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Non-divergence form parabolic equations associated

with non-commuting vector fields:

boundary behavior of nonnegative solutions

MARIE FRENTZ, NICOLA GAROFALO, ELIN GÖTMARK, ISIDRO MUNIVE

AND KAJ NYSTRÖM

Abstract. In a cylinder !T = ! × (0, T ) ⊂ Rn+1+ we study the boundary
behavior of nonnegative solutions of second order parabolic equations of the form

Hu =
m∑

i, j=1
ai j (x, t)Xi X j u − ∂t u = 0, (x, t) ∈ Rn+1+ ,

where X = {X1, . . . , Xm} is a system of C∞ vector fields in Rn satisfying
Hörmander’s rank condition (1.2), and ! is a non-tangentially accessible domain
with respect to the Carnot-Carathéodory distance d induced by X . Concerning the
matrix-valued function A = {ai j }, we assume that it is real, symmetric and uni-
formly positive definite. Furthermore, we suppose that its entries ai j are Hölder
continuous with respect to the parabolic distance associated with d. Our main
results are: 1) a backward Harnack inequality for nonnegative solutions vanish-
ing on the lateral boundary (Theorem 1.1); 2) the Hölder continuity up to the
boundary of the quotient of two nonnegative solutions which vanish continuously
on a portion of the lateral boundary (Theorem 1.2); 3) the doubling property for
the parabolic measure associated with the operator H (Theorem 1.3). These re-
sults generalize to the subelliptic setting of the present paper, those in Lipschitz
cylinders by Fabes, Safonov and Yuan in [20, 39]. With one proviso: in those
papers the authors assume that the coefficients ai j be only bounded and measur-
able, whereas we assume Hölder continuity with respect to the intrinsic parabolic
distance.

Mathematics Subject Classification (2010): 31C05 (primary); 35C15, 65N99
(secondary).

1. Introduction

Let ! ⊂ Rn be a bounded domain and consider the cylinder !T = ! × (0, T ) ⊂
Rn+1

+ , where T > 0 is fixed. In this paper we establish a number of results concern-
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ing the boundary behavior of nonnegative solutions in!T of second order parabolic
equations of the type

Hu = Lu − ∂t u =
m∑

i, j=1
ai j (x, t)Xi X ju − ∂t u = 0. (1.1)

Here, X={X1, . . . ,Xm}is a system ofC∞vector fields inRnsatisfying Hörmander’s
rank condition, see [25]:

rank Lie [X1, . . . , Xm] ≡ n. (1.2)

Concerning the m × m matrix-valued function A(x, t) = {ai j (x, t)} we assume
that it is symmetric, with bounded and measurable entries, and that there exists
λ ∈ [1,∞) such that for every (x, t) ∈ Rn+1, and ξ ∈ Rm ,

λ−1|ξ |2 ≤
m∑

i, j=1
ai j (x, t)ξiξ j ≤ λ|ξ |2. (1.3)

Whenm = n and {X1, . . . , Xm} = {∂x1, . . . , ∂xn }, the operator H in (1.1) coincides
with that studied in [20, 39]. However, in contrast with these papers, in which the
coefficients were assumed only bounded and measurable, we will also assume that
the entries of the matrix A(x, t) are Hölder continuous with respect to the intrin-
sic parabolic distance associated with the system X . More precisely, we indicate
with d(x, y) the Carnot-Carathéodory distance, between x, y ∈ Rn , induced by
{X1, . . . , Xm}. We let

dp(x, t, y, s) = (d(x, y)2 + |t − s|)1/2

denote the parabolic distance associated with the metric d. Then, we assume that
there exist C > 0, and σ ∈ (0, 1), such that for (x, t), (y, s) ∈ Rn+1,

|ai j (x, t) − ai j (y, s)| ≤ Cdp(x, t, y, s)
σ , i, j ∈ {1, ..,m}. (1.4)

The reason for imposing (1.4) will be discussed below.
Concerning the domain ! we will assume that ! is a NTA domain (non-

tangentially accessible domain), with parameters M , r0, in the sense of [7, 11],
see Definition 2.6 below. Under this assumption we can prove that all points on the
parabolic boundary

∂p!T = ST ∪ (! × {0}), ST = ∂! × (0, T ),

of the cylinder !T are regular for the Dirichlet problem for the operator H in (1.1).
In particular, for any f ∈ C(∂p!T ), there exists a unique Perron-Wiener-Brelot-

Bauer solution u = u
!T

f ∈ C(!T ) to the Dirichlet problem

Hu = 0 in !T , u = f on ∂p!T . (1.5)
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Moreover, one can conclude that for every (x, t) ∈ !T there exists a unique proba-
bility measure dω(x,t) on ∂p!T such that

u(x, t) =
∫

∂p!T

f (y, s)dω(x,t)(y, s). (1.6)

Henceforth, we refer to ω(x,t) as the H -parabolic measure relative to (x, t) and!T .

The metric ball centered at x ∈ Rn with radius r > 0 will be indicated with

Bd(x, r) = {y ∈ Rn : d(x, y) < r}.

For (x, t) ∈ Rn+1 and r > 0 we let

C−
r (x, t) = Bd(x, r) × (t − r2, t), Cr (x, t) = Bd(x, r) × (t − r2, t + r2),

and we define

'(x, t, r) = ST ∩ Cr (x, t). (1.7)

By Definition 2.6 below, if ! is a given NTA domain with parameters M and r0,
then for any x0 ∈ ∂!, 0 < r < r0, there exists a non-tangential corkscrew, i.e., a
point Ar (x0) ∈ !, such that

M−1r < d(x0, Ar (x0)) < r, and d(Ar (x0), ∂!) ≥ M−1r.

In the following we let Ar (x0, t0) = (Ar (x0), t0) whenever (x0, t0) ∈ ST and 0 <
r < r0. When we say that a constant c depends on the operator H we mean that
c depends on the dimension n, the number of vector fields m, the vector fields
{X1, . . . , Xm}, the constant λ in (1.3) and the parameters C, σ in (1.4). We let
diam(!) = sup{d(x, y) | x, y ∈ !} denote the diameter of !. The following
theorems represent the main results of this paper.

Theorem 1.1 (Backward Harnack inequality). Let u be a nonnegative solu-

tion of Hu = 0 in !T vanishing continuously on ST . Let 0 < δ +
√
T be

a fixed constant, let (x0, t0) ∈ ST , δ2 ≤ t0 ≤ T − δ2, and assume that r <

min{r0/2,
√

(T − t0 − δ2)/4,
√

(t0 − δ2)/4}. Then, there exists a constant c =
c(H,M, r0, diam(!), T, δ), 1 ≤ c < ∞, such that for every (x, t) ∈ !T ∩
Cr/4(x0, t0) one has

u(x, t) ≤ cu(Ar (x0, t0)).

Theorem 1.2 (BoundaryHölder continuity of quotients of solutions). Let u,v be
nonnegative solutions of Hu = 0 in !T . Given (x0, t0) ∈ ST , assume that r <
min{r0/2,

√
(T − t0)/4,

√
t0/4}. If u, v vanish continuously on '(x0, t0, 2r), then

the quotient v/u is Hölder continuous on the closure of !T ∩ C−
r (x0, t0).
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Theorem 1.3 (Doubling property of the H -parabolic measure). Let K ≥ 100
and ν ∈ (0, 1) be fixed constants. Let (x0, t0) ∈ ST , and suppose that r <
min{νr0/2,

√
(T− t0)/4,

√
t0/4}. Then, there exists a constant c=c(H,M,ν,K ,r0),

1 ≤ c < ∞, such that for every (x, t) ∈ !T , with d(x0, x) ≤ K |t − t0|1/2,
t − t0 ≥ 16r2, one has

ω(x,t)('(x0, t0, 2r)) ≤ cω(x,t)('(x0, t0, r)).

Concerning Theorems 1.1, 1.2 and 1.3, we note that the study of the type of prob-
lems considered in this paper has a long and rich history which, for uniformly
parabolic equations inRn+1 (i.e., when in (1.1) one hasm = n and {X1, . . . , Xm} =
{∂x1, . . . , ∂xn }), culminated with the celebrated papers of Fabes, Safonov and Yuan
[19, 20, 39]. In these works the authors proved Theorem 1.1-1.3 for uniformly
parabolic equations, both in divergence and non-divergence form, whose coeffi-
cients are only bounded and measurable. We remark that, while these authors work
in Lipschitz cylinders, one can easily see that their proofs can be generalized to
the setting of bounded NTA domains in the sense of [26]. While the works [20,39]
completed this line of research for parabolic operators in non-divergence form, prior
contributions by other researchers are contained in [17, 21, 22, 29]. For the corre-
sponding developments for second order parabolic operators in divergence form we
refer to [16,19,34]. For the elliptic theory, for both operators in divergence and non-
divergence form, we refer to [1,6,15,26]. Finally, and for completion, we also note
that second order elliptic and parabolic operators in divergence form with singular
lower order terms were studied in [24,27].

