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Stochastic PDEs, Regularity structures, and interacting
particle systems

Ajay Chandra (1) and Hendrik Weber (2)

ABSTRACT. — These lecture notes grew out of a series of lectures
given by the second named author in short courses in Toulouse, Mat-
sumoto, and Darmstadt. The main aim is to explain some aspects of the
theory of “Regularity structures” developed recently by Hairer in [27].
This theory gives a way to study well-posedness for a class of stochastic
PDEs that could not be treated previously. Prominent examples include
the KPZ equation as well as the dynamic Φ4

3 model.
Such equations can be expanded into formal perturbative expansions.

Roughly speaking the theory of regularity structures provides a way to
truncate this expansion after finitely many terms and to solve a fixed
point problem for the “remainder”. The key ingredient is a new notion of
“regularity” which is based on the terms of this expansion.

RÉSUMÉ. — Ces notes sont basées sur trois cours que le deuxième
auteur a donnés à Toulouse, Matsumoto et Darmstadt. L’objectif prin-
cipal est d’expliquer certains aspects de la théorie des « structures de
régularité » développée récemment par Hairer [27]. Cette théorie permet
de montrer que certaines EDP stochastiques, qui ne pouvaient pas être
traitées auparavant, sont bien posées. Parmi les exemples se trouvent
l’équation KPZ et le modèle Φ4

3 dynamique.
Telles équations peuvent être développées en séries perturbatives for-

melles. La théorie des structures de régularité permet de tronquer ce dé-
veloppement aprés un nombre fini de termes, et de résoudre un problème
de point fixe pour le reste. L’idée principale est une nouvelle notion de
régularité des distributions, qui dépend des termes de ce développement.
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Lecture 1

In this introductory lecture we outline the scope of the theory of regularity
structures. We start by discussing two important stochastic PDE (SPDE)
coming from physics. The first is the Kardar–Parisi–Zhang (KPZ) equation
which is formally given by

∂th(t, x) = ∂2
xh(t, x) + 1

2(∂xh(t, x))2 + ξ(t, x) . (KPZ)

We will restrict ourselves to the case where the spatial variable x takes values
in a one dimensional space. The term ξ(t, x) denotes space-time white noise
which is not an actual function but a quite irregular random (Schwartz) dis-
tribution. This equation was introduced in [32] in 1986 and is a model for
the fluctuations of an evolving one dimensional interface which separates two
competing phases of a physical system. An explanation for the presence of the
individual terms on the right hand side of (KPZ) can be found in [43]. The
KPZ equation has recieved a lot of attention from mathematicians in recent
years: One major development was an exact formula for the one point distri-
bution of solutions to (KPZ) which was found independently by [44] and [2].
This formula is susceptible to asymptotic analysis which reveals that the
scaled one-point distributions converge to the Tracy–Widom distribution, a
result that has been spectacularly confirmed by physical experiments [45].

Throughout these lectures, we will focus more on our second example,
the dynamic Φ4

d model. Formally this model is given by

∂tϕ(t, x) = ∆ϕ(t, x)− ϕ3(t, x)−m2ϕ(t, x) + ξ(t, x) . (Φ4
d)

Here the spatial variable x takes values in a d-dimensional space and ξ is
again space-time white noise. The invariant measure of (Φ4

d) was studied
intensively in the seventies in the context of Constructive Quantum Field
Theory (see e.g. [20, 13, 19, 7]). Formally this invariant measure is given by

µ(dϕ) ∝ exp
[
−2
∫
Rd

1
4ϕ

4(x) + 1
2mϕ

2 dx
]
ν(dϕ) (1.1)

where ν is the law of Gaussian Free Field (GFF). The GFF can be thought
of as a Gaussian random field on ϕ : Rd → R with covariance given by
Eν [ϕ(x)ϕ(y)] = 1

2G(x− y) where G is the Green’s function of the d-dimen-
sional Laplacian. However when d > 1 the measure ν is not supported on a
space of functions so ϕ must actually be a distribution. A rigorous under-
standing of (1.1) then requires interpreting nonlinearities of distributions.

In addition to being a toy model for QFT the measure (1.1) can be seen as
a continuum analog of the famous ferromagnetic Ising model. For example,
in [21] the authors showed that the concrete measure corresponding to (1.1)
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in d = 2 has a phase transition; their proof is a sophisticated version of the
classical Peierls argument [41] for the Ising model. We will close the first
lecture by describing how the equation (Φ4

d) can be obtained as the scaling
limit of a dynamical Ising model with long range interaction (at least for
d = 1, 2).

An important remark is that the theory of regularity structures will be
restricted to studying (Φ4

d) in the regime d < 4 and (KPZ) for space dimen-
sion d < 2. These are both manifestations of a fundamental restriction of the
theory which is the assumption of subcriticality which will be discussed later.
Another important remark about the scope of the theory is that regularity
structures deliver a robust mathematical theory for making sense of (KPZ)
and (Φ4

d) on compact space-time domains and describe their solutions on
very small scales. The large scale behaviour of these solutions is mostly out
of the current theory’s scope (although some results have been obtained, see
e.g. [29, 38]). This is quite important since it is primarily the large scale be-
haviour of solutions which makes the equations (KPZ) and (Φ4

d) experimen-
tally validated models of physical phenomena, in particular the macroscopic
behaviour of critical systems. However, understanding small scale behaviour
and proving well-posedness is a fundamental step towards having a com-
plete theory for these SPDE(1) . As mentioned earlier, a large obstacle we
must overcome is that the ∇h of (KPZ) and ϕ of (Φ4

d) will in general be
distributions. This makes interpreting the nonlinearities appearing in these
equations highly non-trivial.

1.1. Random Distributions and Scaling Behaviour

1.1.1. Space-time white noise

We start by defining space-time white noise ξ which appeared in both
(KPZ) and (Φ4

d). Formally ξ(t, x) is a random Gaussian function on R×Rd,
its covariance is given by

E[ξ(t, x)ξ(t′, x′)] = δ(t− t′) δd(x− x′) , (1.2)
where δd denotes the d-dimensional Dirac δ distribution. However for any
fixed (t, x) one cannot rigorously interpret ξ(t, x) as a random variable, there
is no coordinate process. Instead ξ must be interpreted as a random distri-
bution, a random element of S ′(R × Rd) whose law is centered Gaussian.
For any f ∈ S ′(R × Rd) and smooth test function η on R × Rd we denote

(1) There are also some physical phenomena appearing in the scale regimes that reg-
ularity structures can access, such as near-critical systems at large volume.
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by (f, η) the corresponding duality pairing. The quantity (ξ, •) is then the
analog of the coordinate process for ξ and the rigorous version of (1.2) is
given by

E[(ξ, η1)(ξ, η2)] =
∫
R×Rd

η1(t, x)η2(t, x) dtdx for any smooth η1, η2. (1.3)

Remark 1.1. — The formula (1.3) implies that (ξ, •) can be extended
beyond smooth functions to an isometry from L2(R × Rd) to L2(Ω,F ,P)
where (Ω,F ,P) is the underlying probability space. Adapting the definition
to the case of R instead of R×Rd gives us the process called white noise, in
this case one has

E
[
(ξ,1[0,s])(ξ,1[0,t])

]
=
∫
R

1[0,s](r) 1[0,t](r) dr = s ∧ t ,

so (ξ,1[0,t]) “ =
∫ t

0 ξ(r) dr” is a Brownian motion and we see that ξ can be
thought of as the derivative of Brownian motion. In these lectures we will
focus on equations driven by space-time noise processes so we will use the
term white noise to refer to space-time white noise.

We will frequently be interested in the scaling behaviour of space-time
distributions. Given a white noise ξ and positive parameters τ, λ > 0 we can
define a new random distribution ξτ,λ via

(ξτ,λ, η) := (ξ,Sτ,λη)
where for any smooth function η we have set

(Sτ,λη)(t, x) := τ−1λ−dη(τ−1t, λ−1x) .
This is a simple rescaling operation, if ξ was an actual function then this
would amount to setting ξτ,λ(t, x) = ξ(τt, λx). By (1.3) one has

E
[
(ξτ,λ, η)2] =

∫
R×Rd

τ−2λ−2dη(τ−1t, λ−1x)2 dtdx

= τ−1λ−d
∫
R×Rd

η(t, x)2 dtdx . (1.4)

Since ξ and ξτ,λ are centred Gaussian processes we can conclude that ξ is
scale invariant in distribution, in particular ξτ,λ

law= τ−
1
2λ−

d
2 ξ.

1.1.2. Scaling Behaviour for SPDEs and Subcriticality

Both (KPZ) and (Φ4
d) are non-linear perturbations of a linear SPDE

called the stochastic heat equation (SHE)
∂tZ(t, x) = ∆Z(t, x) + ξ(t, x) (SHE)
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where as before (t, x) ∈ R× Rd. As before, ξ cannot be evaluated pointwise
and (SHE) has to be interpreted in the distributional sense. Since (SHE) is
linear it follows that the solution Z will be Gaussian (for deterministic or
Gaussian initial conditions).

Remark 1.2. — The equation (SHE) is sometimes called the additive
stochastic heat equation in order to distinguish it from the multiplicative
stochastic heat equation which is given by

∂tZ(t, x) = ∆Z(t, x) + Z(t, x) ξ(t, x) .
The above equation has a close relationship to (KPZ) via a change of vari-
ables called the Cole–Hopf transformation. However we will not use this
transformation nor investigate the multiplicative SHE in these notes. When-
ever we refer to the stochastic heat equation we are always refering (SHE).

We now perform some formal computations to investigate the scaling
behaviour of solutions (SHE). For λ > 0 and suitable scaling exponents
α, β, γ ∈ R we define Ẑ(t, x) := λαZ(λβt, λγx) and ξ̂ := λ

β
2 λ

dγ
2 ξλβ ,λγ , it

then follows that
∂tẐ = λβ−2γ∆Ẑ + λα+ β

2−
dγ
2 ξ̂ . (1.5)

We have already shown that ξ̂ law= ξ. Therefore, if we set

α = d

2 − 1 , β = 2 , and γ = 1 (1.6)

then we see that Ẑ law= Z (ignoring boundary conditions) so the solution
to (SHE) is also scale invariant.

In general non-linear equations like (KPZ) and (Φ4
d) will not be scale

invariant. If one rescales these equations according to the exponents given
in (1.6) then the non-linearity will be multiplied by a prefactor which is
some power of λ; the assumption of subcriticality then requires that this
prefactor vanish as λ → 0. Roughly speaking, this condition enforces that
the solutions to (KPZ) and (Φ4

d) both behave like the solution to the (SHE)
on small scales. Let us illustrate this for (KPZ). We perform the same scaling
as in (1.6) and set ĥ(t, x) = λ−

1
2h(λ2t, λx). This gives

∂tĥ = ∂2
xĥ+ λ

1
2

2 (∂xĥ)2 + ξ̂ .

On small scales, i.e. for λ→ 0, the prefactor λ 1
2 of the non-linear term goes

to zero. We perform the same calculation for (Φ4
d), for this discussion the

mass term m2ϕ is irrelevant so we drop it. Applying the scaling (1.6), i.e.
setting ϕ̂(t, x) = λ

d
2−1ϕ(λ2t, λx) we get

∂tϕ̂(t, x) = ∆ϕ̂(t, x)− λ4−dϕ̂3 + ξ̂ .
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If the spatial dimension d is strictly less than 4 the prefactor λ4−d vanishes
in the limit λ → 0. We call d < 4 the subcritical regime. If d = 4 the
prefactor λ4−d = 1; this is the critical regime. The regime d > 5 is called
the supercritical regime.

We now state a crude “definition” of subcriticality which will be sufficient
for these notes. The interested reader is referred to [27, Assumption 8.3] for a
more precise definition of subcriticality which also extends to different types
of noise ξ and a larger class of regularising linear operators.

Definition 1.3. — Consider the equation
∂tu = ∆u+ F (u,∇u) + ξ , (1.7)

in d spatial dimensions. Equation (1.7) is called subcritical if under the
scaling (1.6) the non-linear term F (u,∇u) gets transformed into a term
Fλ(u,∇u) which formally goes to zero as λ goes to 0.

The main result of [27] can roughly be paraphrased as follows.
Metatheorem 1.4 ([27]). — Assume that SPDE (1.7) is subcritical. We

assume that x takes values in a compact subset of Rd with some boundary
conditions. Furthermore, we prescribe an initial condition u0 which has the
same spatial regularity as we expect for the solution u.

There is a natural notion of solution to (1.7) and such solutions exist and
are unique on a time interval [0, T ) for some random T > 0.

Remark 1.5. — The assumption of subcriticality is not just a technical
restriction. For example it has been proven that a non-trivial Φ4

d cannot exist
for d > 5 (this result extends to d > 4 with some caveats) [1, 16].

Remark 1.6. — We will see below that the statement of Metatheorem 1.4
really consists of two independent statements: (i) for subcritical equations
it is possible to build the algebraic and analytic structure that allows to
formulate the equation and (ii) all the stochastic processes entering the ex-
pansion converge (after renormalisation). It is an astonishing fact that in the
case of equations driven by white noise, the scaling conditions for these two
statements to hold coincide. It is however possible to define a notion of sub-
criticality for more general equations driven by a more general noise term.
This generalised notion still implies that it is possible to build the algebraic
and analytic structure, but there are examples, where stochastic terms fail
to be renormalisable.(2)

(2) This may be familiar to readers who know the theory of rough paths: In princi-
ple this theory allows to solve differential equations with a driving noise dW for W of
arbitrary positive regularity by increasing the number of iterated integrals one considers.
However, the stochastic calculations needed to actually construct the iterated integrals
fail for fractional Brownian motion of Hurst index H < 1

4 [10].
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Remark 1.7. — For what follows we restrict ourselves to the subcritical
regime. While the equations (KPZ) and (Φ4

d) are not scale invariant them-
selves they do interpolate between two different scale invariant space-time
processes, one governing small scales and another governing large scales. As
mentioned before the small scale behaviour should be governed by the solu-
tion to (SHE). At large scales it is expected that (i) one must use different
exponents then (1.6) to get a meaningful limit and (ii) the limiting object will
be a non-Gaussian process scale invariant under these different exponents.

For (KPZ) one should apply the famous 1, 2, 3-scaling

ĥ(t, x) = λ−
1
2h(λ 3

2 t, λx) .

Then, setting ξ̂ = λξ
λ

3
2 ,λ

one has the equation

∂tĥ(t, x) = 1
2(∂xĥ)2 + λ−

1
2 ∂2
xĥ+ λ−

1
4 ξ̂(t, x) . (1.8)

Modulo the subtraction of a drift term, as λ → ∞ the solution of (1.8) is
conjectured to converge to an object called the KPZ fixed point (see [9]).
This limiting object is not yet very well understood(3) .

The behaviour of (Φ4
d) at large scales is also of interest, but much less is

known in this case.

Remark 1.8. — The main aim of these lectures is to show how the theory
of regularity structures can be used to construct local-in-time solutions for
Φ4

3. Let us point out however, that after this result was first published by
Hairer in [27], two alternative methods to obtain similar results have been
put forward: In [23] Gubinelli, Imkeller and Perkowski developed the method
of “paracontrolled distributions” to construct solutions to singular stochastic
PDEs and this method was used in [8] to construct local in time solutions
to Φ4

3. Independently, in [35] Kupiainen proposed yet another method based
on Wilsonian renormalization group analysis. The result for Φ4

3 that can
be obtained by the method of “paracontrolled distributions” is essentially
equivalent to the result obtained in the framework of regularity structures
and arguably this method is simpler because less machinery needs to be
developed. However, the construction of a more comprehensive theory pays
off when looking at more complicated models. For example, approximation
results for the multiplicative stochastic heat equation such as obtained in [30]
seem out of reach of the method of “paracontrolled distributions” for the
moment.

(3) In [9] it was shown that this object does not coincide with the entropy solution of
the Hamilton–Jacobi equation ∂th = 1

2 (∂xh)2.
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Remark 1.9. — At the time of writing these lectures there were at least
three other works ([26], [28], and [15, Chap. 13–15]) that survey the the-
ory of regularity structures. In particular, [28] gives a much more detailed
exposition for many of topics we only briefly discuss in Lecture 4. The au-
thors’ goal for the present work was (i) to clarify certain central concepts
via numerous concrete computations with simple examples and (ii) to give a
panoramic view of how the various parts of the theory of regularity structure
work together.

1.2. The need for renormalisation

We must clarify what is meant by solution theory and uniqueness in
the Metatheorem 1.4. Classical solution theories for SPDEs (see e.g. [12,
24, 42]) do not apply here since the solutions are too irregular. For (KPZ)
the solution h(t, x) has the regularity of a Brownian motion in space (the
mapping x 7→ h(t, x) for fixed t is almost surely α-Hölder continuous for every
α < 1

2 but not for any α > 1
2 ). Remembering Remark 1.1 we expect that

the distributional derivative ∂xh has the regularity of spatial white noise.
For (Φ4

d) the solution theory was already fairly understood only in d = 1
(there ϕ is α-Hölder for every α < 1

2 which is largely sufficient to define
ϕ3, see [17]). In the cases d = 2, 3 the subcriticality assumption stated in
Definition 1.3 still applies but ϕ will not be regular enough to be a function.

