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ON THE GREEN TYPE KERNELS
ON THE HALF SPACE IN R"

by Masayuki ITO

1. Let R" be the n(> 2)-dimensional Euclidian space
and D be the half space {x=/(z,,2,,---,2,) € R*; 2y > 0}.
For a point z = (2,,%,,--,2,) € R*, we write

- n 1/2
T = (— @y, Tay. .., T,) and | 2| =<le§> .
J:

When n > 3, weput Gy(z,y) = |z —y|*>" — |z —y|>" in
D X D. Then G, is the Green kernel on D . Analogously

we set, for a number « with 0 < « < n,
Ga(z, y) =|z — y|*" — |z — g[*

in D X D, and we call it the Green type kernel of order «
on D . The following question was proposed to me in a letter
by H. L. Jackson : Does G, also satisfy the domination
principle provided that 0 < a« < 2.

This paper is inspired by this question. Let C,(D) and
C(D) be the usual topological vector space of real-valued
continuous functions in D with compact support and the
usual topological vector space of real-valued continuous
functions in D, respectively. We set

Ci(D) = {fe C(D); f > 0}

and CH(D) = {fe C(D); f > 0}. For a given Hunt convo-
6
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lution kernel x on R", we define the linear operator
V,:C(D)af— (x*xf—»=f)peCD) ),

where f is the reflection of f about the boundary ?D of D
and where (x*f— x=%f), is the restriction of

xxf—nxf

to D. If V, is positive (thatis, f > 0 = V,f > 0), we say
that V, 1is the Green type kernel associated with x .

The purpose of this paper is to show the following two
theorems.

Taeorem 1. — Let x be a Hunt convolution kernel on R
and (%,),5¢ be the resolvent associated with » . Suppose that »

is symmetric with respect to 3D . Then the following two
conditions are equivalent :

(1) V, ts a Hunt kernel on D .

0 . .. .
2) For each p >0, — x, < 0 1in the sense of distributions
P dm. P
1

in D.

Taeorem 2. — Let x be a Dirichlet convolution kernel on
R" and « be the singular measure (the Lévy measure) associated
with » . Suppose that » s also symmetric with respect to dD .
Then the following two conditions are equivalent :

(1) V, s a Dirichlet kernel on D .

2) bia < 0 in the sense of distributions in D .
R4
This theorem gives immediately that the question raised
by H. L. Jackson is affirmatively solved.

2. Let x be a convolution kernel on R" (?). Similarly we
define V,. When V, 1is positive, we set

2+(V,) = {f € C*(D); V.fe C+(D)},
where
V.f(z) = sup {V.g(z); g C:(D), g < f}

() An feC,D) may be considered as a finite continuous function in R" with
compact support < D .

() In potential theory, a convolution kernel means a positive measure.
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in D. Put 2(V,) = {fe CD); f+, f- € 2+(V,)} and, for an
fe2V,), Vif = V.,ft — V,f~. Then V, 1s a linear operator
from 2(V,) into C(D).

Lemma 3. — Let x and %' be two conyolution kernels on R™.
Suppose that » and ' are symmetric with respect to dD
and that the convolution x « %' s defined. If V, is positive,
then, for any fe C,(D), V,..fe 2(V,) and

VV.) = (nxx" s f—xxon %f)p.

Proof. — We may assume that f > 0. Since x % x’
1s defined and |V,f] < ' «f+ «' = f, wehave V,fea(V,).
Our convolution kernels » and x' being symmetric with
respect to 0D, x «f(z) = x = f(z) and

x*f =% x f(x)

For the sake of simplicity, we write h( =
and h(z) =0 on R* — D. Then, fora geC

[ VAV @)gle) do
% % h(z) — % % h(x))g(x) dz

L )

f a)% » glz) do — f h(z)% * g(z) dw
Jo e )

/-

V.f(z) in D
(

), we have

I

_ﬂu>'*ﬂ@_'*fwﬂ*gmm
**8()d$—fx * f(z)k
% % x f f( ()

where * 1s the adjoint convolution kernel of » ; that is,

v

*(E) = x({— x; x € E}) for any Borel set E. Since g 1s
arbitrary, we obtain the required equality.

&
*
CIQ
E%
IS
S

Remark 4. — In the above lemma, we have V,fe 2(V,)
and V,(V.f) = V,.(V,f) provided that V, 1is also positive.