In the subelliptic setting of the present paper, i.e., when m < n and X =
{X1, . . . , Xm} is assumed to satisfy (1.2), much less is known. Several delicate
new issues arise in connection with the intricate (sub-Riemannian) geometry as-
sociated with the vector fields, and the interplay of such geometry with the so-
called characteristic points on the boundary of the relevant domain. In addition,
the derivatives along the vector fields do not commute, and the commutators are
effectively derivatives of higher order. For all these aspects we refer the reader
to the works [7, 10, 11, 13, 14, 30–32, 35], but this only represents a partial list of
references.

In the stationary case, and for operators in divergence form, results similar to
those in the present paper have been obtained in [7, 10, 11], see also [8, 9], whereas
for parabolic operators in divergence form the reader is referred to the recent pa-
per by one of us [33]. The methods in [33], however, extensively exploit the di-
vergence structure of the operator and do not apply to the setting of the present
paper.

We stress that for non-divergence form operators such as those treated in this
paper, results such as Theorems 1.1-1.3 are new even for the case of stationary
equations such as

Lu =
m∑

i, j=1
ai j (x)Xi X ju = 0.
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In view of these considerations our paper provides a novel contribution to the under-
standing of the boundary behavior of solutions to parabolic equations arising from
a system of non-commuting vector fields.

Concerning the proofs of Theorems 1.1-1.3 our approach is modeled on the
ideas developed by Fabes, Safonov and Yuan in [20, 39]. In fact, the ideas in those
papers have provided an important guiding line for our work. Yet, the arguments
in [20,39] use mainly elementary principles like comparison principles, interior reg-
ularity theory, the (interior) Harnack inequality, Hölder continuity type estimates
and decay estimates at the lateral boundary, for solutions which vanish on a portion
of the lateral boundary, as well as estimates for the Cauchy problem and the funda-
mental solution associated to the operator at hand. In this connection it is important
that the reader keep in mind that when the matrix A(x, t) = {ai j (x, t)} in (1.1) has
entries which are just bounded and measurable, then most of these results presently
represent in our setting terra incognita. More specifically, the counterparts of the
Harnack inequality of Krylov and Safonov [29] and the Alexandrov-Bakel’man-
Pucci type maximum principle due to Krylov [28] presently constitute fundamental
open questions.

With this being said, our work uses heavily the recent important results of
Bramanti, Brandolini, Lanconelli and Uguzzoni [5], see also [4], concerning the
(interior) Harnack inequality, the Cauchy problem and the existence and Gaussian
estimates for fundamental solutions for the non-divergence form operators H de-
fined in (1.1). In fact, we assume (1.4) precisely in order to be able to use results
from [5]. We want to stress, however, that we have strived throughout the whole
paper to provide proofs which are “purely metrical”. By this we mean that, should
the above mentioned counterpart of the results in [28, 29] become available, then
our proofs would carry to the more general setting of bounded and measurable co-
efficients in (1.1) with minor changes.

In closing we mention that the rest of the paper is organized as follows. Section
2 is of a preliminary nature. In it we collect some notation and results concerning
basic underlying principles, and we also introduce the notion of NTA domains fol-
lowing [7]. In Section 3 we prove a number of basic estimates concerning the
boundary behavior of nonnegative solutions of (1.1). In addition we prove a num-
ber of technical lemmas which allow us to present the proofs of Theorems 1.1-1.3
in a quite condensed manner. Finally, the proofs of Theorems 1.1 and 1.2 will be
presented in Section 4, whereas that of Theorem 1.3 will be given in Section 5.

2. Preliminaries

In this section we introduce some notation and state a number of preliminary results
for the operator H defined in (1.1). Specifically, we will discuss the Cauchy prob-
lem and Gaussian estimates for the fundamental solution, the Harnack inequality
and comparison principle, and the Dirichlet problem in bounded domains. In par-
ticular, we also justify the notion of H -parabolic measure and introduce the notion
of NTA domain.
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2.1. Notation

In Rn , with n ≥ 3, we consider a system X = {X1, . . . , Xm} of C∞ vector fields
satisfying Hörmander’s rank condition (1.2). As in [18], a piecewise C1 curve
γ : [0, +] → Rn is called subunitary if at every t ∈ [0, +] at which γ ′(t) exists one
has for every ξ ∈ Rn

< γ ′(t), ξ >2 ≤
m∑

j=1
< X j (γ (t)), ξ >2 .

We note explicitly that the above inequality forces γ ′(t) to belong to the span of
{X1(γ (t)), . . . , Xm(γ (t))}. The subunit length of γ is by definition ls(γ ) = +. If
we fix an open set ! ⊂ Rn , then given x, y ∈ !, denote by S!(x, y) the collection
of all subunitary γ : [0, +] → ! which join x to y. The accessibility theorem of
Chow and Rashevsky, [12,37], states that, if! is connected, then for every x, y ∈ !
there exists γ ∈ S!(x, y). As a consequence, if we define

d!(x, y) = inf {ls(γ ) | γ ∈ S!(x, y)},

we obtain a distance on!, called the Carnot-Carathéodory distance, associated with
the system X . When ! = Rn , we write d(x, y) instead of dRn (x, y). It is clear that
d(x, y) ≤ d!(x, y), x, y ∈ !, for every connected open set ! ⊂ Rn . In [36] it was
proved that, given ! ⊂⊂ Rn , there exist C, ε > 0 such that

C|x − y| ≤ d!(x, y) ≤ C−1|x − y|ε, x, y ∈ !. (2.1)

This gives d(x, y) ≤ C−1|x − y|ε , x, y ∈ !, and therefore

i : (Rn, | · |) → (Rn, d) is continuous.

Furthermore, it is easy to see that also the continuity of the opposite inclusion holds
[23], and therefore the metric and the Euclidean topologies are equivalent.

For x ∈ Rn and r > 0, we let Bd(x, r) = {y ∈ Rn | d(x, y) < r}. The
basic properties of these balls were established by Nagel, Stein and Wainger in
their seminal paper [36]. These authors proved in particular that, given bounded
open set U ⊂ Rn , there exist constants C, R0 > 0 such that, for any x ∈ U , and
0 < r ≤ R0,

C ≤ Bd(x, r)

-(x, r)
≤ C−1,

where -(x, r) = ∑
I |aI (x)|rdI is a polynomial function with continuous coeffi-

cients. As a consequence, one has with C1 > 0,

|Bd(x, 2r)| ≤ C1|Bd(x, r)| for every x ∈ U and 0 < r ≤ R0. (2.2)
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In what follows, given β ∈ (0, 1), we let /β(!T ) denote the space of functions
u : !T → R such that

||u||/β (!T ) : = sup
!T

|u|

+ sup
(x,t),(x ′,t ′)∈!T , (x,t)/=(x ′,t ′)

|u(x, t) − u(x ′, t ′)|
dp(x, t, x ′, t ′)β

< ∞.
(2.3)

We say that u has a Lie derivative along X j , at (x, t) ∈ !T , if u ◦ γ is differen-
tiable at 0, where γ is the integral curve of X j such that γ (0) = (x, t). Moreover,

we indicate with /2+β(!T ) the space of functions u ∈ /β(!T ) which admit Lie
derivatives up to second order along X1, . . . , Xm , and up to order one with respect
to t , in /β(!T ). If u ∈ /2+β(!T ) then we let ||u||/2+β (!T ) denote the naturally

defined norm of u. Furthermore, u ∈ /
β
loc(!T ) if u ∈ /β(D) for any compact

subset D of !T . The space /
2+β
loc (!T ) is defined analogously. Finally, if β = 0

then we simply write /2(!T ) for /2+0(!T ). Throughout the paper we will use the
following notation:

Cr (x, t) = Bd(x, r) × (t − r2, t + r2),

C+
r (x, t) = Bd(x, r) × (t, t + r2),

C−
r (x, t) = Bd(x, r) × (t − r2, t),

Cr1,r2(x, t) = Bd(x, r1) × (t − r22 , t + r22 ),

C+
r1,r2

(x, t) = Bd(x, r1) × (t, t + r22 ),

C−
r1,r2

(x, t) = Bd(x, r1) × (t − r22 , t),

(2.4)

for (x, t) ∈ Rn+1 and r, r1, r2 > 0. Furthermore, if ! ⊂ Rn is a bounded domain,
and T > 0 and δ > 0 are given, then we let

!δ = {x ∈ !| d(x, ∂!) > δ}, !δ
T = !δ × (0, T ). (2.5)

2.2. The Cauchy problem

Let H be defined as in (1.1), with the hypothesis (1.2), (1.3) and (1.4) in place.
These assumptions allow us to use some basic results established in [5]. In partic-
ular, for what concerns the existence of a fundamental solution of the operator H ,
and Gaussian estimates, we will henceforth suppose, as it is done in [5], that the
sub-Laplacian

∑m
i=1 X

2
i associated with X coincides with the standard Laplacian

' = ∑n
j=1 ∂2x j in Rn outside of a fixed compact set in Rn .

