norm on 0O(Y)) is, as
a consequence, multiplicative. Hence MO(Y))° = 0(Y,)°. It follows that
some power of f; lies in M. Since (f},...,f) = O(Y)° we find that
M = O(Y)’. So N is free and § = 0.

2.4. — LEMMA. — Let L be affine, 1-dimensional and irreducible over k. If
HY(L,0¥) = O then L is rational and non-singular.
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Proof. — Let n : L, —— L be the normalization of L. We have an
exact sequence of sheaveson L : 0 — O0f — n,0f — F — 0
where F is the skyscraper sheaf with stalks, F, = @1",/0{,‘, and 0, is the
integral closure of O ,.

One finds an exact sequence
0 — O(L* — O(L,* — H(F) — H'(L,0f) — H'(L,,0f) — 0.

So clearly (by 2.2) L, = P'(k) — {p;,...,p;} and the group O(L,)* is
isomorphic to k* @ N where N is a subgroup of Z*7!.

So we find that H(F) is a finitely generated Z-module.

If L hasasingular point p then H(F) has @f,p/@}:p as component. The
last group has k or k* as quotient group. It is not finitely generated. So we
conclude that L is non-singular, and hence a Zariski-open subset of P!(k).

2.5. — Continuation of the proof of 2.1.

We have to consider the case where Y, the canonical reduction of Y,
has more than one component. Let L be a component and L, ,= L- {the
intersection of L with the other components} ; Y, = R™!(L,). Then Y, is
affinoid, also a U.F.D. and with canonical reduction L;. We know by 2.3 and
2.4 that L, is Zariski-openin P!(k) andso Y, must be an affinoid subset of
P!(k) of the form

{zek||z| < 1, |z —a) =1 (i=1,...,9)}.

Let a;,,,...,a, correspond to the points of intersection of L with the
other components of Y. Let Y, = {z€k||zZl <1 and |z —a) > 1 for
i=d+1,...,s}. Thenwe glue Y, to Y over the open subset Y,. The
resulting analytic space Y U Y, has as reduction with respect to the
covering {Y,Y,} the space Y U Y,. From [2] ch. IV (2.2) it follows that
Z =Y vY, is also affinoid and its canonical reduction is obtained by
contracting the complete one of Y U Y, to a point. If we can show that Z
is also a U.F.D., then (2.1) follows by induction on the number of
components of Y. Since

HY(Y,0%) = Hl(Ylv(%l) = HI(YZ,(%Z) =0

we can calculate H'(Z,0%) = the class group of Z, with respect to the
covering {Y,,Y}. That Z is a U.F.D. is equivalent with H(Z,0%) = 0
and will follow from the following
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2.6. — LemMA. — The map O(Y)* @ O(Y,)* — O(Y,)*, given by
(fiufa) — fifsY, is surjective.

Proof. — The norm on @(Y,) is multiplicative. So any fe O(Y,)* has
the form f = cg with cek* and ge(O(Y,)°)*. Further the analoguous
map OY)* ® O(Y,)* — O(Y,)* is clearly surjective. So g = f,f;!
for certain f; € (O(Y)°)* and f, € (O(Y,)%)*. We are reduced to consider
feO(Y,)* of theform 1 + h with he O(Y,), ||h|| < 1. We want to write
f as (14+h)(1+hy)~' with h, eOY), h,eOY, and |h] <1,
llhyll < 1. This amounts to showing that B : O(Y)° ® O(Y,)° — O(Y,)°,
given by (h,,h,) — h, — h,, is surjective. By [2], ch. IV (2.2), we know
that the cokernel of B is a finitely generated k°-module M. Moreover
M ®k = 0 since O(Y) ® 0(Y,) — O(Y,) is surjective. So M =0, B
is surjective and the Lemma is proved.

2.7. — CoRrOLLARY. — Let X be a complete non-singular curve over k.
Then X is a Mumford curve (i.e. can be parametrized by a Schottky group) if
and only if X is locally a U.F.D.