A natural way to try to interpret nonlinear expressions involving highly
irregular objects is regularization. In the context of our singular SPDE this
means that if we show that solutions of regularized equations converge to
some object as we remove the regularization then we can define this limiting
object as the solution of the SPDE. Unfortunately this naive approach does
not work, the solutions to the regularized equations will either fail to converge
or converge to an uninteresting limit. We use the dynamic Φ4

2 model as a
concrete example of this. One natural regularization consists of replacing ξ
by a smoothened noise process. Let % be a smooth function on R×Rd which
integrates to 1. For δ > 0 we set

%δ(t, x) := δ−(2+d)%(δ−2 t, δ−1 x) . (1.9)

We use the parabolic scaling δ−2t and δ−1x since it will be a convenient
choice for later examples. For any δ > 0 we define the regularized noise
ξδ := ξ ∗ %δ where ∗ indicates space-time convolution. For any fixed positive
δ proving (local) existence and uniqueness for the solution of

∂tϕδ = ∆ϕδ − ϕ3
δ + ξδ (1.10)
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poses no problem in any dimension since the driving noise ξδ is smooth.
However in [31] this example was studied(4) on the two dimensional torus
and it was shown that as δ ↓ 0 the solutions ϕδ converge to the trivial
limit 0 for any initial condition! In order to obtain a non-trivial limit the
equation (1.10) has to be modified in a δ dependent way. We will see that
in dimensions d = 2, 3 if one considers

∂tϕδ = ∆ϕδ − (ϕ3
δ − 3cδϕδ) + ξδ , (1.11)

for a suitable dimension dependent choice of renormalisation constants cδ,
then the solutions ϕδ do indeed converge to a non-trivial limit ϕ. This con-
stant cδ will diverge as δ ↓ 0. For (1.11) in d = 2 one can take C1 log(δ−1) for
a specific constant C1, while for d = 3 one can take cδ = C1δ

−1 +C2 log(δ−1)
for specific constants C1, C2 where C1 depends on the choice of %. A similar
renormalisation procedure is necessary for the KPZ equation. In [25] it was
shown that solutions of

∂thδ(t, x) = ∂2
xhδ(t, x) + 1

2(∂xhδ(t, x))2 − cδ + ξδ(t, x) (1.12)

on the one-dimensional torus converge to a non-trivial limit h when one sets
cδ = C1δ

−1 for a specific constant C1. We call (1.11) and (1.12) renormalized
equations and the limits of their corresponding solutions ϕ := limδ↓0 ϕδ and
h := limδ↓0 hδ are what we define to be solutions of (Φ4

d) and (KPZ) in
Metatheorem 1.4; such solutions are often called renormalized solutions.

We now turn to discussing uniqueness for these SPDE. For a fixed sub-
critical equation one can choose different renormalization schemes which
yield different families of renormalized equations and different correspond-
ing renormalized solutions. A simple example of this in the cases of (1.11)
or (1.12) would be shifting cδ by a finite constant independent of δ, this would
change the final renormalized solution one arrives at. One could also change
the renormalization scheme by using a different mollifier % or use a non-
parabolic scaling for a given mollifier. Even with all these degrees of freedom
in choosing a renormalization scheme it turns out that for a given subcriti-
cal equation the corresponding family of possible renormalized solutions will
be parameterized by a finite dimensional space. If a renormalization scheme
yields a non-trivial limit renormalized solution then this solution will lie in
this family. For (KPZ) and (Φ4

d) the family of solutions is parameterized by
a single real parameter.

(4) Actually in [31] a different regularisation of the noise is considered, but that does
not change the result.
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Remark 1.10. — The reader should compare the situation just described
to the familiar problem one encounters when solving the stochastic differen-
tial equation

ẋ(t) = b(x(t)) + σ(x(t))ξ(t) ; (1.13)

(which is more conventially written as dxt = b(xt) dt + σ(xt) dWt). There
it is well-known that different natural regularisations converge to different
solutions. An explicit Euler scheme, for example, will lead to the solution in
the Itô sense (see e.g. [33]) whereas smoothening the noise usually leads to
the Stratonovich solution (see the e.g. the classical papers [46, 47]). There
is a whole one-parameter family of meaningful solution-concepts to (1.13)
and the question for uniqueness is only meaningful once it is specified which
particular solution one is looking for.

Later in these lecture notes we will discuss how the theory of regularity
structures gives a “recipe” for coming up with renormalization schemes which
give non-trivial limits, we will also see that the limiting solution itself will
be a fairly concrete object in the theory.

1.3. Approximation of renormalised SPDE by interacting particle
systems

One might think that by introducing (1.11) and (1.12) we have turned our
back on the original equations and physical phenomena they represent. This
is not the case however. There is strong evidence, at least for KPZ and for
Φ4
d, that the renormalised solutions are the physical solutions. For the KPZ

equation subtracting a diverging constant corresponds simply to a change
of reference frame. Furthermore, it was shown in [4] that the solutions to
KPZ arise as continuum limits for the weakly asymmetric simple exclusion
process, a natural surface growth model.

We will now discuss how the dynamic Φ4
d model can be obtained as a con-

tinuum limit of an Ising model with long range interaction near criticality.
In the one dimensional case (where no renormalisation is necessary) this is a
well known result [5, 14] and the right scaling relations for spatial dimensions
d = 1, 2, 3 were conjectured in [18]. One of the interesting features of these
scaling relations is that the “infinite” renormalisation constant has a natu-
ral interpretation as shift of the critical temperature. The two dimensional
convergence result was established only recently in [37]. We will now briefly
discuss this result and show how the relevant scaling relations relate to the
subcriticality assumption for (Φ4

d).
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For N > 1 let ΛN = Zd/(2N + 1)Zd be the d-dimensional discrete torus.
Denote by ΣN = {−1,+1}ΛN the set of spin configurations on ΛN . For a
spin configuration σ = (σ(k), k ∈ ΛN ) we define the Hamiltonian as

Hγ(σ) := −1
2
∑

k,j∈ΛN

κγ(k − j)σ(j)σ(k) .

γ ∈ (0, 1) is a model parameter which determines the interaction range
between spins. It enters the model through the definition of the interaction
kernel κγ which is given by

κγ(k) = cγ γ
d K(γk) ,

where K : Rd → R is a smooth, nonnegative function with compact support
and cγ is chosen to ensure that

∑
k∈ΛN κγ = 1. One should think of this

model as an interpolation between the classical Ising model where every
spin interacts only with spins in a fixed neighbourhood (corresponding to the
case γ = 1) and the mean-field model, where every spin interacts with every
other spin and the geometry of the two-dimensional lattice is completely lost
(corresponding to the case γ = 0).

Then for any inverse temperature β > 0 we can define the Gibbs measure
λγ on ΣN as

λγ(σ) := 1
Zγ

exp
(
− βHγ(σ)

)
,

where as usual
Zγ :=

∑
σ∈ΣN

exp
(
− βHγ(σ)

)
,

denotes the normalisation constant that makes λγ a probability measure.

We want to obtain the SPDE (Φ4
d) as a scaling limit for this model and

therefore, we have to introduce dynamics. One natural choice is given by the
Glauber-dynamics which are defined by the generator

Lγf(σ) =
∑
j∈ΛN

cγ(σ, j)
(
f(σj)− f(σ)

)
,

acting on functions f : ΣN → R. Here σj ∈ ΣN is the spin configuration
that coincides with σ except for a flipped spin at position j. The jump rates
cγ(σ, j) are given by

cγ(σ, j) := λγ(σj)
λγ(σ) + λγ(σj) .

It is easy to check that these jump rates are reversible with respect to the
measure λγ .
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In order to derive the right rescaling for the spin-field σ we write

Xγ(t, x) = 1
δ
hγ

(
t

α
,
x

ε

)
x ∈ Λε, t > 0 .

Here hγ(k, t) =
∑
`∈ΛN κγ(k − `)σ(t, `) is a field of local spatial averages of

the field σ and α, δ, ε are scaling factors to be determined(5) . Let us sketch
how to derive the right scaling relations for α, δ, ε, γ. We only sketch the
calculation, the details can be found in [37]. If we apply the generator Lγ

to the field Xγ an explicit calculation shows that

Xγ(t, x) =Xγ(0, x) +
∫ t

0

(
ε2

γ2
1
α

∆γXγ(s, x) + (β − 1)
α

Kγ ∗Xγ(s, x)

− β3

3
δ2

α
Kγ ∗X3

γ(s, x) +Kγ ∗ Eγ(s, x)
)

ds+Mγ(t, x) , (1.14)

for x ∈ Λε. Here ∆γ is a difference operator (based on the kernel κγ) which
is scaled to approximate the Laplacian acting on the rescaled spatial variable
x. Kγ is an approximation of a Dirac delta function, Mγ is a martingale and
Eγ is a (small) error term. The second relevant relation concerns the noise
intensity. This is determined by the quadratic variation ofMγ which is given
by

〈Mγ( · , x),Mγ( · , y)〉t = 4 εd

δ2α

∫ t

0

∑
z∈Λε

ε2Kγ(x− z)Kγ(y − z)Cγ
(
s, z
)

ds ,

where Cγ(s, z) := cγ(σ(s/α), z/ε).

In order to obtain (Φ4
d) we need to choose scaling factors satisfying

1 ≈ ε2

γ2
1
α
≈ δ2

α
≈ εd

δ2α
,

which leads to

ε ≈ γ
4

4−d , α ≈ γ
2d

4−d , δ ≈ γ
d

4−d .

It is striking to note, that these equations can be satisfied for spatial dimen-
sions d = 1, 2, 3 but they cannot hold as soon as d = 4. This corresponds
exactly to the criticality assumption for (Φ4

d).

At first sight (1.14) suggests that β should be so close to one that
(β − 1)/α = O(1). Note that β = 1 is the critical temperature for the
mean field model in our setup. But for d > 2 this naive guess is incorrect. As

(5) Working with a field of local averages rather than with the original field σ is more
convenient technically, but a posteriori convergence for the original field σ in a weaker
topology can be shown as well.
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for the macroscopic equation the microscopic model has to be renormalised.
Indeed, the main result of [37] states that for d = 2 if we set

(β − 1) = α(cγ −m2) ,
where the “mass” m ∈ R is fixed and the extra term cγ chosen in a suitable
way (diverging logarithmically) as γ goes to 0, then (under suitable assump-
tions on the initial data) Xγ does indeed converge in law to the solution
of (Φ4

d). A similar result is expected to hold in three dimensions.

Lecture 2

We start this lecture by describing how we will keep track of the regu-
larity of space-time functions and distributions. After that we give a review
of classical solution techniques for semilinear (stochastic) PDEs. We will ex-
plain how a lack of regularity causes problems for these theories, using (Φ4

d)
in d = 2, 3 as our examples. We will then describe a perturbative approach
to these equations. Divergences will be seen clearly in formal expansions
of the solutions, this will motivate the choice of diverging renormalization
constants appearing in the renormalized equations. We will also go through
some calculations to make the objects at hand concrete; this will prepare us
for Lecture 3 where we present more abstract parts of the theory.

2.1. Regularity

The functional spaces we use in these notes are a generalization of the
usual family of Hölder spaces, these spaces will be denoted by Cαs where α
is the analog of the Hölder exponent. We will measure space-time regularity
in a parabolic sense which is why we write s in the subscript of Cαs (the s
stands for “scaled”). For z, z′ ∈ R×Rd we denote by ‖z′− z‖s the parabolic
distance between z̄ and z. Writing z′ = (t′, x′) and z = (t, x) we set

‖z′ − z‖s := |t′ − t| 12 +
d∑
j=1
|x′j − xj | .

Below it will also be useful to have the notion of scaled dimension ds = d+2
for space-time R× Rd, i.e. the time variable counts for two dimensions.

Definition 2.1. — For α ∈ (0, 1) the space Cαs (R × Rd) consists of all
continous functions u : R× Rd → R such for every compact set K ⊆ R× Rd
one has

sup
z,z′∈K
z 6=z′

|u(z)− u(z′)|
‖z − z′‖αs

<∞ . (2.1)
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Remark 2.2. — In these notes the theory of regularity structures will be
applied to problems in compact space-time domains. Accordingly we will be
concerned with estimates that are uniform over compacts instead of trying
to get estimates uniform over all of space-time.

In order to accomodate distributions we will want an analog of Hölder
spaces where α is allowed to be negative. A natural choice are the (paraboli-
cally scaled) Besov spaces {Bα∞,∞}α∈R. In particular these spaces agree with
our earlier definition for α ∈ (0, 1). In analogy to the positive Hölder spaces
we still denote these Besov spaces by Cαs when α < 0.

There are several ways to characterise these Besov spaces (including
Paley–Littlewood decomposition ([3]) or wavelet decompositions). For these
notes we use a simple definition that is convenient for our purposes. First
we need some more notation. For any positive integer r we define Br to be
the set of all smooth functions η : Rd+1 → R with η supported on the unit
ball of Rd+1 (in the parabolic distance ‖ · ‖s) and ‖η‖Cr 6 1. Here ‖ · ‖Cr
denotes the standard norm on Cr, that is

‖f‖Cr := sup
α,|α|6r

sup
x∈Rd+1

|Dαf(x)|

where we used multi-index notation. We then have the following definition.

Definition 2.3. — Suppose that α < 0. We define Cαs to be the set of
all distributions u ∈ S ′(Rd+1) such that for any compact set K ⊆ R×Rd one
has

‖u‖Cαs (K) := sup
z∈K

sup
η∈Br
λ∈(0,1]

∣∣∣∣ 〈u,Sλz η〉λα

∣∣∣∣ <∞
where have set r = d−αe and

Sλz η(s, y) := λ−d−2 η
(
λ−2(s− t), λ−1(y − x)

)
. (2.2)

One can adapt Definition 2.3 to the case α > 0 (extending Definition 2.1).
We first need to define the parabolic degree of a polynomial. Given a multi-
ndex k = (k0, k1, . . . , kd) ∈ N × Nd we define the monomial zk in the
standard way, we also define the parabolic degree of this monomial to be
|k|s := 2k0 +

∑d
j=1 kj . We then define the parabolic degree of a polynomial

P (z) to be the maximum of the parabolic degree of all of its constituent
monomials.

Definition 2.4. — Suppose that α > 0. We define Cαs to be the set of all
functions u ∈ S ′(Rd+1) such that there exist polynomials {Pz}z∈Rd+1 , each
of parabolic degree less than α, such that for any compact set K ⊆ R × Rd
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one has
‖u‖Cαs (K) := sup

z∈K
sup
η∈B0
λ∈(0,1]

∣∣∣∣ 〈u− Pz,Sλz η〉λα

∣∣∣∣ <∞ . (2.3)

Remark 2.5. — It is easily checked that in the above definition Pz must
just be the bαc-th order Taylor expansion for the function u centered at z.

Remark 2.6. — Important theorems about Cαs spaces (like Theorem 2.8)
fail to hold when α takes integer values(6) . We will implicitly assume that
any Cαs space appearing in the assumption or conclusion of a theorem uses
a non-integer value of α.

We now investigate the regularity of space-time white noise. A calculation
similar to (1.4) shows that for λ ∈ (0, 1] one has

E〈ξ,Sλz η〉2 . λ−d−2 . (2.4)
This suggests that ξ has regularity α = −d2 − 1. The following “Kolmogorov
like” theorem which is small variation of [38, Thm. 5.2] shows that this is
almost true.

Theorem 2.7. — Suppose that we are given a S(Rd+1)-indexed stochas-
tic process ξ(•) which is linear (that is a linear map from S(Rd+1) to the
space of random variables).

Fix any α < 0 and a p > 1. Suppose there exists a constant C such that
for all z ∈ Rd+1, and for all η ∈ S(Rd+1) which are supported on the unit
ball of Rd+1 and satisfy sup

z′∈Rd+1
|η(z′)| 6 1 one has

E
∣∣ξ(Sλz η)

∣∣p 6 Cλαp for any λ ∈ (0, 1] (2.5)

then there exists a random distribution ξ̃ in S(R × Rd) such that for all η
we have ξ(η) = ξ̃(η) almost surely. Furthermore, for any α′ < α − d+2

p and
any compact K ⊆ R× Rd we have

E‖ξ̃‖pCα′s (K) <∞ .

Sketch of proof. — We start by recalling the argument for the classical
Kolmogorov criterion for a stochastic process X(t) indexed by t ∈ R (ig-
noring all questions of suitable modifications). The first step is the purely
deterministic observation that for any continuous function X we have

sup
s6=t∈[−1,1]

|X(s)−X(t)|
|s− t|α′

. sup
k>0

sup
s∈2−kZ∩[−1,1)

2kα
′
|X(s+ 2−k)−X(s)| .