In [5] it is proved that, under such hypothesis, there exists a fundamental solu-
tion, /, for H , with a number of important properties. In particular, / is a continu-
ous function away from the diagonal of Rn+1 × Rn+1 and /(x, t, ξ, τ ) = 0 for t ≤
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τ . Moreover, /(·, ·, ξ, τ ) ∈ /2+α
loc (Rn+1 \ {(ξ, τ )}) for every fixed (ξ, τ ) ∈ Rn+1

and H(/(·, ·, ξ, τ )) = 0 in Rn+1 \ {(ξ, τ )}. For every ψ ∈ C∞
0 (Rn+1) the function

w(x, t) =
∫

Rn+1
/(x, t, ξ, τ )ψ(ξ, τ )dξdτ

belongs to /2+α
loc (Rn+1) and we have Hw = ψ inRn+1. Furthermore, letµ ≥ 0 and

T2 > T1 be such that (T2−T1)µ is small enough, let 0 < β ≤ α, let g ∈ C0,β(Rn×
[T1, T2]) and f ∈ C(Rn) be such that |g(x, t)|, | f (x)| ≤ c exp(µd(x, 0)2) for some
constant c > 0. Then, for x ∈ Rn, t ∈ (T1, T2], the function

u(x, t) =
∫

Rn
/(x, t, ξ, T1) f (ξ)dξ +

t∫

T1

∫

Rn
/(x, t, ξ, τ )g(ξ, τ )dξdτ, (2.6)

belongs to the class /
2+β
loc (Rn × (T1, T2)) ∩ C(Rn × [T1, T2]). Moreover, u solves

the Cauchy problem

Hu = g in Rn × (T1, T2), u(·, T1) = f (·) in Rn. (2.7)

One also has the following Gaussian bounds.

Lemma 2.1. There exist a positive constant C and, for every T > 0, a positive
constant c = c(T ) such that, if 0 < t − τ ≤ T , x, ξ ∈ Rn , then

c−1
e−Cd(x,ξ)2/(t−τ )

|B(x,
√
t − τ )| ≤ /(x, t, ξ, τ ) ≤ c

e−C
−1d(x,ξ)2/(t−τ )

|B(x,
√
t − τ )| . (2.8)

Furthermore, one also has

|Xi/(·, t, ξ, τ )(x)| ≤ c(t − τ )−1/2
e−C

−1d(x,ξ)2/(t−τ )

|B(x,
√
t − τ )| , (2.9)

and

|Xi X j/(·, t, ξ, τ )(x)|+|∂t/(x, ·, ξ, τ )(t)|≤c(t−τ )−1c
e−C

−1d(x,ξ)2/(t−τ )

|B(x,
√
t − τ )| . (2.10)

2.3. The Harnack inequality and strong maximum principle

We next state the Harnack inequality and the strong maximum principle for the
operator H , see [4] and also [5].
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Theorem 2.2. Let R > 0, 0 < h1 < h2 < 1 and γ ∈ (0, 1). Then, there exists
a positive constant C = C(h1, h2, γ , R) such that the following holds for every
(ξ, τ ) ∈ Rn+1, r ∈ (0, R]. If

u ∈ /2(C−
r (ξ, τ )) ∩ C(C−

r (ξ, τ ))

satisfies Hu = 0, u ≥ 0, in C−
r (ξ, τ ), then

u(x, t) ≤ Cu(ξ, τ ) whenever (x, t) ∈ C−
γ r,h2r

(ξ, τ ) \ C−
γ r,h1r

(ξ, τ ).

Theorem 2.3. Let ! ⊂ Rn be a connected, bounded open set, and let T > 0. Let
u ∈ /2(!T ) and assume that Lu ≥ 0, u ≤ 0 in !T . Assume that u(x0, t0) = 0 for
some (x0, t0) ∈ !T . Then u(x, t) ≡ 0 whenever (x, t) ∈ !T ∩ {t : t ≤ t0}.

2.4. The Dirichlet problem

In the following we let D be any bounded open subset of Rn+1 and we study the
Dirichlet problem

Hu = 0 in D, u = f on ∂pD, (2.11)

with f ∈ C(∂pD). Here, ∂pD denotes the parabolic boundary of D. If u : D → R
is a smooth function satisfying Hu = 0 in D, then we say that u is H -parabolic in
D. We denote by P(D) the linear space of functions which are H -parabolic in D.

We say that D is H -regular if for any f ∈ C(∂pD) there exists a unique

function HD
f ∈ P(D) such that lim(x,t)→(x0,t0) H

D
f (x, t) = f (x0, t0) for every

(x0, t0) ∈ ∂pD. Following the arguments in [30], see in particular Theorems 6.5

and 10.1, we can easily construct a basis for the Euclidean topology of Rn+1 which
is made of cylindrical H -regular sets. Furthermore, if D is H -regular, then in view
of Theorem 2.3 (one actually only needs the weak maximum principle) for every
fixed (x, t) ∈ D the map f 1→ HD

f (x, t) defines a positive linear functional on

C(∂pD). By the Riesz representation theorem there exists a unique Borel measure
ω = ωD , supported in ∂pD, such that

HD
f (x, t) =

∫

∂pD
f (y, s)dω(x,t)(y, s), for every f ∈ C(∂pD). (2.12)

We will refer to ω(x,t) = ω
(x,t)
D as the H -parabolic measure relative to D and (x, t).

A lower semi-continuous function u : D → ] − ∞,∞] is said to be H -
superparabolic in D if u < ∞ in a dense subset of D and if

u(x, t) ≥
∫

∂V
u(y, s)dω

(x,t)
V (y, s),

for every open H -regular set V ⊂ V ⊂ D and for every (x, t) ∈ V . We denote

by S(D) the set of H -superparabolic functions in D, and by S
+
(D) the set of the
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functions in S(D) which are nonnegative. A function v : D → [−∞,∞[ is said
to be H -subparabolic in D if −v ∈ S(D) and we write S(D) := −S(D). As
the collection of H -regular sets is a basis for the Euclidean topology, it follows
that S(D) ∩ S(D) = P(D). Finally, we recall that HD

f can be realized as the

generalized solution in the sense of Perron-Wiener-Brelot-Bauer to the problem in
(2.11). In particular,

inf UD

f = sup UD
f = HD

f , (2.13)

where we have indicated with UD

f the collection of all u ∈ S(D) such that infD u >
−∞, and

lim inf
(x,t)→(x0,t0)

u(x, t) ≥ f (x0, t0), ∀ (x0, t0) ∈ ∂pD,

and with UD
f the collection of all u ∈ S(D) for which supD u < ∞, and

lim sup
(x,t)→(x0,t0)

u(x, t) ≤ f (x0, t0), ∀ (x0, t0) ∈ ∂pD.

Lemma 2.4. Let D ⊂ Rn+1 be a bounded open set, let f ∈ C(∂pD) and let u be
the generalized Perron-Wiener-Brelot-Bauer solution to the problem in (2.11), i.e.,
u = HD

f where HD
f be defined as in (2.13). Then u ∈ /2(D).

Proof. This follows from Theorem 1.1 in [40].

In the following we are concerned with the issue of regular boundary points
and we note, concerning the solvability of the Dirichlet problem for the operator
H , that in [40] Uguzzoni developes what he refers to as a “cone criterion” for non-
divergence equations modeled on Hörmander vector fields. This is a generalization
of the well-known positive density condition of classical potential theory. We next
describe his result in the setting of domains of the form !T = ! × (0, T ), where
! ⊂ Rn is assumed to be a bounded domain. In [40] a bounded open set ! is said
to have outer positive d-density at x0 ∈ ∂! if there exist r0, θ > 0 such that

|Bd(x0, r) \ !̄| ≥ θ |Bd(x0, r)|, for all r ∈ (0, r0). (2.14)

Furthermore, if r0 and θ can be chosen independently of x0 then one says that !
satisfies the outer positive d-density condition. The following lemma is a special
case of [40, Theorem 4.1].

Lemma 2.5. Assume that ! satisfies the outer positive d-density condition. Given

f ∈ C(∂p!T ) and g ∈ /β(!T ) for some 0 < β ≤ σ , where σ is the Hölder

exponent in (1.4), there exists a unique solution u ∈ /2+β(!T ) ∩ C(!T ∪ ∂p!T )
to the problem

Hu = g in !T , u = f on ∂p!T .