Lemma 5. — Let x be a convolution kernel on R"*. Suppose
that » s symmetric with respect to dD . Then V, is positive

if and only if sz S 0 in the sense of distributions in D .
1
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Proof. — First we shall show the « if » part. Fora t e (0, o),
put H, = {z = (21,%,---,3,) e R"; 2, =t} and

.,x,,)eD;me dx =01.

It suffices to prove that, for any fe CHD) and any x€eD’,
% % f(x) > % % f(z), because ];)_D, dr =0 and

% % f(z) = % = ().

We choose a sequence (¢,)7_, of non-negative, spherically
symmetric and infinitely differentiable functions such that

D’=3x=(x1,x2,--

fcp,, dx =1 and that the support of ¢,, supp (¢,), 1s
contained in {z € R*;|z| < 1/k}. Then x % ¢, 1issymmetric

. 0 .
with respect to dD and oz o(x) < 0 1n
E51

{xeR"; 2, > 1]k}.
Let feCHD) and =z = (2,75, ---,2,) € D’. Then

ﬁh—ml?l/mf(y)x * (pk(x o y> dy > ﬁh——x.l?llm f(y)x * cpk(; o y) dy

provided with 0 < m < k. Byletting k - c© and m -
we obtain that

x * f(x) ff ) dx

*

€,

- f (y) d = ,(y)

R'H, f(y) dx % ex(y)
* f () —(S“Plf )f dx = x * f(x)

zZ€R"

V
LR

\%

A\
x

where ¢, denote the unit measure at z. Since f and =
are arbitrary, the « if » part 1s true.

Next we shall show the « only if » part. Suppose that the
« only 1if » part 1s false. Then there exist a number ¢t > 0,
a point = (x;,,, -, n)eD with 2; > ¢ and a non-
negative, spherically symmetric and infimtely differentiable

function ¢ in R® with supp (¢) = {xeR"; |2] < t} such

that bix*(p(x) > 0. Hence we can choose a number
RS
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s >0 such that s < 2 — ¢ and that, for every yeD
with |y| < s, xx9(x —y) < x* ¢(x —¥). Since

xx 9z — ) = xx 9@ —y)
we have, for an f # 0 e Cf(D) satisfying

supp (f) < {y e R"; [y| < s},
xxfxo@) <xxfxol@x)=xxfxox).

But this contradicts the inequality x*f>x«f in D.
Thus we see that the « only 1if » part is true.
In the same manner as above, we obtain the following

Lemma 6. — Let « be a positive measure in R" — {0}.
. . . [

Suppose that o is symmetric with respect to dD . If Pyl <0
Y5

in the sense of distributions in D, then, for any fe Ci(D),
ff:v—yda ffw——ydoc)
in D n Csupp (f).

3. We say that a convolution kernel » on R" is a Hunt
convolution kernel if x = fmoct dt, where (a,),, 1s a vaguely
]

continuous semi-group of positive measures in R"; that 1s,
ag = ¢ (the Dirac measure), o, % a; = o, (V¢ > 0, Vs > 0)
and the application R* = [0, ®)st—>« 1is vaguely
continuous. In this case, («,),5, 1s uniquely determined (see,
for example, [3]) and called the vaguely continuous semi-
group associated with ». For a peR*, put

%, —f exp (— pt), dt ;

then (x,),,, 1is called the resolvent associated with x .
This is characterized by a family (x,),», of convolution
kernels on R" satisfying

}f.p—'}(

g = (g —p)x,* % (¥Vp = 0, Vg > 0)

and limx, = %, = x (vaguely).
pP>0
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Lemma 7 (see [3] or Theorem 5 in [6]). — Let %, (%),
and (%,),, be the same as above. Fora p >0 anda t >0,
put

pktk
k!

INwK]

«, , = exp (— pt) (px,)* and %, g = €;

k=0

then (%, \);>, 1s a vaguely continuous semi-group of positive
measures and we haye

x—}——%SZIwal,’tdt and lhmea, , = «, (vaguely) (t > 0).
0

P>

Lemma 8. — Let » = | “a,dt be a Hunt convolution kernel
[}

on R" and (x,),-, be the resolvent associated with » . If x
18 symmetric with respect to dD , then, for any p and any
t,x, and «, are also symmetric with respect to dD .

Proof. — For a p > 0, we denote by %, the reflection
of x, about dD. Evidently (%,),5, 1s the resolvent asso-
ciated with %. By using x =% and the unicity of the
resolvent associated with », we have, for each p > 0,
%, = %,. This means that x, is symmetric with respect
to dD . This gives also that, for any fe C,(D),

ﬁ“"exp (— pt)f da, dt zf;wexp (— pt)f da,dt  (Vp > 0).