(6) For example, when α is a positive integer the Besov space Bα∞,∞ differs from the
classical Hölder space with parameter α.
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This implies (still in a purely deterministic fashion) that

(
sup

s 6=t∈[−1,1]

|X(s)−X(t)|
|s− t|α′

)p
. sup

k>0
sup

s∈2−kZ∩[−1,1)
2kα

′p|X(s+ 2−k)−X(s)|p

.
∑
k>0

∑
s∈2−kZ∩[−1,1)

2kα
′p|X(s+ 2−k)−X(s)|p .

The only stochastic ingredient consists of taking the expectation of this
expression which yields

E
(

sup
s6=t∈[−1,1]

|X(s)−X(t)|
|s− t|α′

)p
. sup

s6=t

(
1

|s− t|αp
E|X(s)−X(t)|p

) ∑
k>0

2k2kα
′p2−kαp ,

and summing the geometric series.

The argument for Theorem 2.7 follows a very similar idea. The crucial
deterministic observation is that the Besov norm ‖ξ‖Cα′s

can be controlled by

‖ξ‖Cα′s (K) . sup
k>0

sup
x∈2−2kZ×2−kZd∩K̄

2−kα
′(
ξ,S2−k

x η
)
,

where K̄ is another compact set that is slightly larger than K and η is a
single, well chosen test function. There are different ways to construct such
a function η e.g. using wavelets (as in [27]) or using the building blocks of
the Paley–Littlewood decomposition (as in [38]). The argument then follows
the same strategy replacing the sup by a sum and taking the expectation in
the last step only. �

Going back to the discussion of white noise, we recall the basic fact that
for a Gaussian random variableX control of the second moment gives control
on all moments. For all positive integers p there exists a constant Cp such
that

E[|X|p] 6 Cp
(
E[X2]

)p/2
.

It follows that for Gaussian processes once one has (2.5) for p = 2 then a
similar bound holds for all p. Thus we can conclude that ξ has regularity
C−

d
2−1−κ

s for every κ > 0.
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2.2. Linear theory

From now on we will assume periodic boundary conditions in space: the
spatial variable x will take values in the d-dimensional torus Td (which is
identified with [−π, π]d). When more convenient we will sometimes view a
function or distribution defined on R×Td as defined on R×Rd and periodic
in space. We first recall Duhamel’s principle or the variation of constants
formula. Consider the inhomogeneous heat equation given by

∂tu = ∆u+ f

u(0, · ) = u0

where f is a space-time function and u0 is a spatial initial condition. Under
very general regularity assumptions on f and u0 the solution is given by the
formula

u(t, x) =
∫ t

0

∫
Td
K(t− s, x− y) f(s, y) dy ds+

∫
Td
K(t, x− y)u0(y) . (2.6)

Here K is the heat kernel on the torus, which for t > 0 and x ∈ Td is given
by

K(t, x) =
∑

k∈2πZd

1
(4πt) d2

exp
(
− (x− k)2

t

)
.

We extend K to negative times t by defining it to be 0 on ((−∞, 0]×Td) \
{(0, 0)}. We will then view K as smooth function on R×Td \ {0, 0}. When
f is a space-time distribution and/or u0 is a space distribution the right
hand side of (2.6) is a formal expression but in many cases it can be made
rigorous via the duality pairing between distributions and test functions.
More precisely, we say that ξ is a distribution on (0,∞) × Td if it is a
distribution on R × Td which vanishes when tested against test-functions
that are supported in (−∞, 0]×Td. Note that in general it is not possible,
to multiply a distribution with the indicator function 1(0,∞)(t), so that even
in a distributional sense the integral over (0, t) cannot always be defined
(think e.g. of the distribution ϕ 7→ P.V.

∫ 1
tϕdt on R). However, for white

noise ξ it is easy to define ξ1(0,∞)(t) as an element of C− d+2
2 −κ.

To keep our exposition simple we will always assume that the initial
condition u0 is zero. We now give an important classical result (essentially
a version of the parabolic Schauder estimates, see e.g. [34], for a statement
which implies our version see [27, §5]). In what follows Λt denotes the domain
of integration in (2.6), that is Λt := (0, t)×Td and we use Λ = (0,∞)×Td.
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Theorem 2.8 (Schauder Estimate). — For f in Cαs (Λ) define

u(s, x) :=
∫

Λs
K(s− r, x− y) f(r, y) dy dr (2.7)

interpreted in a distributional sense if α < 0. Then if α /∈ Z, we have

‖u‖Cα+2
s (Λt) . ‖f‖Cαs (Λt) .

The Schauder estimate shows that the use of parabolic scaling of space-
time is natural when measuring regularity. We do not give a proof of this
result here; compare however to the discussion of the integration map for
regularity structures in Section 4.4 below.

We now apply Duhamel’s principle to the stochastic heat equation (SHE)
(again with vanishing initial condition). Formally the solution is given by

Z(t, x) =
∫

Λt
K(t− s, x− y) ξ(s, y) dy ds . (2.8)

The standard approach is to view Z as a stochastic integral (the resulting
object is called a stochastic convolution). However we can also define Z de-
terminstically for each fixed realization of white noise. Each such realization
of white-noise will be an element of C−

d
2−1−κ

s (R × Td), the Schauder esti-
mate then implies that Z ∈ C1− d2−κ

s (R×Td) for every κ > 0. It follows that
Z is a continuous function in d = 1 while for d > 2 we expect Z to be a
distribution.

Instead of using the Schauder estimate we can also get a handle on the
regularity of Z by establishing the estimate (2.5) for p = 2 (since Z is
Gaussian). This is an instructive calculation and it gives us a good occasion
to introduce graphical notation in familiar terrain. From now on we denote
the process Z introduced in (2.8) by . This is to be read as a simple graph,
where the circle at the top represents an occurrence of the white noise and
the line below represents an integration against the heat kernel. As above we
will use the convention to combine the space and time variable into a single
variable z = (t, x). With these conventions testing against the rescaled
test-function Sλz η, defined as above in (2.2), yields

( ,Sλz η) =
∫

Λ

∫
Λ
Sλz η(z1)K(z1 − z2) dz1 ξ(dz2) . (2.9)

Then, using the characterising property (1.3) of white noise we get

E
[
( ,Sλz η)2]

=
∫

Λ

∫
Λ

∫
Λ
Sλz η(z1)Sλz η(z̄1)K(z1 − z2)K(z̄1 − z2) dz2 dz1dz̄1 . (2.10)
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The only property of the kernel K that enters our calculations is how
quickly it grows near the origin. This motivates the following definition.

Definition 2.9. — Given a real number ζ, we say a function G :
Rd+1 \ {0} 7→ R is a kernel of order ζ if

‖G‖ζ := sup
z∈Rd+1\{0}

|G(z)| × ‖z‖ζs <∞ .

Then one has the following easy lemma.

Lemma 2.10. — The kernel K(z) of (2.8) and (2.9) is of order −(ds−2)
where ds = d+ 2 is the scaled dimension introduced above.

We now introduce a graphical representation of the integral (2.9). Of
course at this stage one could still evaluate the integral by hand easily, but
this formalism becomes very convenient for more complicated integrals. In
this graphical formalism we represent (2.10) by

E
[
( ,Sλz η)2] =

−ds + 2 −ds + 2
. (2.11)

Again, each line represents an occurrence of the kernel K and the order is
denoted below. The black square in the middle represents an integration over
the space-time Λ and the grey vertices at the sides represent an integration
against the scaled test-function Sλz η. Note that there is a simple “graphical
derivation” of (2.11) which consists of “gluing” the dots in two copies of
together.

The following lemma (essentially [27, Lem. 10.14]) is simple but extremely
helpful, because it permits to perform the analysis of integrals, which are
potentially much more complicated than (2.10) on the level of graphs, by
recursively reducing the complexity of the graph, keeping track only of the
relevant information.

Lemma 2.11. — Let K1,K2 be kernels of order ζ1, ζ2 ∈ R with compact
support. Then their product K1K2 is a kernel of order ζ1 + ζ2 and we have
‖K1K2‖ζ1+ζ2 6 ‖K1‖ζ1‖K2‖ζ2 . If furthermore,

ζ1 ∧ ζ2 > −ds and ζ = ζ1 + ζ2 + ds < 0 , (2.12)

then K1 ∗ K2 (where ∗ denotes the convolution on R × Td) is a kernel of
order ζ and we have ‖K1 ∗K2‖ζ . ‖K1‖ζ1‖K2‖ζ2 .

Remark 2.12. — The first condition in (2.12) is necessary in order to
ensure that the convolution K1 ∗ K2 is well defined. The integration is re-
stricted to a compact space-time domain, so that we only have to deal with
convergence at the singularities, but of course the constant depends on the
choice of domain. The second condition ensures that the resulting kernel
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actually does have a blowup at the origin. In the case ζ1 + ζ2 + ds = 0 it
is in general not true that K1 ∗ K2 is bounded. However, one can obtain
a bound with only a logarithmic divergence at the origin (we will see that
in our discussion of the two dimensional stochastic heat equation below).
There is in general no reason to expect that if ζ1 + ζ2 + ds > 0 we will have
K1 ∗K2(0) = 0. In this case K1 ∗K2 is not the correct object to work with,
one must also subtract a partial Taylor expansion.

We now apply this result to the integral over z2 appearing in (2.10). Note
that if η has compact support this integration is over a compact space-time
domain (depending on the point z). For d > 3, (i.e. ds > 5) condition (2.12)
is satisfied and we can replace the convolution of the kernels by a single
kernel of order −ds + 4. In our convenient graphical notation this can be
written as

−ds + 2 −ds + 2
.

−ds + 4
. (2.13)

At this stage it only remains to observe that for η with compact support and
for ζ > −ds ∫

Λ

∫
Λ
Sλz η(z1) Sλz η(z̄1)‖z1 − z̄1‖ζsdz1 dz̄1 . λ

ζ ,

and we have derived (2.5) and therefore the right regularity of at least
for d > 3. For d = 2 we are in the critical case −ds + 4 = 0. According to
Remark 2.12 the inequality (2.13) remains valid if we interpret a kernel of
order 0 as a logarithmically diverging kernel.

For d = 1 condition (2.12) fails and we cannot use the same argument to
derive the desired 1

2− regularity. This is due to the fact that in order to obtain
positive regularity, ( ,Sλz η) is plainly the wrong quantity to consider. As
observed in Definition 2.4 rather than bounding the blowup of local averages
of near z we need to control how fast these local averages go to zero if a
suitable polynomial approximation (the Taylor polynomial) is subtracted.
In the case of we aim to show 1

2− regularity, so we need to control how
quickly ( − (z),Sλz η) goes to zero for small λ. This observation may seem
harmless, but we will encounter it again and again below. Arguably much
of the complexity of the theory of regularity structures is due to the extra
terms we encounter when we want to obtain bounds on a quantity of positive
regularity (or order). In this particular case it is not too difficult to modify
the graphical argument to get a bound on ( − (z),Sλz η). The integral (2.10)
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turns into
E
[
( − (z),Sλz η)2]
=
∫

Λ

∫
Λ

∫
Λ
Sλz η(z1)Sλz η(z̄1)

×
(
K(z−z2)−K(z1−z2)

) (
K(z−z2)−K(z̄1−z2)

)
dz2 dz1dz̄1 .

Now we need to use the fact that not only K has the right blowup near the
diagonal but also its derivatives. More precisely, for every multi-index k we
have that

|DkK(z)| . ‖z‖−ds+2−|k|s
s .

In fact, these additional bounds are imposed in the version of Definition 2.9
found in [27] and also appear in some statements of harmonic analysis
relating to singular kernels. In [27, Lem. 10.18] it is shown how the ker-
nel K(z − z2) − K(z1 − z2) can be replaced by a “Taylor approximation”
DK(z1−z2)(z−z1). The factor (z−z1) can then be pulled out of the convo-
lution integral over z2 and the “graphical algorithm” can be applied to the
convolution of two copies of DK which do satisfy (2.12).

2.3. Nonlinear equations

For non-linear equations Duhamel’s principle turns into a fixed point
problem. We illustrate this for equation (Φ4

d) in one spatial dimension where
one gets

ϕ(t, x) =
∫ t

0

∫
T1
K(t− s, x− y) ξ(s, y) dy ds

−
∫ t

0

∫
T1
K(t− s, x− y) ϕ3(s, y) dy ds . (2.14)

For simplicity we have dropped the mass term m2ϕ and set the initial condi-
tion to be 0. The Schauder estimate tells us that the first term on the right
hand side of (2.14) is in C

1
2−κ
s (R+ × T1) for any κ. The following theorem

characterizes when we can understand products like ϕ3 classically.

Theorem 2.13 ([27, Prop. 4.11], see also [3, §2.6]). — Suppose that α+
β > 0, then there exists a bilinear form B( · , · ) : Cαs × C

β
s → Cα∧βs such that

• For smooth functions f, g one has that B(f, g) coincides with the
point-wise product of f and g.
• For arbitrary f ∈ Cαs , g ∈ C

β
s one has

‖B(f, g)‖Cα∧βs
. ‖f‖Cαs × ‖g‖Cβs .
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Additionally, if α+β 6 0 then no bilinear form B( · , · ) : Cαs ×C
β
s → Cα∧βs

satisfying both of the above statements exists.

It is then natural to treat (2.14) as a fixed point problem in C
1
2−κ
s (R+×T1)

(by Theorem 2.13 the definition of ϕ3 poses no difficulty in this space). For
any fixed realisation of ξ there exists T (ξ) > 0 such that the operator

Ψ : ϕ 7→
∫ ·

0

∫
T1
K( · − s, · − y) ξ(s, y) dy ds

−
∫ ·

0

∫
T1
K( · − s, · − y) ϕ3(s, y) dy ds (2.15)

is a contraction on bounded balls in C
1
2−κ
s ([0, T ] × T1). An important ob-

servation is that v = ϕ− = −
∫ t

0
∫

T1 K(t− s, x− y) ϕ3(s, y) dy ds is much
more regular than ϕ itself, in fact the Schauder estimate implies that it is
a C

5
2−κ
s function. It is important to note that this argument does not make

use of the sign of the nonlinear term −ϕ3. Of course, this sign is essential
when deriving bounds that imply non-explosion, the existence of invariant
measures for solutions, or even getting existence and uniqueness when T1 is
replaced by R.

For d > 2 it is not so easy to solve the fixed point problem (2.14) (with the
one-dimensional torus T1 replaced by Td). As we have seen above the sto-
chastic convolution only takes values in the distributional spaces C−

2−d
2 −κ

s

but there is no canonical way to define the mapping ϕ 7→ ϕ3 for ϕ ∈ Cαs with
α < 0. We will now try to find a way around this issue in the case of d > 2,
we start by running a Picard iteration step by step. More precisely we set
ϕ0 = 0 and aim to study the behaviour of the sequence {ϕn}∞n=0 defined
recursively as

ϕn+1 = Ψ(ϕn) ,

where Ψ is defined in (2.15) (with T1 replaced by Td).

With our choice of ϕ0 = 0 the first step in the Picard iteration yields
ϕ1 = which is of regularity C

2−d
2 −κ

s . When going to ϕ2 we immediately run
into trouble when we try to apply Ψ to since this requires us to define 3

for which Theorem 2.13 is of no use.

So far our analysis of (2.15) could be performed entirely deterministically
(occuring for a fixed realization of ξ) but at this point it becomes essential
to use a probablistic approach. While there is no canonical way of cubing an
arbitrary distribution of negative regularity, we will now see that there are
ways to define polynomials in by exploiting its Gaussian structure.
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2.3.1. Construction of Wick powers

We will define 3 by approximation. The calculations will be performed
in the framework of iterated stochastic integrals. Definition and elementary
properties of these are recalled in Appendix A. Let %δ be a smoothing kernel
on scale δ (as was used in (1.9)) and set

δ(z) := ∗ %δ(z) =
∫

Λ
K ∗ %δ(z − z̄) ξ(dz̄) . (2.16)

For every δ > 0 the random function δ(z) is smooth and we can define δ(z)3

without ambiguity. To analyse the behaviour of 3
δ as δ → 0 we interpret δ

as a stochastic integral against ξ and apply (A.5) which gives

δ(y)3 =
∫
W(3)
δ (y; z1, z2, z3)ξ(dz1) ξ(dz2) ξ(dz3)

+ 3
∫
W(1)
δ (y; z1) ξ(dz1) , (2.17)

where

W(3)
δ (y; z1, z2, z3) =

3∏
j=1

[K ∗ %δ(y − zj)] ,

and

W(1)
δ (y; z1) = K ∗ %δ(y − z1)

∫ (
K ∗ %δ(y − z)

)2 dz . (2.18)

As before, we will introduce a graphical notation to analyse these expressions.
In this notation (2.17) becomes

δ(y)3 = δ + 3 δ δ .