In particular, !T is H -regular for the Dirichlet problem (2.11).
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2.5. NTA domains

In this section we recall the notion of NTA domain with respect to the control dis-
tance d(x, y) induced by the system X = {X1, . . . , Xm}. We recall that, when
d(x, y) = |x − y|, the notion of NTA domain was introduced in [26] in connec-
tion with the study of the boundary behavior of nonnegative harmonic functions.
The first study of NTA domains in a sub-Riemannian context was conducted in [7],
where a large effort was devoted to the nontrivial question of the construction of
examples. In that paper the relevant Fatou theory was also developed and, in par-
ticular, the doubling condition for harmonic measure, and the comparison theorem
for quotients of nonnegative solutions of sub-Laplacians. Subsequently, in the pa-
pers [10, 11] the notion of NTA domain was combined with an intrinsic outer ball
condition to obtain the complete solvability of the Dirichlet problem.

Given a bounded open set ! ⊂ Rn , we recall that a ball Bd(x, r) is M-non-
tangential in ! (with respect to the metric d) if

M−1r < d(Bd(x, r), ∂!) < Mr.

Furthermore, given x, y ∈ ! a sequence of M-non-tangential balls in !,
Bd(x1, r1),. . . , Bd(xp, rp), is called a Harnack chain of length p joining x to y
if x ∈ Bd(x1, r1), y ∈ Bd(xp, rp), and Bd(xi , ri ) ∩ Bd(xi+1, ri+1) /= ∅ for
i ∈ {1, . . . , p − 1}. We note that in this definition consecutive balls have com-
parable radii.

Definition 2.6. We say that a connected, bounded open set ! ⊂ Rn is a non-
tangentially accessible domainwith respect to the system X = {X1, . . . , Xm} (NTA
domain, hereafter) if there exist M , r0 > 0 for which:

(i) (Interior corkscrew condition) For any x0 ∈ ∂! and r ≤ r0 there exists
Ar (x0) ∈ ! such that M−1r < d(Ar (x0), x0) ≤ r and d(Ar (x0), ∂!) >
M−1r . (This implies that Bd(Ar (x0), (2M)−1r) is (3M)-nontangential.)

(ii) (Exterior corkscrew condition) !c = Rn \ ! satisfies property (i).
(iii) (Harnack chain condition) There exists C(M) > 0 such that for any ε > 0

and x, y ∈ ! such that d(x, ∂!) > ε, d(y, ∂!) > ε, and d(x, y) < Cε, there
exists a Harnack chain joining x to y whose length depends on C but not on ε.

We observe that the Chow-Rashevski accessibility theorem implies that the metric
space (Rn, d) be locally compact, see [23]. Furthermore, for any bounded set ! ⊂
Rn there exists R0 = R0(!) > 0 such that the closure of balls B(x0, R) with
x0 ∈ ! and 0 < R < R0 are compact. We stress that metric balls of large radii fail
to be compact in general, see [23]. In view of these observations, for a given NTA
domain! ⊂ Rn with constant M and r0 we will always assume, following [7], that
the constant r0 has been adjusted in such a way that the closure of balls B(x0, R),
with x0 ∈ ! and 0 < R < r0, be compact.

We note the following lemma which will prove useful in the sequel and which
follows directly from Lemma 2.5 and Definition 2.6. In its statement the number σ
denotes the Hölder exponent in (1.4).
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Lemma 2.7. Let ! ⊂ Rn be NTA domain, then there exist constants C, R1, de-
pending on the NTA parameters of !, such that for every y ∈ ∂! and every

0 < r < R1 one has,

C|Bd(y, r)| ≤ min{|! ∩ Bd(y, r)|, |!c ∩ Bd(y, r)|} ≤ C−1|Bd(y, r)|.

In particular, every NTA domain has outer positive d-density and therefore, in view

of Lemma 2.5, given f ∈ C(∂p!T ), there exists a unique solution u ∈ /2+σ (!T )∩
C(!T ∪ ∂p!T ) to the Dirichlet problem (2.11). In particular, !T is H -regular.

Assume that ! ⊂ Rn is a non-tangentially accessible domain with respect to
the system X = {X1, . . . , Xm} and with parameters M, r0. Let T > 0 and define
!T = ! × (0, T ). Based on Definition 2.6, for every (x0, t0) ∈ ST , 0 < r < r0,
we introduce the following points of reference whenever

A+
r (x0, t0) = (Ar (x0), t0 + 2r2),

A−
r (x0, t0) = (Ar (x0), t0 − 2r2),

Ar (x0, t0) = (Ar (x0), t0).

(2.15)

We note here that according to [30, Lemma 6.4], Rn \ Bd(x0, R) satisfies condition
(ii) in Definition 2.6, and thus it also satisfies the uniform outer positive d-density
condition, and one can solve the Dirichlet problem there. Also note that the same is
true of the intersection of two sets that satisfy condition (ii) in Definition 2.6. This
is used to prove the following lemma ( [30, Theorem 6.5]) which states that one
can approximate any bounded open set with a set where one can solve the Dirichlet
problem (2.11).

Lemma 2.8. Let D ⊂ Rn be a bounded open set. Then, for every δ > 0 there
exists a set Dδ such that {x ∈ D : d(x, ∂D) > δ} ⊂ Dδ ⊂ D, and Dδ satisfies the

uniform outer positive d-density condition.

To apply the Harnack inequality to the equation (1.1) in a cylinder !T , we
will need to connect two points of !T with a suitable Harnack chain of parabolic
cylinders. We thus introduce the relevant geometric definition.

Definition 2.9. Let (y1, s1), (y2, s2) ∈ !T , with s2 > s1 . Suppose that (s2 −
s1)

1/2 ≥ η−1d(y1, y2) for some η > 1, and that d(y1, ∂!) > ε, d(y2, ∂!) > ε,
(T − s2) > ε2, s1 > ε2 and dp((y1, s1), (y2, s2)) < cε for some ε > 0. We say

that {Cr̂i ,ρ̂i (ŷi , ŝi )}+i=1 is a parabolic Harnack chain of length + connecting (y1, s1)
to (y2, s2), if r̂i , ρ̂i , ŷi , ŝi satisfy the following:

(i) c(η)−1 ≤ ρ̂i
r̂i

≤ c(η) for i = 1, 2, . . . , +,

(ii) ŝi+1 − ŝi ≥ c(η)−1r̂2i , for i = 1, 2, . . . , + − 1,
(iii) Bd(ŷi , r̂i ) is M-nontangential in ! for i = 1, 2, . . . , +,
(iv) (y1, s1) ∈ Cr̂1,ρ̂1(ŷ1, ŝ1), (y2, s2) ∈ Cr̂+,ρ̂+

(ŷ+, ŝ+),
(v) Cr̂i+1,ρ̂i+1(ŷi+1, ŝi+1) ∩ Cr̂i ,ρ̂i (ŷi , ŝi ) /= ∅ for i = 1, 2, . . . , + − 1.
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Lemma 2.10. Let! ⊂ Rn be aNTA-domain. Given T > 0 and (y1, s1), (y2, s2) ∈
!T , suppose that s2 > s1, (s2 − s1)

1/2 ≥ η−1d(y1, y2) for some η > 1, that
d(y1, ∂!)>ε, d(y2, ∂!)>ε, (T−s2)>ε2, s1>ε2 and that dp((y1, s1), (y2, s2)) <

cε for some ε > 0. Then, there exists a parabolic Harnack chain {Cr̂i ,ρ̂i (ŷi , ŝi )}+i=1,
connecting (y1, s1) to (y2, s2) in the sense of Definition 2.9. Furthermore, the length
+ of the chain can be chosen to depend only on η and c, but not on ε.

Proof. Since ! is a NTA domain and since d(y1, ∂!) > ε, d(y2, ∂!) > ε,

d(y1, y2) ≤ dp((y1, s1), (y2, s2)) < cε,

it follows that we can use Definition 2.6 to conclude the existence of a Harnack
chain of length +̂ = +̂(c), {Bd(ŷi , r̂i )}+̂i=1, connecting y1 and y2. In the following
we let β be a degree of freedom to be fixed below. Using β we define ρ̂i = βr̂i , we

let ŝi = s1+ 1
β

∑i
j=1 r̂

2
j for i ∈ {1, .., +̂}, and we consider the sequence of cylinders

{Cr̂i ,ρ̂i (ŷi , ŝi )}+̂i=1.
If we now choose β > 1, and if we assume that β is chosen as a function of η,
then (i), (ii), (iii), (v) and the first part of (iv) in Definition 2.9 are satisfied. In
particular, it only remains to ensure that the second part of (iv) in Definition 2.9 is
satisfied. To do this we first note that we can assume, without loss of generality, that

r̂i ≤ d(y1, y2) for all i ∈ {1, . . . , +̂}. Hence, ∑l̂
1 r̂
2
i ≤ +̂ · d(y1, y2)

2. Furthermore,

since d(y1, y2)
2 ≤ η2(s2 − s1), we have

ŝ+̂ − s1 = 1

β

+̂∑

1

r̂2j ≤ +̂

β
d(y1, y2)

2 ≤ +̂

β
η2(s2 − s1). (2.16)

We now let β = +̂ · η2 and we can conclude that ŝ+̂ ≤ s2. If ŝ+̂ = s2 we are done.
Otherwise, we only step up in time with cylinders C j = {Cr̂

+̂
,r̂

+̂
(y2, ŝ+̂ + j r̂+̂)} until

we reach (y2, s2). The time that is left depends on η, and, in particular, we have
that s2 − ŝ+̂ ≤ c2ε2. Furthermore, since r̂+ ≤ cε, the number of steps we need to
reach (y2, s2) only depends on c. In particular, it is clear that the length of the entire
parabolic Harnack chain only depends on c and η.