The Laplace transformation being injective, we have, for each
t>0, ffdoc, sz—"doct. Hence, f being arbitrary, we see
that o, 1s symmetric with respect to 2D .

Similarly we have the following

Remark 9. — If » 1s symmetric with respect to the origin 0
(resp. spherically symmetric), then x, and «, are also
symmetric with respect to 0 (resp. spherically symmetric).

Let x be a convolution kernel on R". We say that x

1s a Dirichlet convolution kernel if the (generalised) Fourier

transformation % of x is defined and equal to —1—, where ¢

1s a real-valued negative definite function in R" such that 1

Y
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is locally summable. By virtue of the Lévy-Khinchine theorem,
we have, for any z = (2, 2, ---, z,) € R",

n n
Ya) =+ 3 3 ama+ [ (1~ cos (2na-y)) daly),
i=1 j=1
. . n n .
where ¢ 1s a non-negative constant, > Y axx; 18 a
B . . . . i=1 j:1 .
positive semi-definite form, z-y is the inner product in R"
and where o« is a positive measure in R" — {0} symmetric
with respect to 0 and satisfying f |z|2/(1 4 |2|?) da(x) < o0 .
It is well-known that the above decomposition of ¢ 1is unique.
The positive measure « in R" — {0} 1is called the singular
measure associated with x . Since, for each t > 0, exp (—t¢)
1s of positive type in R", there exists a positive measure «,
in R" such that & =exp(—t}). Evidently (), 1s
a vaguely continuous semi-group of positive measures and

® = j; “«,dt. Hence a Dirichlet convolution kernel is a
Hunt convolution kernel and symmetric with respect to 0.

4. A positive linear operator V: C (D) — C(D) 1s called
a continuous kernel on D (Evidently V is continuous).
Similarly as in the section 2, we define 2+(V) and 2(V).
We say that V 1s a Hunt kernel on D if V = on V. dt
(that is, for any fe C (D), Vf(z)= f *Vf(x)dt n D),
where (V,),5, is a continuous semi-group of continuous
kernels on D ; thatis, V, = I (the identity), forany ¢ > 0,
s > 0 andany fe C,(D),Vfe 2V),V.Vf) = V.(Vf) =V . f
and the application R+ >t— V,f is continuous in GC(D).
Similarly as in [3], we see that (V, )izo 1s uniquely determined,
and we call it the continuous semi-group associated with V.
Fora p >0, put V,= j; exp (— pt)V,dt; then we call
(V,)p>o the resolvent associated with V. It is known that,
for any p>0, ¢ >0 and any feC/(D), V,fe 2(V,),
Vif € 2(V,),

Vof = Vof = (g = P)Vo(Vif) = (¢ = p)Vo(Vil)
(the resolvent equation) and lim V,f = V,f = Vf in C(D).

p>0



92 M. ITO

Let V, and V, two continuous kernels on D . If, for any
fe C(D), Vyfe 2(V,), the application C,D) s f— V,(Vyf)
1s positive linear, we denote it by V, - V,.

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the
domination principle; that is, for two f, ge CHD), Vf < Vg
on supp (f) implies the same inequality on D .

5. We shall show Theorem 1 mentioned in the section 1.

(1) =~ (2). By Lemmas 5 and 8, it suffices to prove that,
for each p > 0,V,, is positive. Let (V,),., be the resolvent
associated with V, . Then, for an fe CHD) and a p >0,
V.f = (pV, + I)(V,f). On the other hand, Lemmas 3 and 8
give the V, fe 2(V,) and

Vif = (% (f — o = ((px + ) * %, % (f — F))o
= (pVi + D(V,,f).

By using the resolvent equation, we have

Vif = Vif = (L= pV)(pVe + DVif — Vo, f)) =

The function f being arbitrary, we have V, =1V, , and
hence V,, i1s positive. |

(2) = (1). By Lemma 5, V, is positive (Vp > 0). Let «,’
be the positive measure defined in Lemma 7 (Vp > 0, vt > 0)
and (e),», be the vaguely continuous semi-group associa-
ted with x. By Lemmas 3 and 7,

)

Ve, = exp (— >z%< )

where (pV, )0 =1, (pV,)' = pV,, and
PVt = (pV,)" (PVs,)-

Therefore V,, is positive. From Lemma 7, it follows that,
for any fe C( ), im V,, f=V,f in C(D) (vi > 0). Hence
V,, 1is positive. Bp;ousing Lemma 3, we see that (V,).,
is a continuous semi-group of continuous kernels on D and
that V, = j; * V,, dt. Consequently V, is a Hunt kernel
on D . This completes the proof.
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Question 11. — Let x be a Hunt convolution kernel on R"
satisfying » = x . Is it true that V, is a Hunt kernel on D
prov1ded that V, 1is positive? :

Remark 12. — Let k(z) be a non-negative continuous
function in the wide sense in R" satisfying k(z) = k(z).
Suppose that x = k(z)dx 1s a Hunt convolution kernel
and that V, 1s also a Hunt kernel on D . Put

G(z,y) = k(x—y) — k(z—7) n D xD.