As before, each black dot represents an occurrence of the space-time white
noise, and each line represents an integration against a singular kernel. The
black square appearing in the second term is a dummy variable which is
integrated out. The subscript δ appearing in all the graphs represents the
fact that all singular kernels are regularised at scale δ, i.e. K is replaced by
K ∗ %δ which satisfies

|K ∗ %δ(z)| .
1

(‖z‖s + δ)ds−2 .
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Applying the same graphical rule as above, we get

E
[
( δ,Sλz η)2] =

−ds + 2 −ds + 2

−ds + 2 −ds + 2

−ds + 2 −ds + 2
.

−ds + 4

−ds + 4

−ds + 4

.
−3ds + 12

, (2.19)

uniformly in δ. For d = 3, i.e. for ds = 5, we have −3ds + 12 = 3 > −ds,
which yields the uniform-in-delta bound

E
[
( δ,Sλz η)2] . λ−3 ,

while in the case d = 2 we get as above

E
[
( δ,Sλz η)2] . | log(λ)|3.

However the lower order Itô correction 3
∫
W(1)
δ (y; z1) ξ(dz1) will be a

problem in the δ ↓ 0 limit. The explicit form (2.18) of the kernel W(1)
δ shows

that it can be rewritten as 3CδZ where Cδ is a constant given by

Cδ :=
∫ (

K ∗ %δ(z)
)2 dz . (2.20)

For δ ↓ 0 these Cδ diverge logarithmically for d = 2 and like 1
δ for d = 3(7) .

To overcome this problem we simply remove the diverging term 3CδZ. From
our second moment bound, the Nelson estimate (see (A.6) in Appendix A),
and Theorem 2.7 one can then show that the limit

:= lim
δ↓0

( 3
δ − 3Cδ δ

)
exists as random elements of C−

3
2−κ

s for d = 3 and as random elements of C−κs

for d = 2, where the convergence holds for every stochastic Lp space. The
subtraction implemented above is called Wick renormalization, and the ob-
ject is called the third Wick power of and is sometimes denoted by : Z3 :
(we could write : 3 : to be more consistent with our graphical notation).

(7) Actually, there is a slight cheat in (2.20) because we do not specify the domain of
integration. In each case Cδ does not depend on the spatial variable y, but if we define Cδ
as an integral over Λt then it actually depends on t which one may consider ugly. But the
integral over Λt can be decomposed into a part which does not depend on t and which
diverges as δ → 0 (e.g. the integral over [0, 1] × Td) and a part which depends on t but
remains bounded in δ and which can be ignored in the renormalization procedure. There
are many ways to choose Cδ in a t-independent way. None of these choices is canonical
but all only differ by a quantity that remains bounded as δ → 0.

– 870 –



SPDE

The general recipe for defining Wick powers is as follows: to define : Zn :
one applies the n-th order analog of the identity (A.5) to Znδ , drops all lower-
order Itô corrections(8) to get an object we denote : Znδ :, and then takes
the δ ↓ 0 limit. The graphical analysis of n-th Wick powers is very similar
to (2.19), the only difference being that there are n edges connecting the
left and right vertices. In this way one obtains a singular kernel of order
−nds + 4n as a final result. Hence for d = 2 the blowup of this kernel on
the diagonal can be bounded by | log(z1− z̄1)|n which is integrable for every
n. For d = 3 however we get a polynomial blowup |z1 − z̄1|−n which fails to
be integrable for n > 5. For d = 2 we can define arbitrary Wick powers of
Z = while for d = 3 we can only define Wick powers up to n = 4.

Remark 2.14. — Our reasoning shows that in the three dimensional case
we can define Wick powers up to order n = 4 as space-time distributions. It
is however not possible to evaluate these distribution for fixed t in the cases
n > 3. Only space time averages are well defined.

2.3.2. Back to the Picard iteration

We now return to our Picard iteration, still working formally. The process
: 3 : is denoted by , where again each dot represents an occurrence of white
noise and each line represents one integration against a kernel. The fact that
they are merged at the bottom corresponds to multiplication. For now we
will just replace the Z3 that would have appeared in ϕ2 with so that we
have

ϕ2 = −

where = K ∗ . In the next step of the Picard iteration we would get

ϕ3 = −K ∗
(
− 3 2K ∗ ( ) + 3

(
K ∗

)2 − (K ∗ )3)
.

If we restrict to the case d = 2 then almost all of these terms are well defined.
Indeed, according to the Schauder estimates K ∗ is a function of class C2−κ

s

for any κ > 0. And this is enough to define most of the products. The only
term that causes a problem is the term 2 = Z2, however the corresponding
Wick power := limδ↓0( 2

δ − Cδ) is well defined.

It turns out that these are all the terms that need to be renormalised when
d = 2, and that after modifying these first few steps, the Picard iteration
can actually be closed. Of course we have been working somewhat formally
here, instead of replacing certain powers Zn with Wick powers : Zn : one

(8) By lower order we mean all the terms involving strictly less than n factors of ξ.
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should instead modify the equation so it automatically generates the needed
Wick renormalizations. In the next section we will explain in more detail,
how the above method of treating Φ4

2 can be implemented and we explain
why this approach fails for Φ4

3.

Lecture 3

The renormalization and the Picard iteration for Φ4
2 were performed in

a very elegant way in [11] by a method we call the Da Prato–Debussche
argument. We start this lecture by discussing this argument and then sketch
why it fails for Φ4

3. This motivates us to turn to a more robust approach,
the theory of regularity structures [27]. In particular we will introduce some
of basic objects of the theory: regularity structures, models, and modelled
distributions.

3.1. The Da Prato–Debussche Argument

At the end of Lecture 2 we expanded the solution ϕ of the Φ4
2 equation

in terms of objects built out of the linear solution . A key observation is
that the most singular term in our partial expansion of ϕ was , if we write
ϕ = + v then we expect the remainder v to be of better regularity. While
we are unable to directly treat Φ4

2 equation as fixed point problem in a Cαs
space, it turns out that one can renormalize the original equation so that
it generates Wick powers of and then solve a fixed point equation in a
nicer space for the remainder v. As we already announced in (1.11), the
renormalized equation is

∂tϕδ = ∆ϕδ − (ϕ3
δ − 3Cδϕδ) + ξδ , (3.1)

where Cδ is given by (2.20). Now we write ϕδ = δ + vδ where δ is given
by (2.16) so that it solves ∂t δ = ∆ δ + ξδ. Subtracting this linear equation
from (3.1) gives us

∂tvδ = ∆vδ −
(
(vδ + δ)3 − 3Cδ(vδ + δ)

)
= ∆vδ − v3

δ − 3 δv
2
δ − 3( 2

δ − Cδ)vδ − ( 3
δ − 3Cδ δ) .

(3.2)

This equation looks more promising since the rough driving noise ξδ has
dropped out and from the previous lecture we know that the polynomials in
δ appearing above converge in probability to the corresponding Wick powers
as δ → 0. We pass to the limit and try to solve the fixed point equation

v = K ∗
[
−v3 − 3 v2 − 3 v −

]
. (3.3)
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Recall that , , and are in C−κs for any (small) κ > 0, when d = 2. Using
Theorem 2.8 and Theorem 2.13 we can formulate (3.3) in C2−κ

s , the key
point being that all products on the right hand side of (3.3) make sense in
C2−κ
s . By exploiting the sign of v3 in (3.2) one can also show global in time

existence for v (and therefore for ϕ as well), see [38].

Remark 3.1. — Remarkably a similar argument was originally discov-
ered by Bourgain in the context of the two dimensional non-linear
Schrödinger equation with defocussing cubic non-linearity. More precisely,
in [6] Bourgain studied the deterministic PDE

i∂tϕ = ∆ϕ− ϕ3 .

When written in the mild form

ϕ(t) = e−i∆tϕ(0)−
∫ t

0
e−(t−s)i∆ϕ3(s) ds (3.4)

it resembles (2.14) with the important difference that unlike the heat semi-
group the Schrödinger semigroup e−it∆ does not improve differentiability.
Bourgain studied (3.4) when the initial datum ϕ(0) is a complex Gaussian
free field on the torus in which case z(t) = e−i∆tϕ(0) is a Gaussian evolution
with regularity properties identical to those of the process . He then per-
formed the same Wick renormalisation for the square and the cube of z(t)
and showed that the equation for the remainder v = ϕ−z can be solved as a
fixed point problem in a space of function of positive differentiability. This is
a remarkable result because, as said above, the Schrödinger semigroup does
not usually improve regularity. See e.g. [39] for recent work in this direction.

The above argument does not apply for Φ4
3. In this case ∈ C−3/2−κ

s so
we expect the remainder v to be no better than C1/2−κ

s . Since ∈ C−1−κ
s

we fall far short of the regularity needed to define the product v. One
might try to defeat this obstacle by pushing the expansion further, writing
ϕ = − + v and solving for v. The new fixed point equation is

v = K ∗
[
−v3 − 3 v2 − 3 v − 3( )2v − 3( )v2 − 6 ( )v − 3 ( )− 3 ( )2] .

Since we have pushed the expansion further we do not see the term any-
more. However we are now confronted with the product which cannot
be defined using Theorem 2.13 since ∈ C1/2−κ

s and ∈ C−1−κ
s . In fact,

this ill-defined product is the reason for the second logarithimically diverging
renormalization constant for Φ4

3. But after defining this product by inserting
another renormalization constant by hand, we are still unable to close the
Picard iteration. The real problematic term is the product v which creates
a vicious circle of difficulty. If we could define the product v then it would
have regularity C−1−κ

s , this means at best one could have v ∈ C1−κ
s . However,

– 873 –



Ajay Chandra and Hendrik Weber

this is not enough regularity to define the product v and so we are unable
to close the fixed point argument.

3.2. Regularity Structures

The Da Prato–Debussche argument for Φ4
2 consisted of using stochastic

analysis to control a finite number of explicit objects built out of the linear
solution followed by the application of a completely deterministic fixed point
argument in order to solve for a relatively smooth remainder term. For Φ4

3
we saw that regardless of how far one expands ϕ, writing

ϕ = − + · · ·+ v , (3.5)
the product v always prevents us from formulating a fixed point argument
for v. We cannot make the remainder v arbitrarily smooth just by pushing
the expansion further.

In the theory of regularity structure we will again postulate an expansion
for ϕ which looks more like

Φ(z) = Φ (z) + Φ (z) + · · ·+ Φ1(z)1 . (3.6)

One immediately visible difference is that the expansion (3.6) allows varying
coefficients in front of various stochastic objects. Instead of solving a fixed
point equation for a single function v, we will instead solve a fixed point
equation for a family of functions (Φ ,Φ , . . . ,Φ1). We will also be interested
in something called the “order”(9) of objects , . . . , , . . . in (3.6) instead of
just their regularity. The order of an object describes how much we expect
it to vanish or blow up when evaluated at small scales, one of the main goals
of this section is to clarify the concept of “order”. Finally, while the objects
, . . . , , . . . appearing in (3.6) are related to the corresponding stochastic
objects in (3.5), they will turn out to be a totally different sort of object so
we have distinguished them by coloring them blue.

In [27] the fixed point problem associated with SPDE is solved in an
abstract setting. The rest of this lecture will be devoted to introducing the
hierarchy of objects that populate this abstract setting and we begin by
defining the most basic object.

Definition 3.2 ([27, Def. 2.1]). — A regularity structure T consists of
a triple (A, T,G).

• A ⊆ R is an indexing set which is bounded from below and has no
accumulation points.

(9) What we call order is referred to as homogeneity by Hairer in [28] and [27].
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• T =
⊕

α∈A Tα is a graded vector space where each Tα is a finite
dimensional(10) real vector space which comes with a distinguished
basis and norm.
• G is a family of linear transformations on T with the property that
for every Γ ∈ G, every α ∈ A, and every τ ∈ Tα one has

Γτ − τ ∈ T−α , (3.7)
where we have set

T−α :=
⊕
β<α

Tβ .

Additionally we require that G form a group under composition.

In the triple (A, T,G) the set A is an indexing set that lists the orders
of the objects that we allow to appear in our expansions. We will always
assume 0 ∈ A. For any α ∈ A an element τ ∈ Tα should be thought of as
an abstract symbol that represents an object of order α. For such a “ho-
mogenous” element τ we write |τ | = α. We denote by ‖ · ‖α the norm on
Tα

(11) . For general τ ∈ T we set ‖τ‖α := ‖Qατ‖α where Qα : T → Tα is
just projection onto the α-component.

Returning to (3.6), the objects and no longer represent fixed space-
time distributions but instead are abstract symbols which are homogenous
elements of T . The object Φ in (3.6) is actually a map Φ : Rd+1 → T . The
family of linear transformations G, called the structure group, will play an
important role in the theory but we will introduce it slowly as we introduce
examples of increasing complexity(12) .

3.3. An abstract generalization of Taylor expansions

While (3.5) is a perturbative expansion generated by Picard iteration, one
should think of (3.6) as a jet(13) , at each space-time point this expansion
represents the solution as a linear combination of objects that vanish (or blow
up) at controlled rates when evaluated near that space-time point. We will

(10) Actually, in [27] these spaces are note required to be finite-dimensional, but in
most examples we are aware of they are even of very low dimension.

(11) Since all norms on such Tα are equivalent we may not fix a specific one when
defining a regularity structure.

(12) In practice we will not explicitly define the entire structure group G when we
encounter more complex regularity structures T , only a small subgroup germane to our
discussion.

(13) More specifically, a collection of Taylor expansions indexed by space-time “base-
points”.
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now show how the actual Taylor expansions familiar to a calculus student
can be formulated in the theory of regularity structures.

We claim that the statement a function f : Rd+1 → R belongs to
Cαs (Rd+1) for some α > 0 is equivalent to requiring that (i) for any multi-
index j with |j|s 6 α, Djf exists and is continuous, and (ii) for every
z ∈ Rd+1 one has the bound

sup
z̄

‖z̄−z‖s61

∣∣∣∣∣∣f(z̄)−
∑
|k|s6α

1
k!D

kf(z)(z̄ − z)k
∣∣∣∣∣∣ 6 C‖z̄ − z‖αs . (3.8)

It is not hard to check that together the conditions (i) and (ii) are equivalent
to the requirements of Definition 2.4. Moreover, estimate (3.8) implies that
for any multi-index j with |j|s 6 α one has the bound

sup
z̄

0<‖z̄−z‖s61

∣∣∣∣∣∣Djf(z̄)−
∑

|k|s6α−|j|s

1
k!D

j+kf(z)(z̄ − z)k
∣∣∣∣∣∣ 6 C‖z̄ − z‖α−|j|ss .

(3.9)

Our point is that the statement f ∈ Cαs (Rd+1) corresponds to the exis-
tence of a family of polynomials indexed by Rd+1 which do a sufficiently good
job of describing f locally. To implement this in our setting we will define
a regularity structure, denoted T̄ , which we call the regularity structure of
abstract polynomials.

More precisely, T̄ = (A, T,G) where A = N and T is the algebra of
polynomials in the commuting indeterminates X0,X1, . . . ,Xd. We write X
for the associated (d + 1)-dimensional vector indeterminant. For any l ∈ N
we set Tl to be the Banach space whose basis is the set of monomials Xk

of parabolic degree l (i.e. |k|s = l). For a general τ ∈ T and monomial Xk

we denote by 〈τ,Xk〉 the coefficient of Xk in the expansion of τ . We will
explicitly describe the structure group G for T̄ a little later.

Given any f ∈ Cαs we can associate with it the function F : Rd+1 → T
given by

F (z) =
∑
|k|s6α

1
k!D

kf(z)Xk . (3.10)

The object F should be thought of as a lift, or enhancement, of f . The
original function is easily recovered since f(z) = 〈F (z),1〉, where we have
used the notation 1 := X0. However, at each space time point F also provides
additional local information about f .

Next, we make a connection between the abstract polynomials of T̄ and
concrete polynomials on Rd+1. We define a family of linear maps {Πz}z∈Rd+1
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where for any z ∈ Rd+1 one has Πz : T → S ′(Rd+1). The map Πz takes an
element τ ∈ T and returns a concrete space-time distribution which is “based
at z”. In this section these space-time distributions will just be polynomials
so we can specify them pointwise, for any z ∈ Rd+1 and multi-index k we set(

ΠzXk
)
(z̄) := (z̄ − z)k ,

where z̄ is just a dummy variable. We then extend Πz to all of T by linearity.
The concrete Taylor polynomial for f with base point z is then given by
(ΠzF (z))( · ).

A key ingredient of the theory of regularity structures is a notion of
smoothness for space-time distributions that are classically thought of as
very singular. This requires lifting a space-time distribution to a family of
local expansions at each space-time point, the notion of smoothness will
then be enforced by comparing these local expansions at nearby space-time
points. We make this analogy more concrete by showing how conditions (3.8)
and (3.9) on f can be elegantly encoded in terms of more abstract conditions
on F .