Lemma 2.11. Let u be a nonnegative solution to the equation Hu = 0 in !T .

Furthermore, let (y1, s1), (y2, s2) ∈ !T , suppose that s2 > s1, (s2 − s1)
1/2 ≥

η−1d(y1, y2) for some η > 1, that d(y1, ∂!) > ε, d(y2, ∂!) > ε, (T − s2) > ε2,
s1 > ε2 and that dp((y1, s1), (y2, s2)) < cε for some ε > 0. Then, there exists a
constant ĉ = ĉ(H, η, c, r0), 1 ≤ ĉ < ∞, such that

u(y1, s1) ≤ ĉu(y2, s2).

Proof. To prove the lemma we simply use the parabolic Harnack chain from Lem-
ma 2.10 and apply Theorem 2.2 in each cylinder. Note that the dependence of
constant ĉ on r0 enters through the size parameter R in the statement of Theo-
rem 2.2.
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3. Basic estimates

The purpose of this section is to establish a number of basic technical estimates that
will be used in the proof of Theorems 1.1-1.3. We mention that, using the notion
of NTA domain and Lemma 2.11, several of the proofs previously established in
the literature in the classical case m = n and {X1, . . . , Xm} = {∂x1, . . . , ∂xn } can
be extended to our setting. As a consequence, wherever appropriate, we will either
omit details or be brief. As previously, unless otherwise stated, c will denote a
positive constant ≥ 1, not necessarily the same at each occurrence, depending only
on H and M . In general, c(a1, . . . , am) denotes a positive constant≥ 1, which may
depend only on H , M and a1, . . . , am, and which is not necessarily the same at each
occurrence. When we write A ≈ B we mean that A/B is bounded from above and
below by constants which, unless otherwise stated, only depend on H,M .

Lemma 3.1. Let (x0, t0) ∈ ST and

r < min
{
r0/2,

√
(T − t0)/4,

√
t0/4

}
.

Let u be a nonnegative solution to Hu = 0 in !T ∩ C2r (x0, t0) which vanishes
continuously on '(x0, t0, 2r). Then, there exist c = c(H,M, r0), 1 ≤ c < ∞, and

γ = γ (H,M) > 0, such that for every (x, t) ∈ !T ∩ Cr (x0, t0),

u(x, t)dp(x, t, ST )γ ≤ crγ u(A+
r (x0, t0)).

Proof. The proof of this lemma is based on Lemma 2.11. In particular, let P0 =
(x, t) ∈ !T ∩ Cr (x0, t0) and let a = dp(P0, ST ). Note that, without loss of gener-
ality, we can assume that a < r/c1 for some large c1 since otherwise we are done
immediately by a simple application of Lemma 2.11. Now, take Q0 ∈ ST such
that dp(Q0, P0) = a and define Pi = A+

2i a
(Q0) for all i ≥ 1 such that A+

2i a
(Q0)

is well-defined. We intend to use Lemma 2.11 to prove that u(Pi ) ≤ cu(Pi+1)
for some constant c = c(H,M, r0). In the following we write Pi = (Pxi , Pti ),
Q0 = (Qx

0, Q
t
0) to indicate the spatial and time coordinate of Pi and Q0 respec-

tively. Then, for i = 0 we have

d(Px0 , Px1 ) ≤ d(Px0 , Qx
0) + d(Qx

0, P
x
1 ) ≤ a + 2a = 3

2
√
2
(Pt0 − Pt1)

1/2.

Since 3/2
√
2 > 1, using Lemma 2.11 we can conclude that u(P0) ≤ cu(P1). To

continue, for i ≥ 1 we first note that

Pti+1 − Pti = 2(2i+1a)2 − 2(2i a)2 = 3 · 22i+1a2.

Furthermore, we also have

d(Pxi+1, P
x
i ) ≤ d(Pxi+1, Q

x
0) + d(Qx

0, P
x
i ) ≤ 2i+1a + 2i a =

√
3

2
(Pti+1 − Pti )

1/2.
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Let ε = 2i a/M . Then d(Pxi , ∂!) > ε, d(Pxi+1, ∂!) > ε and dp(Pi+1, Pi ) =
(3 ·22i a2+3 ·22i+1a2)1/2 =

√
15M ·ε. Since

√
3
2 and

√
15M are both independent

of i and since

√
3
2 > 1, we can again conclude, using Lemma 2.11, that u(Pi ) ≤

Cu(Pi+1) for all i > 0 such that Pi and Pi+1 lie in!T ∩C2r (x0, t0). In particular, to
complete the proof it is now enough to consider the largest k such that 2ka ≤ r and
then iterate the above inequalities in a standard fashion. We omit further details.

Lemma 3.2. Let (x0, t0) ∈ ST and

r < min
{
r0/2,

√
(T − t0)/4,

√
t0/4

}
.

Let u be a nonnegative solution to Hu = 0 in !T ∩ C2r (x0, t0) vanishing con-
tinuously on '(x0, t0, 2r). Then, there exist c = c(H,M, r0), 1 ≤ c < ∞, and

γ = γ (H,M, r0) > 0, such that

u(A−
r (x0, t0)) ≤ c

(
r

dp(x, t, ∂p!T )

)γ

u(x, t),

whenever (x, t) ∈ !T ∩ Cr (x0, t0).

Proof. To prove this lemma one can proceed similarly to the proof of Lem-
ma 3.1.

Lemma 3.3. There exists a K̂ 4 1, K̂ = K̂ (H,M), such that the following is true

whenever (x0, t0) ∈ Rn+1 and r < r0/(2K̂ ). Assume that D is a domain inRn such

that D ⊂ Bd(x0, K̂ r) and assume that there exist x̂0 ∈ Bd(x0, K̂ r) and ρ > 0 such
that Bd(x̂0, 2ρ) ⊂ Bd(x0, r), Bd(x̂0, 2ρ) ∩ D = ∅ and M−1r < ρ < r . Let u be a

function in D × (t0 − 4r2, t0) which satisfies Hu ≥ 0 in D × (t0 − 4r2, t0), u ≤ 0
on ∂p(D× (t0−4r2, t0))\ ∂pC

−
K̂ r,2r

(x0, t0) and supD×(t0−4r2,t0) u > 0. Then, there

exists a constant θ = θ(H,M, r0), 0 < θ < 1, such that

sup
(D×(t0−4r2,t0))∩C−

r (x0,t0)

u ≤ θ sup
D×(t0−4r2,t0)

u. (3.1)

Proof. Let K̂ 4 1 be a constant to be fixed below. We let φ1 ∈ C∞
0 (Rn) be

such that 0 ≤ φ1 ≤ 1, φ1 ≡ 1 on Bd(x0, K̂ r + r) \ Bd(x0, K̂ r − r), φ1 ≡ 0 on

Bd(x0, K̂ r − 2r) ∪ (Rn \ Bd(x0, K̂ r + 2r)). Similarly, we let φ2 ∈ C∞
0 (Rn) be

such that 0 ≤ φ2 ≤ 1, φ2 ≡ 1 on Bd(x0, K̂ r) \ Bd(x̂0, 2ρ), φ2 ≡ 0 on Bd(x̂0, ρ) ∪
(Rn \ Bd(x0, K̂ r + 2r)). Using φ1 and φ2 we define

71(x̂, t̂) =
∫

Rn

/(x̂, t̂, ξ, t0 − 4r2)φ1(ξ)dξ,

72(x̂, t̂) =
∫

Rn

/(x̂, t̂, ξ, t0 − 4r2)φ2(ξ)dξ,
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whenever (x̂, t̂) ∈ Rn+1, t̂ ≥ t0 − 4r2. To preceed we first prove that there exist a
constant c such that

1 ≤ c71(x̂, t̂) for (x̂, t̂) ∈ ∂p(C
−
K̂ r,2r

(x0, t0) ∩ {(x, t) : t0 − 4r2 < t < t0}). (3.2)

To establish this, let (x̂, t̂) be as in (3.2), and for simplicity assume that t0−4r2 = 0.
Then, using Lemma 2.1 and (2.2) we see that

71(x̂, t̂) ≥
∫

Bd (x̂,
√
t̂/2)

/(x̂, t̂, ξ, 0)φ1(ξ)dξ

≥
∫

Bd (x̂,
√
t̂/2)

c−1
∣∣∣B(x̂,

√
t̂)

∣∣∣
−1
e−Cd(x̂,ξ)2/t̂ dξ

= e−Ct̂/4t̂
∫

Bd (x̂,
√
t̂/2)

c−1
∣∣∣B(x̂,

√
t̂)

∣∣∣
−1
e−C

(
4d(x̂,ξ)2−t̂

)
/4t̂ dξ

≥ e−C/4c−1
∣∣∣B(x̂,

√
t̂)

∣∣∣
−1 ∫

Bd (x̂,
√
t̂/2)

dξ ≥ e−C/4c−1Ĉ−1.