If the function kernel k(z—y) satisfies the continuity prin-
ciple (3), then G satisfies the domination principle; that is,
for two positive measures p and v in D with compact

support and with fGy. dp < o, then Gp < Gv on
supp () implies the same inequality in D, where

Gu(2) = [Glay) du(y).

It is known that k(z—y) satisfies the continuity principle
when x is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that G also satisfies the
continuity principle. Therefore it suffices to prove that,
for a positive measure w in D with compact support and an
zeD, Gu < Ge, 1mm D provided that Gp < Ge, on
supp ( ) and that Gy 1s finite continuous (see [8]). Since V,
1s a Hunt kernel, there exists f e C*(D) such that V,f=Gf>1

on supp (1), where Gf(y) fG (y,2)f(z) dz . Here we remark

that p 1s considered as a positive measure in R". For a given
positive number 8, there exists a neighborhood U of 0
such that, for any finite continuous function ¢ > 0 in R"
with supp (¢) = U with fcpdle, bxo, e, xoeCrD)
and G(u * 9) < G(e, * ¢) 4 3Gf on supp (u * ¢). By letting
¢ dr — ¢ (vaguely) and & | 0, we have Gp < Ge,.

(®) This means that, for a positive measure @ in R® with compact support,
the function | k(x—y) dp. (y) of = is finite continuous provided that its restriction

to supp () is finite continuous.
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6. Theorem 1 gives the following

Cororrary 13. — Let » = j;w a, dt be a Hunt convolution

kernel on R". Then x is symmetric with respect to 3D and V,
is a Hunt kernel on D if and only if, for each t > 0, o, s

. . 0 .
symmetric with respect to 3D and ——a«, < 0 in the sense of
JIimetrte . oz,
distribution in D .

CoroLLARY 14. — Let » = f;m a, dt be a Hunt convolution
kernel on R" and u be a Hunt convolution kernel on R!
supported by R*. Suppose that x, = j;w a, dp(t) s defined
(in the sense of measures) and that » is symmetric with respect

to dD. If V, is a Hunt kernel on D, then V, 1is also a
Huni kernel on D .

Proof. — We denote by (g,),», the resolvent associated
with w. Since p, < p,%, , = foct du,(t) 1s defined (vp>0).
It is known that x, is a Hunt convolution kernel on R®
and that (%, ,),-, 1s the resolvent associated with x, (see

Theorem 1 in [5]). By Theorem 1 and Corollary 13, «, is

. . 0 .
symmetric with respect to 9D and o & S 0 1n the sense
I

of distributions in D. Hence x, is also symmetric with
[ . . .

respect to dD and 5g K S 0 in the sense of distributions
Ty

in D (Vp > 0). Consequently Theorem 1 gives this corollary.
In the same manner as above, we have the following

Cororrary 15. — Let (%),5, be a vaguely continuous
semi-group of positive measures in R" and p be a Hunt
conyolution kernel on R!' supported by R*. Suppose that

fow «, du(t) s defined and that, for each t > 0, «, is symmetric
. 0 . .. .
with respect to dD and PO TS 0 in the sense of distributions

I
in D. Then V, s a Hunt kernel on D, where

%y = [ o du(t).
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We shall show that the question raised by H. L. Jackson is
affirmatively solved.

Remark 16. — Let v be a positive measure in (0, 2) such
that ﬁz % dv(e) < o and ¢, ¢; be non-negative constants.
Put

x_%cos—l— (f1al" dv(«)) do if n=2
e + (f[xl“‘"dv(oc) + cjz>")dz i n > 3.