Directly comparing F (z) and F (z′) for two close space-time points z and
z′ is quite unnatural since each of these local expansions are based at differ-
ent space-time points. What we need is an analog of the parallel transport
operation of differential geometry, we must transport a local description at
one space-time point to another space-time point. For every pair x, y ∈ Rd+1

we will define a linear map Γxy : T 7→ T which plays the role of parallel trans-
port. Γxy takes something which is written as a local object at the space-time
point y and “transports” it to x. This property is encoded in the algebraic
relation

Πyτ = ΠxΓxyτ for all τ ∈ T, x, y ∈ Rd+1 . (3.11)

The structure group G will provide all the operators Γxy. For any h ∈ Rd+1

we set
ΓhXk := (X− h)k ,

and we extend this definition to all of T by linearity. G is defined to be
the collection of operators {Γh}h∈Rd+1 , one can easily check this satisfies
the necessary conditions (and that G is isomorphic to Rd+1 as a group). If
Γxy := Γy−x then (3.11) is satisfied.

With all this in place we can give the following characterization of Cαs
spaces for α > 0.

Theorem 3.3. — Let T̄ = (A, T,G) be the regularity structure of ab-
stract polynomials (in d+ 1 components). Suppose that α > 0. Then a func-
tion f : Rd+1 → R is a member of Cαs (as in Definition 2.4) if and only if
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there exists a function F : Rd+1 → T−α such that 〈F (z),1〉 = f(z) and for
every compact set K ⊆ Rd+1 and every β ∈ A with β < α one has

sup
x∈K
‖F (x)‖β + sup

x,y∈K
x 6=y

‖F (x)− ΓxyF (y)‖β
‖x− y‖α−βs

<∞ , (3.12)

For checking that f ∈ Cαs implies (3.12) one defines F as in (3.10) and
check that the case of β = 0 encodes (3.8) and more generally the case of
β = l encodes (3.9) where |j|s = l. For example, if β = 1 (and α > 1) then
one can check that

Q1ΓxyF (y) = Q1

 ∑
|k|s6α

1
k!D

kf(y)(X− (y − x))k


= Q1

 ∑
|k|s6α

∑
j6k

1
k!D

kf(y) k!
j!(k − j)!X

j(x− y)k−j


=
∑
|j|s=1

Xj
∑

|k|s6α−1

1
k!D

j+kf(y)(x− y)k .

We can assume that the ‖ · ‖1 norm on T1 is an `1 type norm (with respect
to the basis of monomials Xj with |j|s = 1) and so we have

‖F (x)− ΓxyF (y)‖1 =
∑
|j|s=1

∣∣∣∣∣∣Djf(x)−
∑

|k|s6α−1

1
k!D

j+kf(y)(x− y)k
∣∣∣∣∣∣

which combined with (3.9) gives us (3.12)for all multi-indices j with |j|s = 1.
Showing that the existence of such an F implies f ∈ Cαs is quite similar, (3.12)
implies that {ΠzF (z)}z∈Rd+1 is a family of sufficiently good polynomial ap-
proximations for f .

3.4. Models and Modelled Distributions

We now give a more general and axiomatic description for some of the
new objects we encountered in the last section. The first concept is that of a
model which is what allowed us to go from abstract symbols in a regularity
structure to concrete space-time distributions.

Definition 3.4. — Let T = (A, T,G) be a regularity structure. A model
for T on Rd+1 consists of a pair (Π,Γ) where

• Γ is a map Γ: Rd+1 × Rd+1 → G which we write (x, y) 7→ Γxy. We
require that Γxx = I and Γxy Γyz = Γxz for all x, y, z ∈ Rd+1.

– 878 –



SPDE

• Π = {Πx}x∈Rd+1 is a family of linear maps Πx : T → S ′(Rd+1).
• One has the algebraic relation

Πy = ΠxΓxy for all x, y ∈ Rd+1 . (3.13)

Finally, for any α ∈ A and compact set K ⊆ Rd+1 we also require that the
bounds ∣∣(Πxτ)

(
Sλxη

)∣∣ . ‖τ‖αλα and sup
β<α

||Γxyτ ||β
‖x− y‖α−βs

. ‖τ‖α (3.14)

hold uniformly over all τ ∈ Tα, λ ∈ (0, 1], space-time points x, y ∈ K, and
test functions η ∈ Br for r := d−minAe.

Given a fixed regularity structure T , let M be the set of all models on
T . For any compact set K ⊆ Rd+1 one can define a “seminorm” ‖ · ‖K on
M by defining ‖(Π,Γ)‖K to be the smallest real number K such that the
inequalities of (3.14) hold over x, y ∈ K with proportionality constant K(14) .
One can then define a corresponding metric onM. While we do not explicitly
give the metric here, the corresponding notion of convergence onM is very
important and will be referenced when we introduce more of the machinery
of regularity structures.

Remark 3.5. — It is straightforward to check that the (Π,Γ) introduced
last section satisfies the conditions to be a model for the regularity structure
of abstract polynomials T̄ .

Remark 3.6. — Given τ ∈ Tα and a model (Π,Γ) it is not necessarily
the case that Πzτ ∈ Cαs . The key point here is that the first bound of (3.14)
is only enforced for test functions centered at z.

Another thing we did in the previous section was develop a notion of
regularity for families of local expansions F : Rd+1 → T . More generally,
such families F with good regularity properties will be called modelled dis-
tributions.

Definition 3.7. — Fix a regularity structure T and a model (Π,Γ) for
T . Then for any γ ∈ R the space of modelled distributions Dγ consists of
all functions F : Rd+1 → T−γ such that for any compact set K ⊆ Rd+1

‖F‖γ;K := sup
x∈K

sup
β<γ
‖F (x)‖β + sup

x,y∈K
0<‖x−y‖s61

sup
β<γ

‖F (x)− ΓxyF (y)‖β
‖x− y‖γ−βs

<∞ .

(3.15)

(14) We used the word seminorm in quotation marks sinceM is not a linear space due
to the algebraic constraint (3.13).
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The definition above generalizes the idea behind Theorem 3.3. In the
next section we will see a scenario where a certain class of functions with
classical regularity Cαs for α ∈ ( 1

3 ,
1
2 ) can be thought of as more regular

via the construction of lifts to modelled distributions in a Dγ space with
γ = 2α. This corroborates our earlier remark that objects with bad classical
regularity can be thought of as more regular via a lift to a well behaved
family of local expansions. In the next lecture we will see how this point
of view actually pays off. Even if two space-time distributions f, g are too
irregular to define their product fg via Theorem 2.13, we will in fact be
able to make sense of their product if we can lift them to a appropriate Dγ
spaces.

Remark 3.8. — As was the case with the Cαs spaces, certain theorems
for Dγ spaces fail when γ ∈ Z or more general, when γ ∈ A (in particu-
lar, the abstract Schauder estimate in second part of Theorem 4.20 fails).
Therefore we implicitly assume that any Dγ space entering the assumptions
or conclusion of theorem involve a value γ /∈ A.

The machinery of regularity structures operates with a fixed regularity
structure T and varying models (Π,Γ). Therefore it is very important to re-
member that the definition of a Dγ space strongly depends on the choice of
model (even though their constituent objects F : Rd+1 → T don’t make ref-
erence to any model). We will sometimes use the notation Dγ [(Π,Γ)] to make
the dependence of this space on the choice of model explicit. Furthermore,
we will sometimes be interested in comparing modelled distributions that
live in different Dγ spaces coming from different models. We defineMnDγ
to be the set of triples (Π,Γ, F ) such that (Π,Γ) ∈ M and F ∈ Dγ [(Π,Γ)].
There is a natural way to turn M n Dγ into a metric space, we do not
describe this here but refer the reader to [28, Rem. 2.11].

3.5. Controlled rough paths

The theory of rough paths was originally developed by Lyons in [36], in
this section we will see how the theory of regularity structures is related to
a variant of Lyons’ rough paths due to Gubinelli [22] called controlled rough
paths. For the purposes of this section we will work with Rd valued functions
defined on [0, 1] instead of the real-valued functions defined on space-time
we looked at earlier. Modifying Definitions 3.4 and 3.7 to this setting is
straightforward.

Gubinelli was interested in defining the Riemann–Stieltjes type integral∫ 1

0
f · dg , (3.16)
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for functions f, g in the Hölder space Cγ([0, 1],Rd) for some γ ∈ ( 1
3 ,

1
2 ). The

classical theory breaks down in this regime for familiar reasons, morally dg
is in Cγ−1 and the product f dg is not canonically defined since 2γ − 1 < 0.

The strategy of controlled rough paths can be paraphrased as follows. If
g is a well understood stochastic process one might be able to define the
objects ∫ •

0
gi dgj (3.17)

for 1 6 i, j 6 d via some probabilistic procedure (this is analogous to our
construction of Wick powers of Z earlier). Then based on a completely de-
terministic analysis, the integral (3.16) can be constructed for a whole class
of functions f which admit a type of local expansion in terms of g.

Definition 3.9 (Gubinelli [22]). — A function f : [0, 1] → Rd is con-
trolled by a function g ∈ Cγ([0, 1],Rd) if there exists a function Dgf : [0, 1]→
Rd×d such that one has the bounds∣∣∣∣f(t)− [f(s) +Dgf(s)(g(t)− g(s))]

∣∣∣∣ . |t− s|2γ (3.18)

and
|Dgf(t)−Dgf(s)| . |t− s|γ (3.19)

uniformly over s, t ∈ [0, 1]. Above Dgf(s) is being thought as a d× d matrix
acting on Rd.

The requirements (3.18) and (3.19) should be seen as analogs of (3.8)
and (3.9) above and the object Dgf is analogous to a derivative. Gubinelli’s
observation was that although f will only be a Cγ function, the fact that f
is controlled by g allows one to treat f as if it had C2γ regularity.

Fix a choice of γ ∈ ( 1
3 ,

1
2 ). We will now define a regularity structure T

and an associated model (Π,Γ) built using a function g ∈ Cγ([0, 1],Rd). In
this setting the statement that f : [0, 1] → Rd is controlled by g will be
equivalent to the existence of a lift of f to modelled distribution in D2γ .
One difference we will see here versus Section 3.3 will be in the action of the
structure group G and the Γxy of the model. The interested reader can also
look at [28, §3.2] where it is shown how enlarging the regularity structure
given here and doing the same for the model (which is where one needs a
definition for (3.17)) allows one to define the integral (3.16).

The regularity structure T = (A, T,G) we use has indexing set A = {0, γ}
where γ ∈ ( 1

3 ,
1
2 ). We set T0 = Rd with distinguished basis {Ei}di=1 and

Tγ = Rd×d with distinguished based {Mi,j}di,j=1. We now turn to defining
the structure group G, for any h ∈ Rd+1 we define Γh : T → T by setting

ΓhEj = Ej, ΓhMi,j = Mi,j + hjEi ,
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and extending by linearity. We then set G := {Γh}h∈Rd . It is an easy exercise
to check that G satisfies the necessary properties to be a structure group and
is in fact ismorphic to Rd.

If a function f is controlled by g we can lift f to vector F : [0, 1]→ T d of
modelled distributions by setting

Fi(s) = fi(s)Ei +
∑
j

Dgfi,j(s)Mi,j . (3.20)

We now describe a way to build a (vector-valued) model (Π,Γ) for this
regularity structure for any fixed g ∈ Cγ . For t ∈ [0, 1] we set

(ΠtEi)(r) = ei ,
(ΠtMi,j)(r) = (gj(r)− gj(t))ei

where r ∈ [0, 1] is a dummy variable and {ei}di=1 are the standard basis
vectors for Rd (these are concrete vectors, as opposed to the abstract symbols
{Ei}di=1). Finally we define the second part of the model as follows, for
s, t ∈ [0, 1] we set Γst = Γg(t)−g(s) ∈ G. One can then check that (Π,Γ)
satisfy the algebraic and analytic conditions to be a model. Finally one has
the following theorem.

Theorem 3.10. — Let T be the regularity structure defined above and
let (Π,Γ) be a model built out a fixed g ∈ Cγ([0, 1],Rd). Then a function
f : [0, 1] → Rd is controlled by g if and only if there exists a modelled
distribution F ∈ D2γ with Q0F (t) =

∑d
i=1 fi(t)Ei.

3.6. Regularity Structures for SPDEs

We take a moment to discuss the vector space T that appears in regu-
larity structures T used for solving equations like (1.7). The space T will be
formed by the linear span of abstract symbols. We denote by T the set of
all abstract symbols appearing in T . T contains the symbol Ξ which repre-
sents the driving noise ξ, since ξ is taken to be space-time white noise we
set |Ξ| = −d/2− 1−κ where κ > 0 can be taken arbitrary small. T will also
have the symbol I[Ξ] which represents the solution to the underlying linear
equation. More generally, given a symbol τ ∈ T it will sometimes be the case
that T also contains the abstract symbol I[τ ] which represents the “integral”
of τ , that is “K ∗ τ”. Inspired by the Schauder estimate (Theorem 2.8) we
would then require |I[τ ]| = |τ |+ 2. However, we do not allow any symbol of
the form I[Xk](15) .

(15) Said differently, we assume that I[ · ] applied to any abstract polynomial vanishes,
Section 4.4 will clarify this.
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Given symbols τ1, τ2 ∈ T it will sometimes be the case that T will contain
the abstract symbol τ1τ2, which represents a commutative product of τ1
and τ2. In this case we will require |τ1τ2| = |τ1| + |τ2|. This condition on
products is an important way that the concept of order differs from that of
regularity(16) .

The symbols mentioned above are generated recursively: one starts with a
set of primitive symbols which consists of Ξ and various powers of X and then
builds more complicated symbols by using I[ · ] and our abstract product.
The graphical notation we used for Φ4 should be seen as a shorthand for the
symbols we have described. For example, we have

= I
[
I[Ξ]3

]
I[Ξ] .

However, the regularity structures one encounters in practice do not contain
all the symbols generated by the recursive procedure sketched above, do-
ing so would usually create problems for the first and second conditions of
Definition 3.2.

To construct the right list of symbols T we start by iteratively applying
a particular set of rules RF determined by the structure of the non-linearity
F appearing in (1.7). The list of rules for Φ4 equations is given by

RΦ4 := {XkI[ · ], XkI[ · ]I[ · ], I[ · ]I[ · ]I[ · ]} . (3.21)

Above and in what follows k represents an arbitrary multi-index, sometimes
subject to a stated constraint. We set T0 := {Ξ, Xk} to be the set of
primitive symbols. Then for j > 1, the set Tj is formed by taking the union
of T0 with the set of all the symbols that one gets by applying any of the
operations listed in the given rule RF to any of the elements of Tj−1. For
example, in the case of Φ4 it is the case that

τ1, τ2, τ3 ∈ Tj ⇒ I[τ1]I[τ2]I[τ3] ∈ Tj+1 .

An important consequence of subcriticality of the equation (1.7) is the
following: if one defines the sets of symbols Tj using RF then there will exist
some β > 0 such that for all j > 1 one has

min
τ∈Tj\Tj−1

|τ | > min
τ∈Tj−1

|τ |+ β .

This means that as we iterate the application of the rule the new symbols
we generate are increasing in order. This guarantees that if we set T equal to
∪∞j=0Tj then the corresponding list of orders A will be bounded below and
will not contain any accumulation points.

(16) In particular, this will allow us to bypass circular issues like the product v in
Section 3.1.
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However, T would still include an infinite list of symbols. In practice one
wants T to be a finite set. To do this we fix a constant γ which is the upper
limit on what order symbols we include in our regularity structure(17) . We
can then modify our previous construction. For j > 1 we define the sets
T̄j by taking the union of T0 with the set of all the symbols that one gets
by applying any of the operations listed in the given rule RF to any of the
elements of T̄j−1, but now with the convention that I[τ ] > γ then I[τ ] is
considered to vanish(18) . We then set

T :=

τ ∈ T0 ∪

 ∞⋃
j=1

T̄j

 : |τ | 6 γ

 .

3.7. The regularity structure and model for Φ4
2

When defining the regularity structure T for the Φ4
2 equation the list

of symbols is given by T defined as above with the rule RΦ4 and γ taken
positive but sufficiently small (γ > 2κ suffices).

Table 3.1. Symbols for Φ4
2

Symbol Order
Ξ −2− κ

−κ
−2κ
−3κ

1 0

Any realization of the driving noise ξ can then be lifted to a model
(Π̂δ, Γ̂δ) as follows. For any z ∈ R2+1 we set:

(
Π̂δ
zΞ
)

(z̄) = ξδ(z̄)(
Π̂δ
z

)
(z̄) = δ(z̄)

(
Π̂δ
z

)
(z̄) = δ(z̄)(

Π̂δ
z

)
(z̄) = δ(z̄)(

Π̂δ
z1
)

(z̄) = 1 .