We conclude that (3.2) holds provided that we choose c ≤ e−C/4Ĉ−1. Now, let

M = sup
D×(t0−4r2,t0)

u. (3.3)

Using (3.2) and the maximum principle on D × (t0 − 4r2, t0) we thus see that the
estimate

u(x̂, t̂) ≤ cM71(x̂, t̂) + M72(x̂, t̂) (3.4)

holds in D×(t0−4r2, t0), and thus in particular in
(
D × (t0 − 4r2, t0

)
)∩C−

r (x0, t0).

Further, if (x̂, t̂) ∈
(
D × (t0 − 4r2, t0

)
) ∩ C−

r (x0, t0), then

71(x̂, t̂) ≤
∫

Bd (x0,K̂ r+r)\Bd (x0,K̂ r−r)
|B(x̂,

√
t̂)|−1e−C−1d(x̂,ξ)2/t̂ dξ

≤
∫

Bd (x0,K̂ r+r)\Bd (x0,K̂ r−r)
|B(x̂, r)|−1e−c−1d(x̂,ξ)2/r2dξ

≤ ce−c
−1 K̂ 2 |Bd(x0, K̂ r + r) \ Bd(x0, K̂ r − r)||B(x̂, r)|−1

≤ ce−c
−1 K̂ 2 |Bd(x0, K̂ r + r)||B(x̂, r)|−1.

Iterating (2.2) and using that r < r0/(2K̂ ) we see that

ce−c
−1 K̂ 2 |Bd(x0, K̂ r + r)||B(x̂, r)|−1 ≤ ce−c

−1 K̂ 2 K̂ η

for some integer η 4 1 which is independent of K̂ , x0, x̂ and r . In particular

71(x̂, t̂) ≤ ce−c
−1 K̂ 2 K̂ η.
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To estimate 72(x̂, t̂) we note that

72(x̂, t̂) = 1− 7̂2(x̂, t̂), where

7̂2(x̂, t̂) =
∫

Rn

/(x̂, t̂, ξ, t0 − 4r2)(1− φ2(ξ))dξ,

and by construction,

7̂2(x̂, t̂) ≥
∫

Bd (x̂,ρ)
/(x̂, t̂, ξ, t0 − 4r2)dξ.

As before we then prove that

7̂2(x̂, t̂) ≥ c−1,

and actually, for ε small enough,

7̂2(x̂0, t0 − 4r2 + ε2ρ2) ≥ c−1.

Hence, by using the Harnack inequality we can conclude that 72(x̂, t̂) = 1 −
7̂2(x̂, t̂) ≤

(
1− c−1

)
, whenever (x̂, t̂) ∈

(
D × (t0 − 4r2, t0

)
) ∩ C−

r (x0, t0) for

some c = c(H,M, r0) > 1. In particular, for every (x̂, t̂) ∈
(
D × (t0 − 4r2, t0

)
) ∩

C−
r (x0, t0), we have

u(x̂, t̂) ≤ cM71(x̂, t̂) + M72(x̂, t̂) ≤ M
(
ce−c

−1 K̂ 2 K̂ η +
(
1− ĉ−1

))
,

for some ĉ = ĉ(H,M, r0). Given ĉ, we choose K̂ so that ce−c
−1 K̂ 2 K̂ η ≤ ĉ−1/2,

and we let θ =
(
1− ĉ−1/2

)
< 1. Then, the following inequality holds

u(x̂, t̂) ≤ θM, (3.5)

with M as in (3.3). This establishes (3.1), thus completing the proof.

We will also need a few variations on the theme of Lemma 3.3.

Corollary 3.4. There exists a K̂ 4 1, K̂ = K̂ (H,M, r0), such that the following
is true whenever (x0, t0) ∈ ST and

r < min{r0/(2K̂ ),
√

(T − t0)/4,
√
t0/4}.

Let u be a nonnegative solution to Hu = 0 in !T ∩ C−
K̂ r,2r

(x0, t0) vanishing con-

tinuously on ST ∩ C−
K̂ r,2r

(x0, t0). Then, there exists a constant θ = θ(H,M),

0 < θ < 1, such that

sup
!T∩C−

r (x0,t0)

u ≤ θ sup
!T∩C−

K̂ r,2r
(x0,t0)

u.
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Proof. This is an obvious consequence of theNTAcharacter of! and of Lemma3.3.
We omit further details.

Lemma 3.5. There exists a K̂ 4 1, K̂ = K̂ (H,M, r0), such that the following is
true whenever (x0, t0) ∈ ST and

r < min

{
r0/(2K̂ ),

√
(T − t0)/(4K̂ )2,

√
t0/(4K̂ )2

}
.

Let u be a solution to Hu = 0 in !T ∩ C−
K̂ r,2r

(x0, t0) which vanishes continuously

on ST ∩ C−
K̂ r,2r

(x0, t0). Then, there exists a constant θ = θ(H,M), 0 < θ < 1,

such that

sup
!T∩C−

r (x0,t0)

u± ≤ θ sup
!T∩C−

K̂ r,2r
(x0,t0)

u±,

where u+(x, t) = max{0, u(x, t)}, u−(x, t) = −min{0, u(x, t)}.
Proof. We first prove Lemma 3.5 for u+. In fact, in this case the argument is essen-
tially the same as that in the proof of Lemma 3.3. In particular, if we let

M+ = sup
!T∩C−

K̂ r,2r
(x0,t0)

u+,

then we see that (3.4) still holds but with M replaced by M+. Furthermore, repeat-
ing the argument in (3.3)-(3.5), we see that

u(x̂, t̂) ≤ θM+,

whenever (x̂, t̂) ∈ !T ∩ C−
r (x0, t0). Obviously this completes the proof of Lem-

ma 3.5 for u+. Concerning the same estimate for u− we see, by analogy, that

−u(x̂, t̂) ≤ θM−, M− = sup
!T∩C−

K̂ r,2r
(x0,t0)

(−u) = sup
!T∩C−

K̂ r,2r
(x0,t0)

u−, (3.6)

whenever (x̂, t̂) ∈ !T ∩ C−
r (x0, t0) and from (3.6) we deduce Lemma 3.5 for u

−.
This completes the proof of the lemma.

Lemma 3.6. Let (x0, t0) ∈ ST and let r < min{r0/2,
√

(T − t0)/4,
√
t0/4}. Let u

be a nonnegative solution to Hu = 0 in !T ∩ C2r (x0, t0) which vanishes continu-
ously on '(x0, t0, 2r). Then, there exist a constant c = c(H,M, r0), 1 ≤ c < ∞,

and α = α(H,M) ∈ (0, 1), such that

u(x, t) ≤ c

(
dp(x, t, x0, t0)

r

)α

sup
!T∩C2r (x0,t0)

u (3.7)

whenever (x, t) ∈ !T ∩ Cr/c(x0, t0).
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Proof. This lemma is a simple consequence of Corollary 3.4.

Lemma 3.7. Let (x0, t0) ∈ ST and let r < min{r0/2,
√

(T − t0)/4,
√
t0/4}. Let u

be a nonnegative solution to Hu = 0 in !T ∩ C2r (x0, t0) vanishing continuously
on '(x0, t0, 2r). Then, there exists a constant c = c(H,M, r0), 1 ≤ c < ∞, such

that

u(x, t) ≤ cu(A+
r (x0, t0))

whenever (x, t) ∈ !T ∩ Cr/c(x0, t0).

Proof. This lemma is a consequence of Lemma 3.6, the Harnack inequality and a
classical argument developed in [6] and [38].

Remark 3.8. Note that if u is a nonnegative solution to Hu = 0 in all of !T then
Lemma 3.7 can be improved in the following way. Let (x0, t0) ∈ ST and r be
as in the statement of Lemma 3.7. Let u be a nonnegative solution to Hu = 0
in !T vanishing continuously on '(x0, t0, 2r). Then, there exists a constant c =
c(H,M, r0), 1 ≤ c < ∞, such that

u(x, t) ≤ cu(A+
r (x0, t0))

whenever (x, t) ∈ !T ∩Cr (x0, t0). In fact, the restriction (x, t) ∈ !T ∩Cr/c(x0, t0)
in Lemma 3.7 is simply a result of the fact that we in Lemma 3.7 are only assuming
that u is a nonnegative solution in !T ∩ C2r (x0, t0).