Then V, 1s a Hunt kernel.
In fact, we have, with a positive constant ¢(«),

G—n ___ ® 1 _ w a/2—1
2] = ofa) fo eEnT exp< J >t dt
O0O<a<2if n=2,0<a<2 i1f n>3). Evidently the

function c¢(a) of « 1s finite continuous. Put
~eoe + ([ ey dv(a)) de if n=2
eos + ([el@)=et dv(a) + cre(2)) dt i n>3

. . 21 . .
mm R! Since f —dv(e) < ©, %, 1is a convolution kernel
on R" and o

sy = <f("271tW exp <— ‘;—':> dyu(t)) dz .

Hence p 1s a convolution kernel on R! supported by Rt+.
Then p is a Hunt convolution kernel on R! (cf. [5]), and
Corollary 14 gives our remark.

Let G, be the Green type kernel of order « in D. Put

[ Ga(ayy) dv(«) i n=2
[Ga(my) dv(e) + aiGo(zy) i n > 3.

Then Remarks 12 and 16 give that G satisfies the domination
principle.

G(zy) =

7. Let Ly (D) be the usual Fréchet space of real-valued
locally summable functions in D . A Hilbert space H(D)
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contained in Ly(D) is called a Dirichlet space on D if the
following three conditions are satisfied :

(1) For each compact set K in D, there exists a constant
A(K) > 0 such that, for any ueD ,ﬁ|u| dz < A(K)|u] .

(2) C(D) n H(D) 1s dense both in C,(D) and in H(D).

(3) For any normalized contraction T on R! (%) and any
ue HD), T -ueH(D) and |T - u| < |u].

This is the definition by A. Beurling and J. Deny (see [1]).
Here we denote by |-| and by (.,-) the norm in H(D)
and the associated inner product, respectively. For an fe C,(D),
(1) gives that there exists uniquely u;e H(D) such that,
for any u e H(D), (uju) = fufdx .

Let V be a linear operator from C,D) into Ly (D).

We say that V 1s a Dirichlet kernel on D if there exists
a Dirichlet space H(D; V) on D such that, for any

f e C,(D), Vf = u,.

Evidently H(D; V) is uniquely determined. We call H(D; V)
the Dirichlet space associated with V and V the kernel of
H(D; V). For a Dirichlet kernel V on D, we set

9(V) = {f e Liu(D);  sup ;M-

lul °

u % 0eC(D) nH(D; V){ < wf

and 2+(V) = {fe 2(V); f> 0}, where |.| denote the
norm in H(Dj; V). By virtue of (2), for an fe 2(V), there
exists uniquely Vfe H(D; V) such that, for any

ueC(D) N H(D; V), (Viu) = [ufda,

where (-,-) denote the inner product in H(D; V). Thus V
may be considered as a linear operator from 2(V) into
H(D; V). It is known that V is positive (that 1s,

fe 2+(V)== Vf > 0 a.e.) (see[1]).

() This means that T is an application: R! — R! such that R(0) = 0 and
|Ta—Tb| < |a—b| (Ya, YbeRY).
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Lemma 17. — Let x be a Hunt convolution kernel on R*
satisfying « = » . If V, is a Dirichlet kernel on D, then V,
1s a Hunt kernel.

Proof. — For the sake of simplicity;, we write H = H(D; V,).
Denote by |-| and by (-,-) the norm in H and the inner
product in H, respectively. Let L2#(D) be the Hilbert space
of real-valued square summable functions in D. For a
p = 0, H, denotes the Hilbert space associated to the norm
lul, = (pfl ul? dx + l|ui|2)1/2 on H N L3D). Evidently H,is a
Dirichlet space on D . Let feC,(D). Forany ueC,(D) nH,

we have
[Vif(uz) do

I

(Vifyu)p — (V,fiu)
(Vafsu) — (Vofiu))
(IIVfII + IV, fD)lul,

1»w|»~a|~

where V, isthekernel of H, and where (-,.), is theinner pro-
ductin H,. Hence V,fe 2(V). Since,for any ueC,(D)n H,

p(Vu(V,f)u) = p [ (@) V,f() do

= (Vifou), — (Vofiu) = (Vuf — V,fu),

(2) gives V,f— V,f=pV,(V,f) ae in D. Let (x,),5,
be the resolvent associated with » . By Lemmas 3 and 8,
we have V,f—V,f=pV,(V,f). In the same manner as
in the proof of Theorem 1, we "have Vf=V.f ae. in D,
and hence V, is positive (Yp > 0). By Tileorem 1 and
Lemma 5, we see that V, 1s a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.

(1) = (2). Let (%,),», be the resolvent associated with x .
Then it is known that p?x, -« vaguely in R" — {0} as
p > © (see [1]), and hence theorem 1 and Lemma 17 give
that —b% « < 0 1in the sense of distributions in D .