(3.22)

Here δ, δ, δ are the approximate Wick powers introduced in Lecture 2. A
key simplification with Φ4

2 is that the maps Πz do not depend on z, this means

(17) γ will need to be sufficiently large to allow one to pose the abstract fixed point
problem, see Section 4.3.2.

(18) In particular, no symbol can contain I[τ ] as a subsymbol.
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we can set Γxy = Id where Id is the identity on T . It can be checked that
the models (Πδ,Γδ) satisfy the conditions of Definition 3.4. Additionally, one
can remove the regularization and show that the models (Πδ,Γδ), viewed as
random elements ofM, converge in probability as δ ↓ 0 to a limiting random
model (Π,Γ) given by(19)

(
Π̂zΞ

)
(z̄) = ξ(z̄)(

Π̂z

)
(z̄) = (z̄)

(
Π̂z

)
(z̄) = (z̄)(

Π̂z

)
(z̄) = (z̄)(

Π̂z1
)

(z̄) = 1

and with Γxy = Id for all x, y ∈ Rd+1.

Although the full regularity structure T is required to formulate the fixed
point problem, the solution Φ will be of the form Φ(z) = Φ11 + which is
similar to the decomposition seen in the Da Prato–Debussche argument.
The fact that the structure group can be chosen to be trivial is why the Da
Prato–Debussche argument works for Φ4

2.

3.8. The regularity structure and model for Φ4
3

For Φ4
3, it suffices to define T by taking γ slightly greater than 1. We

include a table of these symbols below(20) . Whenever a factor Xk appears
in a symbol the multi-index k can vary but is constrained by the condition
that the symbol’s order be less than γ.

Again, the approach is to define a family of random models (Π̂δ, Γ̂δ),
defined via lifting ξ, which converge in probability to a limiting random
model (Π̂, Γ̂) as δ ↓ 0. For τ = Ξ, , , and , we define Π̂δ

zτ in the same
way as we did for (3.22) (where the objects are replaced by their d = 3
counterparts). We will not explicitly describe all of the model (Π̂, Γ̂), the
goal for our present discussion is to show how the Γδxy’s and structure group
G are forced to be non-trivial.

This is easily seen with the symbol . A naive definition one might make is(
Π̂δ
z

)
(z̄) = δ(z̄) =

∫
Rd+1

du K(z̄ − u) δ(u) (3.23)

(19) We continue to abuse notation here, using point-wise equalities for singular
distributions.

(20) The algorithm for construction T that we have given may produce extraneous
symbols and indeed the last three symbols given in Table 3.2 are unnecessary to set up a
fixed point problem for Φ4

3. See [27, §8.1] for an algorithm that will give a minimal list of
symbols. Also see 4.5 of these lecture notes for a discussion of relevant terms.
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Table 3.2. Symbols for Φ4
3

Symbol Order
Ξ −5/2− κ

Xk |k|s
Xk |k|s − 1/2− κ
Xk |k|s − 1− 2κ

−3/2− 3κ
1/2− 3κ
1/2− 3κ
1− 2κ
−4κ

−1/2− 5κ
−4κ

1− 6κ
Xk −4κ+ |k|s

1/2− 3κ

for any z ∈ R3+1. However this definition will not satisfy the first bound
of (3.14). While the objects on the right hand side of (3.23) is of regularity
1
2 − 3κ, it does not satisfy the bound∣∣∣(Π̂z

)(
Sλz η

)∣∣∣ . λ 1
2−3κ (3.24)

uniformly in λ ∈ (0, 1] for an arbitrary test function η. A way to recon-
cile this difference was already seen in Definition 2.4. If we want to see a
space-time function of regularity γ > 0 vanish at order γ then we should
subtract a suitable Taylor polynomial. We will get the bound (3.24) if (3.23)
is changed to(

Π̂δ
z

)
(z̄) =

∫
du K(z̄ − u) δ(u) −

∫
du K(z − u) δ(u) .

However
(
Πδ
z

)
(z̄) now has a dependence on z which means that the

structure group G cannot be chosen to act trivially on . The compatibility
condition (3.13) determines completely how Γ acts on . Indeed, Π̂δ

xΓ̂δxy =
Π̂δ
y gives us that[

Π̂δ
x

(
Id− Γ̂δxy

) ]
(z̄) =

(
Π̂δ
x

)
(z̄)−

(
Π̂δ
y

)
(z̄)

=
∫

du K(y − u) δ(u)−
∫

du K(x− u) δ(u) .
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Therefore, we set

Γ̂δxy = +
(∫

du K(y − u) δ(u)−
∫

du K(x− u) δ(u)
)

1 .

The group action on all the other symbols is determined by similar consid-
erations for integration and the compatibility condition for products, given
in (4.11) below.

Remark 3.11. — In general, terms involving X appear in a model when
an abstract integration leads to a symbol of positive order. It is worth men-
tioning that these extra terms do not occur in Gubinelli’s approach [23] to
singular SPDEs using “paracontrolled distributions”.

Lecture 4

4.1. Construction of Canonical Models

In the last lecture we discussed regularity structures and models associ-
ated with controlled rough paths, Φ4

2, and Φ4
3. In this section we will show

that for any fixed regularity structure T which is created by a set of formal
rules like (3.21), there exists a canonical way to map each fixed realization of
a smoothed noise ξδ to a corresponding model (Πδ,Γδ). This model is called
a canonical model and it will be defined recursively with respect to I[ · ] and
the abstract product on T . After that we will discuss more systematically
how to perform the renormalisation procedure which leads to the renormal-
ized models, examples of which we have already encountered in the previous
lecture.

In order to motivate concepts we ignore Definition 3.4 for a moment.
There is a naive approach to assigning a concrete space-time function (built
out of ξδ) to each of the abstract symbols appearing in our regularity struc-
ture, one can recursively define a single linear map Πδ : T → S ′(Rd+1) by
setting: (

ΠδΞ
)
(z̄) := ξδ(z̄)(

ΠδI[τ ]
)
(z̄) :=

∫
Rd+1

dy K(z̄ − y)
(
Πδτ

)
(y)(

Πδτ1τ2
)
(z̄) :=

(
Πδτ1

)
(z̄)×

(
Πδτ1

)
(z̄) .

(4.1)

The map Πδ is a much simpler object than a model but it encodes less
structure. In particular, it does not directly encode anything about the order
of objects. The additional structure that models encode is what makes the
machinery of Sections 4.3.1 and 4.4 continuous with respect to models.
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We have already seen above that when a regularity structure includes
symbols of positive order, the maps {Πz} in a model must be allowed to be
z-dependent, if we want the first bound of (3.14) to hold. Keeping this in
mind, we now describe how the maps Πδ

z of the canonical model (Πδ,Γδ) are
defined. For any z ∈ Rd+1 one sets:(

Πδ
zXkτ

)
(z̄) := (z̄ − z)k ×

(
Πδ
zτ
)
(z̄)(

Πδ
zΞ
)
(z̄) := ξδ(z̄)(

Πδ
zI[τ ]

)
(z̄) :=

∫
Rd+1

dy K(z̄ − y)
(
Πδ
zτ
)
(y)

−
∑
k

|k|s<|τ |+2

(z̄ − z)k

k!

∫
Rd+1

dy (DkK)(z − y)
(
Πδ
zτ
)
(y)

(
Πδ
zτ1τ2

)
(z̄) :=

(
Πδ
zτ1
)
(z̄)×

(
Πδ
zτ1
)
(z̄) .

(4.2)

The key point here is that the application of I[ · ] can produce a new ob-
ject of positive order from an old one of negative order. This is why in the
third line of (4.2) the subtraction we have implemented is just the subtrac-
tion of a partial Taylor expansion when |I[τ ]| > 0. Of course, multiplication
can also produce new objects of positive order but this is dealt with auto-
matically when we enforce the product property, see Section 4.3.2 below, in
particular (4.11).

In Section 3.8 we described models(21) (Π̂δ, Γ̂δ) where for τ ∈ {Ξ, , , }
the function Π̂δ

zτ had no z-dependence. This was possible because these
abstract symbols are of negative order and the latter three objects are built
(using I and the abstract product) out of objects which are all of negative
order. However the symbol = I[I[Ξ]3] is of positive order so Πδ

z had to
be z-dependent in order for the first bound of (3.14) to hold. We also remark
that Π̂δ

z will also be z-dependent even though is of negative order. This
is because is a product of and and the latter is of positive order.

The recursive definition (4.2) is convenient to state and useful in many
proofs. One can also recursively define the corresponding operators Γδxy as
we have already sketched above. For models like the canonical model for
Φ4

3 one could in principle check the algebraic properties by hand, but this
can easily become unwieldy with more complicated examples. In [27] the
connection between a recursive definition of the Γδxy’s and their algebraic
properties is made clear in an elegant way by using the language of Hopf
algebras (see [28, §5.3]). This formulation also becomes very useful when

(21) We remark again that these models were not canonical models, see the next
section.
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one wants to go beyond the canonical model and construct the renormalized
models of the next section.

4.2. Convergence of Models and Renormalization

Most of the machinery we discuss in this lecture is completely determinis-
tic, applied separately for each fixed realization of the noise ξ. However there
is one major obstacle that this deterministic analysis cannot overcome: in
general the canonical models (Πδ,Γδ) built from a δ-smoothing of a fixed
realization of ξ will not converge in the limit δ ↓ 0. The canonical mod-
els associated to Φ4

2 and Φ4
3 are examples of this: we have already seen in

Lecture 2 that the random space-time distributions 3
δ (which play the role

of Πδ
zI[Ξ]3 in the canonical model based on ξδ) do not converge as δ → 0.

The Da Prato–Debussche argument for Φ4
2 overcame this by implementing

renormalization subtractions and the approach in regularity structures is
similar.

We first discuss a criterion for the stochastic convergence of models. Let
T be a regularity structure defined as in Section 3.6 and let T− be the set of
abstract symbols of negative order appearing in T . We seek conditions that
ensure that a sequence (Πδ,Γδ) of random models converge in probability
to a random limiting model (Π,Γ). The key stochastic estimates to show
this are the following: for every τ ∈ T−, test function η, there should exist
ν, ν′ > 0 such that the bounds

E
[∣∣(Πδ

zτ)(Sλz η)
∣∣p] . λp(|τ |+ν) (4.3)

and
E
[∣∣(Πδ

zτ −Πzτ)(Sλz η)
∣∣p] . δν′λp(|τ |+ν) (4.4)

hold for every p ∈ N, uniformly over δ, λ ∈ (0, 1], uniformly over a suitable
class of test-functions η and locally uniformly in z(22) .

Note that the conditions above only involve a finite number of symbols
τ . This is similar to what we saw in the Da Prato–Debussche argument and
as before is a consequence of subcriticality. We also remark that under some
natural assumptions on the sequence of models (Πδ,Γδ) one does not have
to perform any stochastic estimates on the Γ̂δ’s. Finally, as we have already
seen in Lecture 2, one can win a major simplification when the driving noise
ξ is Gaussian. In the Gaussian case one can apply Nelson’s Estimate (A.6)
and it suffices to establish the stochastic estimates just for p = 2. The reader

(22) For a precise statement of all required conditions in the Gaussian case see [27,
Thm. 10.7].
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has already seen the derivation of the bound (4.3) for τ = in Φ4
2 and

Φ4
3. The simple graphical approach based on convolutions presented there is

sufficient for Φ4
3.

It is important to observe that the bound (4.3) consists of two statements:
One is showing that the given quantity satisfies the right type of upper bound
in λ which determines the order of the limiting object. The other statement is
that the quantity remains finite as δ ↓ 0 and relates to the so called ultraviolet
divergences and renormalization. These two issues are essentially orthogonal
to each other. In particular, if the canonical models have divergent behaviour
as δ ↓ 0 then one will already see this at the level of the simpler map Πδ

of (4.1); it is conceptually simpler to first try to renormalize this map. One
does this by defining a new map Π̂δ := ΠδMδ where Mδ : T 7→ T is a
linear map which performs renormalization subtractions at the level of the
regularity structure T . For example, for Φ4

3 one would have

Mδ = − Cδ
MδXj = Xj − CδXj for j = 1, 2, 3
Mδ = − Cδ − C̃δ1
Mδ = − 3Cδ − Cδ + 3C2

δ − 3C̃δ

Mδ = − 3Cδ
Mδ = − Cδ
M δ = − 3Cδ

where Cδ ∼ 1
δ and C̃δ ∼ − log(δ)(23) . Mδ is given by the identity on all

remaining abstract symbols for this regularity structure(24) .

The map M δ has been defined so that if one views the objects Π̂δτ as
random space-time distributions then they converge in probability in the δ ↓
0 limit. The canonical model (Πδ,Γδ) is an enhancement of the simpler map
Πδ. It is possible to postulate suitably flexible conditions on Mδ (for details
see [27, §8.3]) which would guarantee that one can build another model
(Π̂δ, Γ̂δ), called a renormalized model, which is an analogous enhancement
of the map Π̂δ. In the case of the Φ4

3 and many other examples the canonical
and renormalized models will satisfy the “diagonal identity”

(Π̂δ
zτ)(z) = (Πδ

zM
δτ)(z) . (4.5)

(23) The renormalization procedure given for is a bit inconsistent, one should also
include terms −CδcK +C2

δ cK1 on the RHS, here cK is a δ-independent finite constant
which is formally given by cK =

∫
dz K(z). We will later make the convention that I

should encode integration with just a piece of the heat kernel, defined so that it annihilates
constants which means cK will vanish. See Section 4.4.

(24) Note that in order to allow for renormalization of the canonical model this regu-
larity structure has more symbols than those listed in Table 3.2, in particular it suffices
to take γ = 3/2 when defining T. Taking γ larger does not create any new technical
difficulties since T− remains the same.
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Defining this process for general regularity structures is non-trivial (see [28,
§7.1] for a summary). We remark that the relationship between the renor-
malized model and canonical model is fairly complex, in general one does
not have the equality Π̂δ

zτ = Πδ
zM

δτ .

The renormalization procedure can be seen as a deformation of the mul-
tiplicative structure of the canonical model. The first three relations of (4.2)
are essential properties that in practice we always require from models. The
maps Π̂δ

z will satisfy the first three relations of (4.2) but they will not satisfy
the last relation. In the limit δ = 0 the Π̂zτ will be distributions and it is
a priori not even clear how this condition could be interpreted. One should
then really view the left hand side of this expression as a definition of the
right hand side.

4.3. The deterministic analysis

It is an amazing fact about the theory of regularity structures, that once
the stochastic calculations that lead to the renormalised model have been
performed, the deterministic argument that shows the short time existence
of solutions, follows “automatically”. We will now proceed to show how.

Instead of solving the desired equation in a space of R valued function, we
will now solve the equation in a space of modelled distributions, i.e. functions
taking values in T . We stress again that this space depends on the specific
realisation of the model (which is in turn constructed as random variables on
a suitable probability space). In the case of Φ4

2 this “lifted” solution will take
values in the linear space spanned by 1 and . Furthermore, the coefficient
for will be one, so that we will have

Φ(z) = + Φ1(z)1 .
Here, the function Φ1 which describes the solution Φ at order 0 corresponds
exactly to the remainder v we already saw in the Da Prato–Debussche argu-
ment in Section 3.1. In the case of Φ4

3 we need more terms that describe the
solution Φ and again several of these will be constant. In the end, we have

Φ(z) = + Φ1(z)1− + Φ (z) + 〈ΦX(z),X〉 , (4.6)

where we have used the notation 〈ΦX,X〉 =
∑3
j=1 ΦXj

Xj . Furthermore, we
will see that the structure of the equation dictates that Φ = −3Φ1, so that
solving for Φ really involves solving for a system of two functions (one real
valued and one vector-valued) Φ1 and ΦX. We will justify this particular
form of the expansion in Section 4.5 below. It is important to note that in
both cases the description of the solution Φ requires much fewer symbols
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than contained in the regularity structure. The remaining symbols will be
used to define the non-linear operations in the fixed point map. The three
operations we need are reconstruction, multiplication and integration. We
will now proceed to explain each of these operations.

4.3.1. The Reconstruction Theorem

The fundamental link between the abstract definitions/machinery we
have introduced and the concrete results described by Metatheorem 1.4 is
the Reconstruction Theorem which states that there is a reconstruction op-
erator R which establishes a correspondence between modelled distributions
of strictly positive regularity and actual space-time distributions.

Theorem 4.1 ([27, Thm. 3.10]). — Let T = (A, T,G) be a regularity
structure, let α := min A, and r := d−αe. Let (Π,Γ) be a model for T . For
any γ > 0 we set Dγ to be the corresponding space of modelled distributions
based on the model (Π,Γ).