Lemma 3.9. Let u be a nonnegative solution to Hu = 0 in !T which vanishes

continuously on ST . Let 0 < δ +
√
T be given. Then, there exists a constant

c = c(H,M, diam(!), T, δ, r0), 1 ≤ c < ∞, such that

sup
(x,t)∈!δ×(δ2,T )

u(x, t) ≤ c inf
(x,t)∈!δ×(δ2,T )

u(x, t).

Proof. To prove this we can proceed, using the lemmas given above, exactly as in
the proof of [34, Lemma 2.7].

Lemma 3.10. Let K 4 1 be given, let (x0, t0) ∈ ST and assume that r <
min{r0/(8K ),

√
(T − t0)/64,

√
t0/64}. Let u be a nonnegative solution to the equa-

tion Hu = 0 in !T vanishing continuously on ST . Let γ = γ (H,M) ∈ (0, 1) be
as in Lemma 3.1 and Lemma 3.2. Assume that

sup
!T∩C−

2Kr,2r (x0,t0)

u ≥ (2K )−γ sup
!T∩C−

4Kr,8r (x0,t0)

u.

Then, provided K=K (H,M) is chosen large enough, there exists c=c(H,M, r0)≥
1, such that

sup
!T∩C−

4Kr (x0,t0)∩{(x,t):t=t0−64r2}
u ≥ c−1 sup

!T∩C−
2Kr,2r (x0,t0)

u.
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Proof. The proof of this lemma is similar to that of Lemma 3.4. In particular, we let
φ1 ∈ C∞

0 (Rn) be such that 0 ≤ φ1 ≤ 1, φ1 ≡ 1 on Bd(x0, 4Kr+2r)\Bd(x0, 4Kr−
2r), φ1 ≡ 0 on Bd(x0, 4Kr−4r)∪(Rn\Bd(x0, 4Kr+4r)). Since! is NTAwe see
that there exist x̂0 and ρ > 0 such that r/M < 4ρ < r and such that B(x̂0, 2ρ) ⊂
(Rn \ !) ∩ B(x0, r). Based on this we let φ2 ∈ C∞

0 (Rn) be such that 0 ≤ φ2 ≤ 1,
φ2 ≡ 1 on Bd(x0, 4Kr)\B(x̂0, 2ρ), φ2 ≡ 0 on (Rn \Bd(x0, 4Kr+4r))∪B(x̂0, ρ).
Using φ1 and φ2 we define

71(x̂, t̂) =
∫

Rn

/(x̂, t̂, ξ, t0 − 64r2)φ1(ξ)dξ,

72(x̂, t̂) =
∫

Rn

/(x̂, t̂, ξ, t0 − 64r2)φ2(ξ)dξ,

whenever (x̂, t̂) ∈ Rn+1, t̂ ≥ t0− 64r2. Let /1 = !T ∩C−
4Kr (x0, t0)∩ {(x, t) : t =

t0 − 64r2}, /2 = ∂p(!T ∩ C−
4Kr,8r (x0, t0)) \ /1 \ ST . In the following we let

M = sup
!T∩C−

4Kr,8r (x0,t0)

u, M̂ = sup
!T∩C−

4Kr (x0,t0)∩{(x,t):t=t0−64r2}
u.

Then, by arguing as in the proof of Lemma 3.4, we first see that there exists c such
that

1 ≤ c71(x̂, t̂) for (x̂, t̂) ∈ ∂p(C
−
4Kr,8r (x0, t0)) ∩ {(x, t) : t0 − 64r2 < t < t0},

and then, by the maximum principle we see, that

u(x̂, t̂) ≤ cM71(x̂, t̂) + M̂72(x̂, t̂)

for (x̂, t̂) ∈ !T ∩C−
2Kr,2r (x0, t0). As in the proof of Lemma 3.4 we can then deduce

that

u(x̂, t̂) ≤ cMe−c
−1 K 2K η + M̂72(x̂, t̂),

for (x̂, t̂) ∈ !T ∩ C−
2Kr,2r (x0, t0). Next, using the assumption stated in the lemma

we see that

(2K )−γ M ≤ cMe−c
−1 K 2K η + M̂ sup

!T∩C−
2Kr,2r (x0,t0)

72(x̂, t̂).

Hence, assuming that K is so large that (2K )−γ > ce−c
−1 K 2K η, we have that

((2K )−γ − e−c
−1 K 2K η)M ≤ M̂ sup

!T∩C−
2Kr,2r (x0,t0)

72(x̂, t̂) ≤ M̂ .

In particular, we can conclude, for K = K (H,M) large enough, that

1

2
(2K )−γ sup

!T∩C−
2Kr,2r (x0,t0)

u ≤ 1

2
(2K )−γ M ≤ M̂ .

This completes the proof.
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Lemma 3.11. Let K̂ be as in the statement of Lemma 3.3, let K 4 K̂ be a constant

to be suitably chosen, (x0, t0) ∈ ST and assume

r < min
{
r0/(2K K̂ ),

√
(T − t0)/(4K 2),

√
t0/(4K 2)

}
.

Let u be a solution to Hu = 0 in (!T \ !r
T ) ∩ C−

Kr (x0, t0) which is continuous on

the closure of (!T \ !r
T ) ∩ C−

Kr (x0, t0). Moreover, assume that

(i) u(x, t)≤1 whenever (x, t) ∈ (!T \ !r
T ) ∩ C−

Kr (x0, t0),

(ii) u(x, t)≤0 whenever (x, t) ∈ [(∂! ∪ ∂!r ) × (t0 − (Kr)2, t0)] ∩ C−
Kr (x0, t0).

Then, there exists a constant c = c(H,M, r0), 1 ≤ c < ∞, such that

u(x, t) ≤ e−cK

whenever (x, t) ∈ (!T \ !r
T ) ∩ C−

K̂ r
(x0, t0).

Proof. In the following we consider odd integers 2 j + 1 where j ∈ [0, (K/K̂ −
1)/2]. For each such j we define a point (X̂ j , t̂ j ) ∈ (!T \ !r

T ) ∩C−
(2 j+1)K̂ r (x0, t0)

through the relation

sup
(!T \!r

T )∩C−
(2 j+1)K̂ r (x0,t0)

u = u(X̂ j , t̂ j ). (3.8)

We then note, using the maximum principle, that (X̂ j , t̂ j ) ∈ ∂p[(!T \ !r
T ) ∩

C−
(2 j+1)K̂ r (x0, t0)]. By construction we also see that there exists (X̃ j , t̂ j ) ∈ ∂! ×

[t0−((2 j+1)K̂ r)2, t0) such that dp(X̃ j , t̂ j , X̂ j , t̂ j ) = d(X̃ j , X̂ j ) ≤ r . In particular,

(X̂ j , t̂ j ) is in the closure of C
−
r (X̃ j , t̂ j ). We next note that

C−
K̂ r,2r

(X̃ j , t̂ j )∩[(!T \!r
T )∩C−

Kr (x0, t0)] ⊂ (!T \!r
T )∩C−

(2 j+3)K̂ r (x0, t0). (3.9)

Let D be defined through the relation D × (t̂ j − 4r2, t̂ j ) = C−
K̂ r,2r

(X̃ j , t̂ j ) ∩
[(!T \ !r

T ) ∩ C−
Kr (x0, t0)]. Then, applying Lemma 3.3 we see that there exists

θ = θ(H,M), 0 < θ < 1, such that

sup
(D×(t̂ j−4r2,t̂ j ))∩C−

r (X̃ j ,t̂ j )

u ≤ θ sup
D×(t̂ j−4r2,t̂ j )

u. (3.10)

In particular, since (X̂ j , t̂ j ) is in the closure of the set (D × (t̂ j − 4r2, t̂ j )) ∩
C−
r (X̃ j , t̂ j ) we can use continuity of u, (3.10) and (3.9) to conclude that

u(X̂ j , t̂ j ) ≤ θ sup
D×(t̂ j−4r2,t̂ j )

u (3.11)

≤ θ sup
(!T \!r

T )∩C−
(2 j+3)K̂ r (x0,t0)

u = θu(X̂ j+1, t̂ j+1).
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Let j0 be the largest positive integer such that (2 j0 + 3)K̂ ≤ K . Then, by iteration
we see that

sup
(!T \!r

T )∩C−
K̂ r

(x0,t0)

u = u(X̂1, t̂1) ≤ θ j0u(X̂ j0+1, t̂ j0+1) ≤ θ j0 (3.12)

where we, at the last step, has used that u(x, t) ≤ 1. Hence

sup
(!T \!r

T )∩C−
K̂ r

(x0,t0)

u ≤ θ j0 . (3.13)

Obviously (3.13) implies the statement in Lemma 3.11 and the proof is com-
plete.