1

(2) = (1). Since p?*x, >« vaguely in R"— {0} as
p— o, Lemma 8 gives that « is symmetric with respect to
dD . Let A be the diagonal set of D X D and B be the
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positive measure in D X D — A defined by

[[t@)ely) dsay) = [[(Flo—y) — Tla—y))g(@) du(y) da

for any couple f, geC, (D) with supp (f) N supp (g) = o
(see Lemma 6). For any p, x, being symmetric with respect
to the origin, we have « = &, and hence B is symmetric
with respect to A . Let C7(D) be the topological vector
space of real-valued and infinitely differentiable functions in D
with compact support (we identify an element of C>(D)
and an infinitely differentiable function in R" with compact
support in D).

Let fe C2(D). Consider the approximation of the function
|f(z) — f(y)|* of (x,y) by the functions of form Y, ¢,(x)¢;(y)

in D X D, where ¢,€C>(D) and ¢; e C>(D) with
supp (¢;) N supp (4;) = @ .
Then we see that
< [[if(2) — fw)l® d8(wy) +f|f 2a(z) do

—fflfrv—y f(@)]? da(y) d

— [[ Fla—y)—T@)(fla—y)—[(2)) da(y) dz < (%)
where, for z = (21,2, --,2,) €D, a(z)= 2flh!>w
Let H be the specialized DlI‘ICtht space w1th the kernel %

(see [1]). We denote by [||-]|| and by ((-,-)) the normin H
and the associated inner product. For a couple [, ge C(D),

we put
df vg 4
ffg( +C>dx+4 2 2‘”21 "fax bx

+ 5 [t — fw)ieta) — s) deay)

=((f—T.e) =g —g) = ((f f.g—8),

(5) The author would like to express his hearty thanks to Prof. F. Hirsch for the
correction of this formula.
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where x = (c + ﬁ i a;x,x; + f(i — cos (2nz-y)) da(y))2.

i=1 j=1
Then (-,-) is an inner product in C7(D). For a compact
set K in D, we have

sup L_K|u|dx= sup \/ﬁﬁ]u——ﬁ|dx< o0

vecem Ul 2ECX (D) lw — ul]
u%o0 u#0

where |u| = (u,u)'?. Hence the completion H of C>(D)
by |- is contained in L, (D). Evidently, for any u e C>(D)
and any normalized contraction T on R!, T.ueH and

IT-ul < |ul. For a wueH, we choose a sequence
(up)i, = G2 (D) such that

lim [u, —u| =0.

Since (T - u,);>, converges weakly to T -u in H as k- o
(see [1]), we have T -ueH and |T - u| < |u|. Hence H
1s a Dirichlet space on D . We shall show that V, is the
kernel of H. For an integer m > 1, let T, denote the

projection from R! into [— :Z i] Let feC(D);
then %% (f—F) — T, -xx(f—F) e A and

Vif — T - Vuf € C(D),
because x x (f — f)=0 on d®D and llli:n x* (f — f)(x)=0.

Therefore there exists a neighborhood 'V,: of the origin such
that, for any non-negative, spherically symmetric and infi-
nitely differentiable function ¢ in R"® with supp (9) = V,

and fcpdxzi,f*cpeC;"(D) and
(Vuf — T - Viuf) % ¢ € C2(D).

Since
(xx(f—F)—=Tu-%xx(f—1)) %o
=(Vf = Tu - Vi) r o — (Vuf =T, - Vf) % @

and, fora ueH,

s olllr = [f((wxe,uxe)e(@ely) dedy < [lulll?,
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we have
"(foz Tm : fo) % @2 )
< llbes (F = F) = T+ x (F = NP < 211 (F — Pl

By letting ¢ dz — ¢ (vaguely) and m — o, we see that
V.fe H and, for any ue C>(D),

(Vfw) = (2% (f — P)w)) = [ulf — F) do = [ufda .

This implies immediately that, for any we H,

(Vufu) = [uf do.

Consequently V, 1s the kernel of the Dirichlet space H.
This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jack-
son 1s affirmatively solved. In fact, the singular 'measure
associated with the convolution kernel r*" 1s equal to
¢y|2|~ %" dz provided that 0 < « < 2, where ¢, 1s a positive
constant, where |z|*"dz 1s symbolically denoted by ro—
0 <a<n).

We denote now by A the laplacian on R". We say that a
convolution kernel » on R" 1s a Frostman-Kunugui kernel
if % 1s spherically symmetric, vanishes at infinity (%), and if
Ax > 0 1in the sense of distributions outside the origin 0.
Theorem 2 and Theorem 1 in [7] give the following

Cororrary 18. — Suppose n > 3. Then the following two
statements hold.