Then there exists a continuous linear map R : Dγ → Cαs with the property
that for any compact set K ⊆ Rd+1 and any F ∈ Dγ one has that RF is the
unique space-time distribution satisfying∣∣(RF )(Sλz η)− (ΠzF (z))(Sλz η)

∣∣ . λγ (4.7)
uniformly over test functions η ∈ Br, λ ∈ (0, 1] and uniformly over compacts
in z.

Furthermore, if the given model (Π,Γ) takes values in continuous func-
tions (this means that (Πzτ) is always a continuous function) then RF will
also be a continuous function and one has the identity

(RF )(z) = (ΠzF (z))(z) . (4.8)

For a given modelled distribution F the space-time distribution RF is
constructed as the limit RF := limn→∞RnF where RnF is built by “stitch-
ing together” the distributions {(ΠzF (z))}z∈Λn where Λn ⊆ Rd+1 is a dis-
crete set of grid points with resolution 2−n. More precisely, RnF is defined
as

(RnF )(z) =
∑
x∈Λn

(ΠxF (x))(ψnx )ψnx (z) (4.9)

where the functions {ψnx}x∈Λn are appropriately scaled and translated
copies of a fairly regular function(25) (26) ψ. Establishing the convergence

(25) In particular, the proof of the Reconstruction Theorem in [27, 28] uses wavelet
analysis.

(26) The reader is encouraged to compare (4.9) with the proof of Theorem 2.7.
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limn→∞RnF uses the algebraic and analytic conditions imposed by Def-
initions 3.4 and 3.7 in a very direct manner. In fact, the Reconstruction
Theorem served as the initial motivation for the abstract setting of regular-
ity structures. A nice exposition of the proof can be found in [28].

One can also let the models in Theorem 4.1 vary, then the theorem gives
the existence of a reconstruction map R̃ acting on triples (Π,Γ, F ) ∈MnDγ .
The following theorem gives another essential property of the reconstruction
operation.

Theorem 4.2. — Let T and α be as in Theorem 4.1. Then for any γ > 0
the reconstruction map R̃ :MnDγ → Cαs is continuous.

4.3.2. Multiplication

We aim to lift the non-linear fixed point problem (2.14) to the level of
modelled distributions. This will take the form

Φ = −KγΦ3 +KγΞ , (4.10)
where Kγ is a linear operator acting on a space of modelled distribution
corresponding to the convolution with the heat kernel K. We will discuss
the definition of Kγ in the next section. For now we start with the definition
of the operation U 7→ U3, i.e. we have to define multiplication of certain
modelled distributions.

The product of modelled distributions is defined pointwise on the level
of the regularity structure.

Definition 4.3 ([27, Def. 4.1]). — A mapping T × T 3 (a, b) 7→ ab ∈ T
is called a product if it is bilinear and

• It respects the orders in the sense that for a ∈ Tα and b ∈ Tβ we
have ab ∈ Tα+β,
• we have 1 a = a1 = a for all a ∈ T .

We have already seen the actual construction of this product as a part
of the construction of the regularity structure. In the case of the regularity
structure for Φ4

3 we have, for example
Xk X` = Xk+`, = , = , . . .

and the product is extended in a bilinear way. It is important to observe,
that many products that could be built from the entries in Table 3.2 do
not have a natural definition. For example, we have not included a symbol
for or for any product involving Ξ in the regularity structure. This is
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because the regularity structure is tailor-built to include only those symbols
that we actually need in the construction of the fixed point map. In the same
way, we will set XkX` = 0 as soon as the order |k + `|s > 2. In order to
satisfy the assumption of Definition 4.3 we can always define such products
to be zero.

Our aim for this section is to prove a “multiplicative” inequality in the
spirit of Theorem 2.13 for modelled distributions. To this end we need to
make sure that the product is compatible with spatial translations, repre-
sented by the group G. More precisely, we need to assume that the product
is γ-regular which means that the identity

Γ(a b) = Γa Γb . (4.11)
holds for all Γ ∈ G and all “relevant” a, b ∈ T of order 6 γ, where γ is
the order up to which we aim to describe the product(27) . In the case of
T̄ , the regularity structure of polynomials, this condition reduces to the
trivial identity (x− h)k (x− h)` = (x− h)k+`. In the recursive definition of
the canonical model (4.11) in conjunction with the action of the integration
map I completely determines the action of the Γxy. However, it is non-trivial
to construct the renormalised models (Π̂δ, Γ̂δ) in such a way that (4.11)
remains true.

In order to state the main result of this section, we need to introduce one
more notion. Let F ∈ Dγ be a modelled distribution as defined in (3.7). We
will say that F ∈ Dγα if F takes values in a subspace of T which is spanned
by symbols of order > α. Note that a non-trivial modelled distribution must
have a component of order 6 0 so that necessarily α 6 0.

Theorem 4.4 ([27, Thm. 4.7]). — Let F,G be modelled distributions
over a regularity structure endowed with a product as explained above. If
F ∈ Dγ1

α1
and G ∈ Dγ2

α2
we have FG ∈ Dγα1+α2

for γ = (γ1 +α2)∧ (γ2 +α1).
Furthermore, we have for every compact set K

‖FG‖γ,K . ‖F‖γ1,K ‖G‖γ1,K . (4.12)

Remark 4.5. — Unlike Theorem 2.13, this theorem does not require
any condition on the exponents. Indeed, the product is always well-defined
pointwise, independently of the choice of γ1 and γ2. However, we encounter
a condition on γ when applying the reconstruction operator. Although the
product is always defined as an abstract expansion, it is only for γ > 0 that
this expansion uniquely describes a real distribution.

Example 4.6. — We have seen above in (3.10) that any Cγs function f
can be lifted naturally to a modelled distribution in Dγ (which should be

(27) See [27, Def. 4.6] for precise definition.
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denoted by Dγ0 here) by setting

F (z) =
∑
|k|s6γ

1
k!D

kf(z)Xk . (4.13)

If we have another Cγs function g which is lifted to G in the same way we get

F G(z) =
∑
|k|s6γ

1
k!
∑
j

(
k

j

)(
Djf(z)Dk−jg(z)

)
Xk ,

which is nothing but Leibniz rule. Note, that here we have truncated the
expansion to involve only those terms of order 6 γ. Indeed, the function FG
is only of class Cγs and polynomials of order higher than γ give no information
about the local behaviour of this function.

Example 4.7. — Now we can finally explain up to which order we need
to expand Φ in order to solve the abstract fixed point problem for Φ4

3. As
in (4.6) we make the ansatz

Φ(z) = + Φ1(z)1− − 3Φ1(z) + 〈ΦX(z),X〉 . (4.14)
The term of lowest order in this description is the symbol which is of order
− 1

2 − κ. Then we get

Φ3 := + 3Φ1 −3 + 3Φ2
1 −6Φ1 −9Φ1 + 3〈ΦX, X〉+ Φ3

11 , (4.15)
where we included only terms of non-positive order. Using Theorem 2.13 we
can conclude that for Φ ∈ Dγα we have Φ3 ∈ Dγ−2α

3α . This statement is always
true for any γ, but in order to have a meaningful reconstruction of Φ3 the
exponent γ + 2α needs to be strictly positive. As α = − 1

2 − κ we need to
describe Φ to order at least γ > 1 + 2κ.

4.4. Integration

At this stage, the only operation missing to define the fixed point op-
erator (4.21) is the integration map. Recall that above in Theorem 2.8 we
had stated that convolution with the heat kernel K can be defined for quite
general distributions f ∈ Cαs and that (for α /∈ Z) this operation improves
the parabolic Hölder regularity by 2. This result is closely related to the fact
that K is a singular kernel of order −ds + 2, i.e. that K is a smooth function
on R×Rd \ {0} with a well-controlled singularity at the origin. Our aim for
this section is to define an analogue map Kγ that maps modelled distribu-
tion F ∈ Dγα to Dγ+2

(α+2)∧0. To make some expressions easier, we will from
now on use a convention (slightly inconsistently with the previous sections
but consistently with the notation used in [27]) to give a new interpretation
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to the kernel K. We will replace the parabolic heat kernel by a kernel K
which satisfies

(1) |DkK(z)| . ‖z‖−ds+2−|k|s
s for all multi-indices k (recall the defini-

tion of the parabolic dimension ds = 2 + d).
(2) K(z) = 0 for all z = (t, x) with t < 0.
(3) K has compact support in {z : ‖z‖s < 1}.
(4)

∫
K(z)zk dz = 0 for all multi-indices k with |k|s < γ.

Of course, the Gaussian heat kernel satisfies assumptions (1) and (2) but
not (3) and (4). However, for any γ > 0 it is possible to add a smooth
function Rγ to the Gaussian kernel such that one obtains a kernel that
also satisfies the assumptions (3) and (4). The convolution with a smooth
function Rγ is an infinitely smoothing operation which can easily be dealt
with separately. Therefore, for the rest of these notes we will assume that K
satisfies all of these four assumptions, neglecting the extra terms that come
from the convolution with Rγ .

Example 4.8. — Let us briefly discuss how to formulate a version of
the classical Schauder estimate for Cγs functions (Theorem 2.8) using the
regularity structure of abstract polynomials defined in Section 3.3. Let f : R×
Rd → R be of regularity Cγs for some γ ∈ (0,∞)\Z and let F be its canonical
lift to Dγ . We want to define a map Kγ acting on Dγ which represents
convolution with the kernel K. A natural definition would be

KγF (z) =
∑

|k|s<γ+2

Xk

k!

∫
R×Rd

DkK(z − y)RF (y)︸ ︷︷ ︸
=f(y)

dy (4.16)

but it is not obvious why this integral converges. Indeed, in general
|DkK(z)| ∼ |z|2−ds−|k|s which fails to be integrable for |k|s > 2. However, if
we use the regularity of F and replace RF (y) by RF (y)−ΠzF (y) (i.e. if we
subtract the Taylor polynomial around z) we obtain a convergent expression

NγF (z) :=
∑

|k|s<γ+2

Xk

k!

∫
R×Rd

DkK(z − y)︸ ︷︷ ︸
.‖z−y‖2−ds−|k|s

s

(
RF (y)−ΠzF (y)

)︸ ︷︷ ︸
‖z−y‖γs

dy . (4.17)

It remains to discuss, how to interpret the integrals of DkK(z−· ) against
ΠzF . Note that this expression depends only locally on F at the point z and
it is completely determined by

∫
DkK(z) z`dz for finitely many k and `. But

of course, (some of) these integrals still fail to converge absolutely. However,
using the formal integration by part∫

R×Rd
D(k)K(z)z` dz = (−1)|k|

∫
R×Rd

K(z)D(k)z` dz ,
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it is not hard to show that these integrals converge if they are interpreted
as principal values

lim
ε→0

∫
|z|>ε

z`DkK(z) dz , (4.18)

and furthermore, using our convenient assumption that K integrates to zero
against polynomials, one can see that these limits are zero. We can therefore
define Kγ = Nγ and the operator Kγ defined this way does indeed map Dγ0
to Dγ+2

0 .

Of course our main focus is on models and regularity structures that are
larger than T̄ which allow us to work with singular distributions. In this case
the integration map Kγ will in general consist of three different components

Kγ = I + Jγ +Nγ .

We have already encountered the operator Nγ in Example 4.8 above. The
defining equation (4.17) remains meaningful if it is interpreted in a distri-
butional sense. The operators I and Jγ correspond to the additional infor-
mation provided by non-polynomial symbols. Both operators vanish when
applied to abstract polynomials.

The operator I takes values in the span of the abstract symbols T which
are not polynomials. Like the multiplication, it is defined as a linear operator
on T and its definition was essentially part of the recursive construction of
the regularity structure T . We have, for example

IΞ = ,

etc. Note in particular, that (unlike a convolution operator) I acts locally
on modelled distributions. One important property is that by definition I
increases the order of every a ∈ Tα by 2. As for the product, we do not
have to give a non-trivial interpretation for Iτ for all τ . Indeed, in order
to describe our solution to a certain regularity it is sufficient to keep those
basis elements of order < γ.

Of course, at this stage the definition of the abstract integration map I
has nothing to do with the kernel K. The connection with K is established
in the choice of the model. We had already discussed this issue in the context
of the canonical model in (4.2). We will now turn the relevant property of
the canonical model into a definition.
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Definition 4.9. — A model is admissible if we have (ΠzXk)(y) =
(y − z)k and

(ΠzI[τ ])(z̄) :=
∫
Rd+1

dy K(z̄ − y)(Πzτ)(y)

−
∑
k

|k|s<|τ |+2

(z̄ − z)k

k!

∫
Rd+1

dy (DkK)(z − y)(Πzτ)(y) .

We will denote byM0 ⊆M the space of admissible models.

The construction of canonical models we explained above, automatically
produces admissible models(28) . But it is non-trivial to perform the renor-
malization such that the models remain admissible.

The operator Jγ takes values in the abstract polynomials. It is the analog
of the integrals (4.18) which in the case of a general regularity structure
cannot be removed by a convenient choice of kernel. The operator is defined
as

JγF (z) :=
∑

|k|s<α+2

Xk

k!

∫
D(k)K(z − y) ΠzF (y) dy , (4.19)

With these definitions in place we have the following result.

Theorem 4.10. — Let T be a regularity structure endowed with an ad-
missible model and assume that γ /∈ A. Then the operator Kγ is compatible
with integration against the kernel K in the sense that

RKγF = K ∗ RF . (4.20)

Furthermore Kγ maps Dγα into Dγ+2
(α+2)∧0 and we have for every compact K

‖KγF‖γ+2,K . ‖F‖γ,K̄ .

where K̄ = {z : inf z̄∈K ‖z − z̄‖ 6 1}.

Example 4.11. — For Φ4
2 we had made the ansatz Φ(z) = + Φ11 and

we had already seen above that this implies

Φ3 = + 3Φ1 + 3Φ2
1 + Φ3

11 .

Let us now give an explicit description of, KγΞ−Kγ
[
Φ3] because it is instruc-

tive. First of all, we have KγΞ = I[Ξ] = . Indeed, I[Ξ] has order −κ < 0 and

(28) Of course we discussed the construction of canonical models in the context of the
Gaussian heat kernel, but the construction goes through unchanged if it is replaced by
our modified kernel.
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therefore, the sum (4.19) which defines the operator J is empty. Further-
more, the fact that ΠzΞ does not depend on z implies that (RΞ)(z) = ΠzΞ
which in turn implies by (4.17) that NγΞ vanishes as well.

On the other hand, we can take −KγΦ3 = −(Jγ + Nγ)Φ3. Indeed, the
symbols , , appearing in Φ3 have order −κ,−2κ,−3κ so that the abstract
integration map I acting on these symbols would produce terms of order
> 1. We do not require a description to such order, so these terms and the
corresponding J can be dropped. We get

(Jγ +Nγ)
(
Φ3) = K ∗ R

(
+ 3Φ1 + 3Φ2

1 + Φ3
11
)

1 .

The reconstruction operator gives R = , RΦ1 = Φ1 , RΦ2
1 = Φ2

1
and RΦ3

11 = Φ3
1

(29) . Hence, the equation for Φ1 reduces to the equation
for the remainder vδ in the Da Prato–Debussche method. In this context,
the continuity of the multiplication of modelled distribution, together with
the existence and continuity of the reconstruction operator take the role
of the multiplicative inequality, Theorem 2.13. This is actually a general
fact. In [27, Thm 4.14] it is shown how Theorem 2.13 can be derived as a
consequence of these two statements.

4.5. The fixed point argument

We now state a theorem guaranteeing the existence of a modelled distri-
bution which solves the abstract fixed point problem (4.21). Our discussion
will be informal; a precise version of such a theorem, stated in a quite general
context, can be found in [27, §7.3, Thm. 7.8].

We aim to prove existence of solutions to the dynamic Φ4
3 equation by

solving a fixed point problem in a space Dγ of modelled distributions on
[0, T ] × Rd. The tools we developed in the previous sections will show that
the non-linearity is locally Lipschitz continuous and for T small enough we
can apply the contraction mapping theorem on some ball in Dγ .

At this point it is important to remember that we have derived uniform
bounds on models only locally in space-time. Indeed, going through the proof
of the Kolmogorov Lemma, Theorem 2.7, the reader can easily convince him-
self that the constants explode over infinite space-time domains and the same
phenomenon presents itself in the construction of various models discussed
at the beginning of this section. This problem could be circumvented, by
introducing weights in the norms that measure these models (as has been

(29) Actually, the processes , and should be constructed with the modified kernel.
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implemented in [29, 38]) but this makes the deterministic analysis more diffi-
cult. Here we choose the simpler situation and compactify space by assuming
that the noise is periodic.

Accordingly, we now assume that our space-time white noise ξ is defined
on Td × R. When convenient we interpret ξ as a distribution on Rd × R
which is periodic in space. We will again lift realizations of the noise to
admissible models as before (see [27, §3.6] for the precise notion of periodicity
for models). For any “periodic” model (Π,Γ) we define Dγ(Π,Γ,ΛT ) to be
the family of modelled distributions F : Td × [0, T ] → T which satisfy
condition (3.7). We defineM0 nDγ(ΛT ) to be the set of all triples (Π,Γ, F )
with (Π,Γ) ∈ M0 “periodic” and F ∈ Dγ(Π,Γ,ΛT ). As before it will be
important that this space can be equipped with a metric which behaves well
with the machinery of the theory of regularity structures. With all of this
notation in hand we can now state the following theorem.