Proof. — Locally a U.F.D. means that X has an affinoid covering (X,);-,
such thateach O(X,) is a unique factorization domain. According to (2.1) this
implies X; = P!(k). According to [2], ch. IV (5.1), this is equivalent with X
is a Mumford curve.

3. Class groups.

X will denote a normal, connected, 1-dimensional affinoid space. The
class group of X (i.e. the group of isomorphy-classes of projective, rank 1,
O(X) - modules) is equal to the analytic cohomology group H!(X,0%). This
follows from the bijective correspondance between projective, rank 1, O(X)-
modules and invertible sheaves on X.

3.1. — ProrosIiTION. — Let X be embedded in a complete non-singular
curve C. Then H'(X,0%) ~ J(C)/H where J(C) is the Jacobi-variety of C
and H is the subgroup consisting of the images of the divisors of degree zero on
C with supportin C — X. The group H is an open subgroup in the topology
of J(C) induced by the topology of k.

Proof. — The restriction map Divy(C) — Div(X) induces a
surjective homomorphism Divy(C)/P(C) — Div(X)/P(X) where P(C)
denotes the principal divisors on C and PX)={(f) on X|f
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meromorphic on X}. It is easily seen that H'(X,0%) = Div(X)/P(X).
Let DeDivy(C) have image 0 in H'(X,0%), then there exists a
meromorphic function f on X with (f) =D on X. As one can
calculate (see [2], ch. III (1.18.5) and on) any divisor of a holomorphic
(or meromorphic) function on X is the divisor of a rational function on
C restricted to X. So there is a rational function g on C with
(99=D on X. Then D —(g) is a divisor of degree 0 with
support in C — X. This proves the first assertion. The map

E)
Cx...xC—JC) given by (xy,...,x,) +— Y X; —gx, (where
i=1
xo€ C — X is fixed) is surjective and induces the algebraic structure
and topology on J(C). The map is almost bijective and open. So the

image of (C—X) x ... x (C—X) is open and H is open.

Remark. — In general it seems to be rather difficult to calculate explicitely
H!(X,0%). However using (3.1) one can work out the following special cases.

32. — Example. — Let the curve C have a reduction R : C — C
such that C is rational and has one ordinary double point p. Take
Py .-, ps pointsin C — {p} and put X = R"YC — {p,,...,ps}). Then

X is affinoid and its canonical reduction is C — {p,,...,p;}. The curve
C is a Tate-curve and =~ k*/{q) with 0 < |g| < 1. The points p,, ..., p;
correspond to open discs of radii 1 around points 1 = a,a,, ...,a,€k

with all |g| = 1 and |a;—ajl =1 if i # j. Using (3.1) one finds an exact
sequence :

1 — k*Kay, ..., a,y — H\(X,08) — [k*|/|ql) — 1

where (Z,. . .,a_s> is the subgroup of k* generated by Z, ...,a_s; |k*| is
the value group of k and (|g|) its subgroup generated by |gq|. Note further
that k*/<a,,...,a,) = H'(X,0}).

3.3. — Example. — Let C be a Mumford curve of genus g > 1 and let
R : C —— C beiits stable reduction. (The components of C are rational,
the only singularities are ordinary double points.) The Jacobi-variety of C is
a holomorphic torus (k*)?/A where A is a lattice in (k*)?. Take ordinary
points p,,...,p,€eC and put X =R }C — {p,,...,p;}). Then X is
affinoid and using (3.1) one calculates an exact sequence :

1 — (k*¥/S — H'(X,0%) — k*//JA| — 1
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where
IAl = {(M), 20, - IRDIA, - . .,Xg)eA}

and S is a finitely generated subgroup of (k*). The group (k*)° is in fact
the Jacobi-variety of C and the subgroup S is the subgroup of the
divisors of degree 0 on C with support in {p,,...,p,}. So (k*)¥/S is
again H!(Xy,0*) where X denotes the stable reduction of X.
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