(1) For a Frostman-Kunugui kernel » # 0 on R" satisfying
;— Ax < 0 in the sense of distributions in D, there exists
@, ‘
uniquely a spherically symmetric Dirichlet convolution kernel x’'
on R" such that V, s a Dirichlet kernel on D and that,
for any fe C,(D), V(V.f)@) = Vu(V.f)(2) = Gof(x) in D.

(2) For a spherically symmetric Dirichlet kernel » on R"
such that V, s a Dirichlet kernel on D, there exists uniquely

(6) This means that, for any finite continuous function f in R"® with compact
support, % * f(z) >0 as |z| > .
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. . N . b
a Frostman-Kunugui kernel »' on R" such that v Ax <0
Py :

in the sense of distributions in D and that, for any fe C,(D),
Vi(Vuf)(@) = Vu(Vof)(®) = Gof(x) in D.

Proof. — First we shall show (1). By Theorem 1 in [7],
there exists uniquely a spherically symmetric Dirichlet
kernel » on R" such that x x x’ = r2=". We have, with a
positive constant ¢, (Ax) * x’ = — ce in the sense of distri-
butions in R". This implies that the singular measure asso-

ciated with x’ 1s equal to iAx outside 0. Theorem 2
c

and our assumption give that V,. 1s a Dirichlet kernel on D .
Since Ax > 0 1in the sense of distrbutions in R" — {0}

. . . 0 . .
and » vanishes at infinity, on S 0 in the sense of distri-
Iy

butionsin D . By Lemma 5, V, is positive, and by Lemma 3
and Remark 4, we obtain the required equality. Let’s show
the uniqueness of x’. Let x” be a Dirichlet convolution
kernel on R" which is possessed of the same properties as of
x’. Since x 1s injective (see Theorem 1 in [7]) (*) and

wk (Vo f = Vi £) = % (Vef — Vi)
in R"(%)), we have V,f= V,f (Yfe C(D)). This implies
that, for any fe C,(D), (x" — «")f = (x" — «")xf. In the

. 0 .
same manner as in Lemma 5, we have Sa (x —%") =10 1n
51
the sense of distributions in D . Since x’ — x” is spherically
symmetric and vanishes at the infinity, we have x" = x".

Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists
uniquely a Frostman-Kunugui kernel x’ on R" such that
» * »' = r?2~". Since the singular measure associated with x»

15 equal to iAx’ outside 0, Theorem 2 gives that
c

v Ax’ < 0 in the sense of distributions in D . Similarly as
Ty

(") This means that, for an fe C(D), f =0 provided that x % |f| is defined
and that » % f=0.
(8) We may assume that V,f is a continuous function in R" with support

<D.
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above, we see that V,, 1s positive and the required equality
holds. Since x is also injective (see, for example, [1]), we can
similarly show the uniqueness of x’.

Remember the Riesz decomposition formula

et r@-0-t =g r2" (0 < a < 2),

where a, 1s a positive constant (see [9]). Then, by this corol-
lary, we see that G, satisfies the domination principle
provided with n > 3 and 0 < « < 2.

Remark 19. — For a spherically symmetric convolution

0 . .. . .
kernel x on R7 o * < 0 1n the sense of distributions in D
T

if and only if 3 < 0 in the sense of distributions in
r

R* — {0}, where r=/|z|. In this case, x 1is absolutely
continuous outside 0.

By using Theorem 1, Corollary 13 and this remark 19,
we have the following

Remark 20. — Let » = j;“ a,dt be a spherically symme-
tric Dirichlet kernel on R". Then V, is a Dirichlet kernel
on D if and only if, for any ¢ > 0, «, is of form

a, = ¢e + k(|z|) dx ,

where ¢, is a non-negative constant and k, is a non-negative
decreasing (in the wide sense) function on R*.

8. First we shall show that the inverse of the question
raised by H. L. Jackson is also affirmative.

Prorosition 21. — If the Green type kernel G, (0 < « < n)
on D satisfies the domination principle, then 0 < « < 2.