Theorem 4.12. — Let T be a regularity structure for Φ4
3, where the

corresponding list of symbols T was defined with a choice of γ > 1 + 3κ.
Then for any admissible model (Π,Γ) there exists a strictly positive T > 0
and a unique modelled distribution Φ ∈ Dγ(Π,Γ,ΛT ) that solves the fixed
point equation

Φ = −KγΦ3 +KγΞ . (4.21)

Additionally, T is lower semicontinuous in (Π,Γ). Furthermore, if for
some (Π̄, Γ̄) we have T

[
(Π̄, Γ̄)

]
> t then Φ : (Π,Γ) 7→ (Π,Γ,Φ) ∈ M0 n

Dγ(Λt) is continuous in a neighbourhood of (Π̄, Γ̄).

We make a few remarks about the contraction mapping argument used
for the above theorem. The continuity of the mapping Φ 7→ Φ3 and the
integration operator Kγ immediately imply that the mapping Φ 7→ −KγΦ3 +
KγΞ is Lipschitz continuous on every ball of Dγ(Λt). The Lipschitz constant
can be made arbitrarily small by choosing a slightly smaller γ (which for
t < 1 produces a small power of t in front of the bounds) and then choosing
T small enough.

Similar arguments yield the essential continuity statement promised by
the last sentence of Theorem 4.12.

Remark 4.13. — Up to now we have always assumed that the initial
data for our fixed point problem is zero. This is quite unsatisfactory for the
solution theory, because it prevents us from restarting the solution at T to
obtain a maximal solution. The theory of [27] does allow for the restarting
of solutions but one must work with larger classes of modelled distribu-
tions. Since initial condition will typically not have a nice local description
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the theory introduces spaces of “singular” modelled distributions where the
given local expansions are allowed to blow up near the time zero hyperplane
(see [27, §6]).

We now continue our discussion but will suppress the fact that we are
actually working in a spatially periodic setting and finite time horizon. The
particular form of the modelled distribution Φ ∈ Dγ which solves the ab-
stract fixed point problem can now be deduced by running a few steps of
a Picard iteration. We run through this computation now which will end
up justifying the ansatz (4.6). We start the iteration by setting Φ0(z) = 0.
Applying the map Φ 7→ −KγΦ3 +KγΞ to Φ0 gives

Φ1(z) = KγΞ = IΞ = .

(30) Here we used that JΞ = NγΞ = 0 as was explained in Example 4.11.
Applying this map again then gives

Φ2(z) = −
[
Kγ(Φ1)3](z) = − (I + J +Nγ) = − − (z)1 .

Observe that the appearance of the positive order symbol automatically
produces the first “polynomial” (the symbol 1). Here the notation (•)
(which is colored black) refers to the corresponding concrete space-time dis-
tribution which was introduced in Section 3.1. In going to our expression Φ2
we used that Nγ = 0, this is because Πz does not depend on z and hence
R = Πz .

Going one step further in the Picard iteration gives

Φ3(z) = −
[
Kγ(Φ2)3](z)

= − − (z)1 +Kγ
(

3 + 3 (z) − 6 (z) − 3 (z)2
)
.

Here we have dropped all terms of order > 0 under the operator Kγ because
we do not need them. Indeed, the two requirements that determine the degree
to which we have to expand each quantity are:

• The solution Φ should solve a fixed point problem in Dγα for γ ≈
1+3κ and α = − 1

2 −κ. Therefore, we need to keep all symbols with
order less than or equal to γ in the expansion Φ.
• Below we will apply the reconstruction operator to the right hand
side of the fixed point problem in order to identify the equation the
reconstruction of Φ solves. In order to be able to do that we need
to ensure that quantities under the integral operator are described
to strictly positive order.

(30) Note that the Φ1 is different from Φ1 with a blue bold subscript.

– 901 –



Ajay Chandra and Hendrik Weber

It is now clear the fixed point Φ ∈ Dγ for the map Φ 7→ −KγΦ3 + KγΞ
will have the property that the symbols and enter with z-independent
coefficients. Indeed, both symbols only ever arise after integrating the terms
Ξ and from the previous step, both of which cannot have a non-constant
prefactor. Furthermore, it is clear why the pre-factor of has to be Φ1.
Indeed, this symbol only arises after applying I to which in turn only
appears from the multiplication of with Φ11.

As mentioned above, we will now apply the reconstruction operators to
Φ to get concrete space-time distributions and then show that these objects
satisfy certain concrete PDE. For δ > 0 let (Πδ,Γδ) be the canonical model
built from the smoothed noise ξδ. Let Rδ be the associated reconstruction
operator on the Dγ space built from the canonical model with γ slightly
larger than 1 as in Theorem 4.12. We denote by Φδ the modelled distribution
which is the solution to the corresponding abstract fixed point problem. It
follows that(

RδΦδ
)
(z) = Rδ

[
K
(
Ξ− Φ3

δ

)]
(z)

=
∫

dy K(z − y)
[
Rδ
(
Ξ− Φ3

δ

)]
(y)

=
∫

dy K(z − y)
[(

Πδ
yΞ
)
(y)−

(
Πδ
yΦ3

δ(y)
)
(y)
]

=
∫

dy K(z − y)
[(

Πδ
yΞ
)
(y)−

(
Πδ
yΦδ(y)

)3(y)
]

=
∫

dy K(z − y)
[
ξδ(y)−

(
RδΦδ

)3(y)
]
.

The first equality above is just the fixed point relation. The second equal-
ity is (4.20), the third is (4.8), the fourth is a consequence of the product
property of the canonical model, and in the final equality we again use (4.8).
It follows that RδΦδ is the mild solution to the equation

∂tϕδ = ∆ϕδ − ϕ3
δ + ξδ .

Now let (Π̂δ, Γ̂δ) be the renormalized model we introduced earlier, and
let R̂δ be the reconstruction operator on the associated D̂γ space (with γ

as before). Let Φ̂δ be the solution to the abstract fixed point problem with
model (Π̂δ, Γ̂δ). We then have(

R̂δΦ̂δ
)

(z) =
∫

dy K(z − y)
[(

Π̂δ
yΞ
)

(y)−
(

Π̂δ
yΦ̂3

δ(y)
)

(y)
]

=
∫

dy K(z − y)
[
ξδ(y)−

(
Πδ
yM Φ̂3

δ(y)
)

(y)
]
.

(4.22)

In going to the last line we have used (4.5).
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We know that Φ̂δ has an expansion of the form (4.14) where the spa-
tially varying coefficients appearing in the expansion are unknown. Since(
Πδ
yτ
)
(y) = 0 for any homogenous τ with |τ | > 0 we can replace MδΦ̂3

δ(y)
with something equivalent modulo symbols of strictly positive order. Denot-
ing this approximate equivalence by ≈, the reader is encouraged to apply
Mδ to the formula (4.15) to see that

MδΦ̂3
δ(y) ≈ (M δΦ̂δ(y))3 − (3Cδ + 9C̃δ)MδΦ̂δ(y) .

Applying the canonical model Πδ
y to both sides then gives(

Πδ
yM Φ̂3

δ(y)
)

(y) =
(

Πδ
y(MδΦ̂δ(y))3

)
(y)− (3Cδ + 9C̃δ)

(
Πδ
yM

δΦ̂δ(y)
)

(y)

=
(

Πδ
yM

δΦ̂δ(y)
)3

(y)− (3Cδ + 9C̃δ)
(

Πδ
yM

δΦ̂δ(y)
)

(y)

=
(

Π̂δ
yΦ̂δ(y)

)3
(y)− (3Cδ + 9C̃δ)

(
Π̂δ
yΦ̂δ(y)

)
(y)

=
(
R̂δΦ̂δ

)3
(y)− (3Cδ + 9C̃δ)

(
R̂δΦ̂δ

)
(y) .

Inserting this into (4.22) immediately yields that
(
R̂δΦ̂δ

)
(z) is the mild

solution to the PDE
∂tϕδ = ∆ϕδ − ϕ3

δ + (3Cδ + 9C̃δ)ϕδ + ξδ . (4.23)
We now take advantage of the fact that all of the abstract machinery in-
troduced in this lecture has good continuity properties with respect to the
convergence of models. If the models (Π̂δ, Γ̂δ) converge in probability to a
limiting model (Π̂, Γ̂) as δ ↓ 0 then from Theorem 4.12 it follows that the
triples (Π̂δ, Γ̂δ, Φ̂δ), viewed as random elements of the spaceM n Dγ , con-
verge in probability to a limiting triple (Π̂, Γ̂, Φ̂) as δ ↓ 0.

Theorem 4.2 then implies that the solutions of (4.23), given by R̂δΦ̂δ,
converge in probability to a limiting space-time distribution we will call ϕ.
Here convergence in probability takes place on the space Cαs . While one may
not be able to write down an explicit SPDE that the ϕ satisfies, we can say
ϕ solves the abstract formulation of the given SPDE since ϕ = R̃[(Π̂, Γ̂, Φ̂)]
and the triple (Π̂, Γ̂, Φ̂) is a solution to our abstract fixed point problem.

Appendix A. A primer on iterated stochastic integrals

In this appendix we collect some facts about iterated stochastic integrals
used in Lecture 2. Our discussion is brief and somewhat formal, a detailed
exposition can be found in [40, Chap. 1]. Throughout the appendix we adopt
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a slightly more general framework than in Lecture 2 and replace R× Rd or
R × Td by an arbitrary measure space (E, E) endowed with a sigma-finite
non-atomic measure µ. Extending the definition presented in Section 1.1.1 a
white noise is then defined as a centred Gaussian family of random variables
(ξ, ϕ) indexed by ϕ ∈ L2(E,µ) which satisfy

E(ξ, ϕ1)(ξ, ϕ2) =
∫
E

ϕ1(z)ϕ2(z)µ(dz) . (A.1)

It is particularly interesting to evaluate ξ at indicator functions 1A of mea-
surable sets in A ∈ E with µ(A) <∞ and we write ξ(A) as a shorthand for
ξ(1A). The following properties follow

• Eξ(A) = 0 and Eξ(A)2 = µ(A).
• If A1 and A2 are disjoint, then ξ(A1) and ξ(A2) are independent.
• If (Aj)j∈N . . . are pairwise disjoint and of finite measure, then
ξ(∪jAj) =

∑
j ξ(Aj), where the convergence holds in L2(Ω,P).

Although the last identity suggests to interpret A 7→ ξ(A) as a random
signed measure, it is important to note that in general the ξ does not have
a modification as a random signed measure (cf. the regularity discussion in
Besov spaces above).

We now discuss, how to construct an iterated stochastic integrals of the
type “

∫
En

f(z1, z2, . . . , zn)ξ(dz1) . . . ξ(dzn)” for f ∈ L2(En, µ⊗n). For sim-
plicity we will only treat the case n = 2, the general case of n-fold iterated
integrals following in a similar way. In this case, we will call elementary any
f : E × E → R of the form

f =
N∑

j,k=1
j 6=k

αj,k1Aj×Ak ,

for pairwise disjoint sets A1, . . . , AN with finite measure and real coefficients
αj,k. Note that such a function f is necessarily zero on the diagonal f(z, z) =
0 for z ∈ E. We define for such an f

∫
E×E

f(z1, z2)ξ(dz1) ξ(dz2) =
N∑

j,k=1
j 6=k

αj,kξ(Aj)ξ(Ak) .
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We then get the following identity which resembles the Itô isometry:

E
(∫

E×E
f(z1, z2)ξ(dz1) ξ(dz2)

)2

=
∑
j1<k1

∑
j2<k2

(αj1,k1 +αk1,j1)(αj2,k2 +αk2,j2)E(ξ(Aj1)ξ(Ak1)ξ(Aj2)ξ(Ak2))

=
∑
j<k

(αj,k + αk,j)2µ(Ak)µ(Aj)

= 2
∫
E×E

(
1
2
(
f(z1, z2) + f(z2, z1)

))2
µ(dz1)µ(dz2)

6 2
∫
E×E

(
f(z1, z2)

)2
µ(dz1)µ(dz2) . (A.2)

Note that we have crucially used the fact that no “diagonal terms” ap-
pear when passing from the second to the third line. It is relatively easy to
show that the elementary functions are dense in L2(E × E,µ ⊗ µ) (due to
the off-diagonal assumption this is only true for non-atomic measures) and
hence we can extend the definition of

∫
E×E f(z1, z2) ξ(dz1) ξ(dz2) to all of

L2(E × E,µ⊗ µ).

However, the fact that we have defined the iterated integral as a limit of
approximations that “cut out” the diagonal has an effect, when treating non-
linear functions of iterated stochastic integrals. Formally, for f ∈ L2(E,µ)
one might expect the identity(∫

E

f(z)ξ(dz)
)2

=
∫
E×E

f(z1)f(z2)ξ(dz1)ξ(dz2) , (A.3)

which “follows” by formally expanding the integral. But at this point it be-
comes relevant that as mentioned above ξ is typically not a random measure,
so that this operation is not admissible. In order to get the right answer, we
have to approximate f by simple functions f ≈

∑N
j=1 αjAj . Mimicking the

construction of the iterated integrals above we write(∫
f(z)ξ(dz)

)2
≈
∑
j 6=k

αjαkξ(Aj)ξ(Ak) +
∑
j

α2
jξ(Aj)2 .

As expected, the first sum involving only off-diagonal entries will converge to∫
f(z1)f(z2)ξ(dz1)ξ(dz2) as the partition (Aj) gets finer. However, differing

from the case where ξ is a measure, the “diagonal” term does not vanish in
the limit. Indeed, its expectation is given by∑

j

α2
j Eξ(Aj)2 =

∑
j

α2
j µ(Aj) ≈

∫
E

f(z)µ(dz) ,
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but the variance of this term will go to zero as the partition gets finer. This
suggests that instead of (A.3) we should get(∫

E

f(z)ξ(dz)
)2

=
∫
E×E

f(z1)f(z2)ξ(dz1)ξ(dz2) +
∫
E

f(z)2 dz , (A.4)

and this formula is indeed true.

Remark A.1. — In the one-dimensional case, i.e. when E = R and µ is
the Lebesgue measure our construction yields iterated Itô integrals. In the
case where f = 1[0,t] the formula (A.4) reduces to(∫

1[0,t](s)ξ(ds)
)2

=
∫
R×R

1[0,t](s1)1[0,t](s2) ξ(ds2) ξ(ds1) + t

which in the more common notation of stochastic calculus reduces to the Itô
formula

W 2
t = 2

∫ t

0

(∫ s1

0
dWs2

)
dWs1 + t .

Remark A.2. — The generalisation to iterated integrals of arbitrary or-
der follows a similar pattern. We leave it as an exercise to the reader to
convince himself that for n = 3 formula (A.4) becomes(∫

E

f(z)ξ(dz)
)3

=
∫
E×E

f(z1)f(z2)f(z3)ξ(dz1)ξ(dz2)ξ(dz3)

+ 3
∫
E

f(z)2 dz
∫
E

f(z)ξ(dz) . (A.5)

For larger n such identities are expressed most conveniently in terms of
Hermite polynomials Hn. For example, one gets

Hn

(∫
f(z)ξ(dz), ‖f‖L2(µ)

)
=
∫
. . .

∫ n∏
j=1

f(zj)ξ(dz1) . . . ξ(dzn) ,

where H0(Z, σ) = 1, H1(Z, σ) = Z, H2(Z, σ) = Z2 − σ2, H3(Z, σ) =
Z3 − 3σ2Z etc. (see [40, Prop. 1.1.4]).

At this point almost all the tools we need in the analysis of non-linear
functionals of Gaussian processes are in place. For example, we use expres-
sion (A.5) to decompose 3

δ into two parts, the variances of each can be
evaluated explicitly by the L2 isometry (A.2). However, if we wanted to feed
these bounds directly into the Kolmogorov Theorem 2.7 we would lose too
much regularity. As in the case of white noise, above we have to replace the
L2-type bounds by Lp bounds for p large enough. In the Gaussian case we
used the fact that for centred Gaussian random variables all moments are
controlled by the variance. Fortunately iterated stochastic integrals satisfy
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a similar property. This is the content of the famous Nelson estimate which
states in our context that

E
(∫

f(z1, . . . , zn)ξ(dz1) . . . ξ(dzn)
)p

6 Cn,p

(∫
f(z1, . . . , zn)2µ(dz1) . . . µ(dzn)

) p
2

. (A.6)

This estimate is an immediate consequence of the hypercontractivity of the
Ornstein–Uhlenbeck semigroup, see [40, Thm. 1.4.1].
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