Proof. — Since G, satisfies the domination principle, G,
also satisfies the balayage principle (see, for example, [3]);
that is, for a positive measure p in D with compact support
and a compact set F in D, there exists a positive measure
pwr supported by F such that G,p > Gupr In D and



ON THE GREEN TYPES KERNELS ON THE HALF SPACE 103

Gur = Guur Ggmne. on F(®). Let p#0 and F be a
closed ball contained in D such that supp (p) NF=g9.
Suppose that « > 2. Let t be positive integer satisfying
0<a—2t<2 and B=a — 2t. Then

Gaolay) = [ Gauz,2)Gg(z,y) dz

(see Lemma 3). Since Ggy(Gpp) = Gg\(Gppr) a.e. on F, we
have Ggu = Ggpr a.e. on F, because

AYGyy(Ggpr) — Goy(Gpur)) = (— ¢)"(Gger — Gppr)

in the sense of distributions in D, where ¢ is the positive
constant satisfying Ar*=" = — ce. Since Ggu 1s continuous
on F and Ggpr 1s lower semi-continuous, we have
Ggw > Gguk on F, andso [Geupdur < o . The function
kernel Gg satisfying the domination principle, we have
Gge > Ggur 1in D . By wvirtue of the injectivity of Gg,
we have Ggp # Ggur. But this contradicts the equality
Go(Ggpr) = Gy(Ggur) Gy-n.e. on F. Thus we achieve the
proof.
We raise a question.

Question 22. — Let x be a convolution kernel on R-"
satisfying » = »x . Suppose that V, 1s a Hunt kernel on D .
Then is it true that » 1s the sum of a Hunt convolution
kernel and of a non-negative constant ?

The following proposition shows that the answer is « yes »
in a special case.

Prorosition 23. — Let »x be a convolution kernel on R"
satisfying x = x . Suppose that V, is a Hunt kernel on D .

If fdx < © and x is absolutely continuous outside 0,
then » tis a Hunt convolution kernel.

Proof. — We may assume that f dv < 1. Fora pe(0,],
we put

xp = 3 (— IO

(®) We write Guu = G, Gy-n.e. on F if, for any positive measure v in D

with supp () € F and | Gpdv < o0, fGap. dv = fGap.é dv.
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then x, is a real measure in R", absolutely continuous
outside 0, x, =%, and fd]xpl < o, where |x,| denote
the total variation of x,. Since (px + ¢) * x, = x, Lemma 3
gives that, for any feC(D), (pV.+ I)(V,f) = V.f. Let
(V,)p=o the resolvent associated with V,. In the same
manner as in Theorem 1, we have, for any fe C/(D), V,f=V,f
in D. Hence V, is positive. In the same manner as in
0 . C. .
Lemma 5, we have 5o < 0 1n the sense of distributions
R51
in D. We show that x, is a convolution kernel. It suffices to

prove that, for any fe CH(D), ﬁ)fdxp > 0, because

x({0}) -
%, ({0}) = ———L—= >0, %X, =

O = T e toy) P
and x, 1s absolutely continuous outside 0. For each integer
k>1, we choose a non-negative, spherically symmetric
and infinitely differentiable function ¢, in R" such that

fcp,; dr =1 and supp (9,) < ngR"; |2 < %g Since

P

I} .
— %, % ¢,(x) < 0 1n the set
bxl P <Pk< )

‘z:(xbwz,"')xn) GR"; Ty Z %g

and lim x,* ¢;(z) =0, we have x,x¢q,(2) >0 in the

||> oo

above set. Hence, for any fe C}(D),
ﬁfdxp == 1]:2 f;‘?%f(x)xp * @ (x)dx > 0.

Consequently %, is a convolution kernel (Yp e (0,1]). Since
X — %x,=px*%,,%x = x,. Fora pe(l, 2], we put

o

%, = 3 (1 — p)i(e)+;

k=0

then x, 1s also a real measure in R", absolutely continuous

outside 0, x», =1x%,, fcl|xp| < oo and x —x, = pxxx,.

In the same manner as above, x, is a convolution kernel.

Inductively we obtain a family (x,),5, of convolution ker-
=
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nels satisfying » — %, = px * x, and lim x, = x (vaguely).
p>0

By Lemma 3.2 in [6], we obtain that, for each p > 0 and

q>0,x%x,—%,=(¢q—p)x,*%, and lim x, = x (vaguely),
p>0

where %, = x. Since V, is a Hunt kernel on D, x # 0,
and hence, for any =z # 0 e R*, » # x * ¢, , because

lim » % f(z) =0

|z|>

for any finite continuous function f in R* with compact
support. Hence, by Corollary 1 of Theorem 5 in [6], % 1s a
Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if x 1is spherically
symmetric, the same conclusion holds without the assumption
that » 1is absolutely continuous outside 0. See Remark 19.
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