Lemma 3.12. Let K̂ be as in the statement of Lemma 3.3, let K 4 K̂ be given,

(x0, t0) ∈ ST and assume that

r < min
{
r0/(2K ),

√
(T − t0)/(4K 2),

√
t0/(4K 2)

}
.

Let u and v be two solutions to Hu = 0 in (!T \ !r
T ) ∩ C−

Kr (x0, t0). Moreover,
assume that

(i) u(x, t)≥0, v(x, t) ≤ 1 whenever (x, t) ∈ (!T \ !r
T ) ∩ C−

Kr (x0, t0),

(ii) u(x, t)≥1 whenever (x, t) ∈ [∂!r × (t0 − (Kr)2, t0)] ∩ C−
Kr (x0, t0),

(iii) v(x, t)≤0 whenever (x, t) ∈ [(∂! ∪ ∂!r )×(t0 − (Kr)2, t0)] ∩ C−
Kr (x0, t0).

Then, for any (x, t) ∈ !T ∩ C−
r (x0, t0) one has

v(x, t) ≤ u(x, t),

provided K = K (H,M) is chosen large enough.

Proof. To start the proof of Lemma 3.12 we claim that if u as in the statement of
the lemma, then

u(x, t) ≥ 2ε

(
dp(x, t, ST )

r

)η

whenever (x, t) ∈ !T ∩ C−
r (x0, t0), (3.14)

where ε and η are positive constants depending only on H,M . However, we post-
pone the proof of this claim until the end. We thus establish the lemma assuming
(3.14). To do this we first note that (3.14) implies that

u(x, t) ≥ 2εK−η whenever (x, t) ∈ !
r/K
T ∩ C−

r (x0, t0). (3.15)
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Furthermore, since v satisfies the assumptions stated in Lemma 3.11, from this
result we see that

v(x, t) ≤ e−cK ≤ εK−η whenever (x, t) ∈ !T ∩ C−
r (x0, t0), (3.16)

provided K = K (H,M) is large enough. In particular,

v(x, t) ≤ εK−η ≤ u(x, t) whenever (x, t) ∈ !
r/K
T ∩ C−

r (x0, t0).

We now define for (x, t) ∈ (!T \ !
r/K
T ) ∩ C−

r (x0, t0),

u1(x, t) = K η

2ε
u(x, t), v1(x, t) = K η

2ε
(2v(x, t) − u(x, t)).

Then, using (3.15), (3.16), we see that

(i1) u1(x, t)≥0, v1(x, t) ≤ 1 whenever (x, t) ∈ (!T \ !
r/K
T ) ∩ C−

r (x0, t0),

(ii1) u1(x, t)≥1 whenever (x, t) ∈ [∂!r/K × (t0 − (r)2, t0)] ∩ C−
r (x0, t0),

(iii1) v1(x, t)≤0 whenever (x, t) ∈ [(∂! ∪ ∂!r/K )×(t0 − r2, t0)] ∩ C−
r (x0, t0).

Moreover, u1, v1 are solutions to Hu = 0 in (!T \!
r/K
T )∩C−

r (x0, t0). In particular,
the pair (u1, v1) satisfies the assumptions stated in Lemma 3.12 with r replaced by
r/K . Furthermore, by construction we have that

u(x, t) − v(x, t) = ε

K η
(u1(x, t) − v1(x, t)) ≥ 0,

whenever (x, t) ∈ !
r/K 2

T ∩ C−
r/K (x0, t0). Hence, by iteration of this argument we

see that we can construct functions u j and v j , for j = 1, 2, . . . , such that

u(x, t) − v(x, t) =
(

ε

K η

) j

(u j (x, t) − v j (x, t)) ≥ 0

whenever (x, t) ∈ (!T \ !
r/K j+1
T ) ∩ C−

r/K j (x0, t0). As a consequence we obtain

that
u(x, t) − v(x, t) ≥ 0 whenever (x, t) ∈ I (x0, t0),

whereI (x0,t0)=
⋃∞

j=1!
r/K j

T ∩C−
r/K j−1(x0, t0). Finally, for arbitrary (x̂0, t̂0)∈ !T∩

C−
r (x0, t0) one can choose (x̃0,t̃0)∈ ST such that dp(x̂0, t̂0, ST )=dp(x̂0, t̂0, x̃0, t̃0)=

d(x̂0, x̃0). Then (x̂0, t̂0) ∈ I (x̃0, t̃0) and d(x0, x̃0) < r , i.e.,

(!T \ !r
T ) ∩ C−

Kr (x̃0, t̃0) ⊂ (!T \ !r
T ) ∩ C−

(K+2)r (x0, t0),

∂p
(
(!T \!r

T )∩C−
Kr (x̃0, t̃0)

)
∩ ∂p!

r
T ⊂∂p

(
(!T \ !r

T ) ∩ C−
(K+2)r (x0, t0)

)
∩ ∂p!

r
T .
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Hence, by replacing K with K + 2 in the original assumptions and repeating the
proof up to here with (x̃0, t̃0) instead of (x0, t0), we can conclude that u(x, t) −
v(x, t) ≥ 0 on I (x̃0, t̃0) and in particular, u(x̂0, t̂0)− v(x̂0, t̂0) ≥ 0. Since (x̂0, t̂0) ∈
!T ∩ C−

r (x0, t0) is arbitrary we can hence conclude that u − v ≥ 0 on !T ∩
C−
r (x0, t0). In particular, to complete the proof of Lemma 3.12 we are only left
with proving the claim in (3.14).

To do this we proceed as follows. Let K̂ be as in the statement of Lemma 3.3

and let - 4 1 be given. Assume that K 4 -K̂ . Given x0 ∈ ∂!, according to
Lemma 2.8 we can find a set U such that

Bd(x0,-K̂ r) ⊂ U ⊂ Bd(x0, (- + 1)K̂ r),

and such that we can solve the Dirichlet problem (2.11) in

!T ∩ [U × (t0 − 16t2, t0)].

Furthermore, we choose x̃0∈! and- so that x̃0∈∂Bd(x0,-K̂ r) and Bd(x̃0,2K̂ r)⊂
!. We note that, since ! is an NTA domain, this can always be accomplished
by choosing - large enough. We next introduce an auxiliary function ũ as fol-
lows. We let ũ be such that Hũ = 0 in !T ∩ [U × (t0 − 16t2, t0)], ũ = 1 on
∂p(!T ∩ [U × (t0 − 16t2, t0)]) ∩ C−

K̂ r,2r
(x̃0, t0 − 4r2) and ũ = 0 on the rest of

∂p(!T ∩ [U × (t0 − 16t2, t0)]). We then have 0 ≤ ũ ≤ 1, and ũ ≤ u where u and

ũ are both defined. Also, ũ is not identical to 1 in !T ∩ [U × (t0 − 16t2, t0)].
Let D = U ∩ Bd(x̃0, K̂ r) and define û = 1 − ũ in D × (t0 − 8r2, t0 − 4r2).

Then û satisfies Hû = 0 in D × (t0 − 8r2, t0 − 4r2), û ≤ 0 on ∂p(D × (t0 −
8r2, t0− 4r2)) \ ∂pC

−
K̂ r,2r

(x̃0, t0− 4r2) and supD×(t0−8r2,t0−4r2) û > 0. Because of

the construction of U , there exists x̂0 ∈ Bd(x̃0, K̂ r) and ρ such that Bd(x̂0, ρ) ⊂
Bd(x̃0, r), Bd(x̂0, ρ) ∩ D = ∅ and M̂−1r < ρ < r for some M̂ independent of r .
We can now apply Lemma 3.3 to conclude that there exists a constant θ , 0 < θ < 1,
independent of r , such that

sup
(D×(t0−8r2,t0−4r2))∩C−

r (x̃0,t0−4r2)
û ≤ θ sup

D×(t0−8r2,t0−4r2)
û ≤ θ . (3.17)

In particular, by continuity we see from (3.17) that

u(x̃0, t0 − 4r2) ≥ ũ(x̃0, t0 − 4r2) ≥ 1− θ > 0. (3.18)

Furthermore, using (3.18), the Harnack inequality and Lemma 3.2 we see that

1− θ ≤ cu(A−
r (x0, t0)) ≤ c2rγ u(x, t)dp(x, t, ST )−γ (3.19)

whenever (x, t) ∈ !T ∩ C−
r (x0, t0). Obviously this gives (3.14) with η = γ and

2ε = (1− θ)/c2. This completes the proof.
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4. Proof of Theorem 1.1 and Theorem 1.2

The purpose of this section is proving Theorems 1.1 and 1.2.

4.1. Proof of Theorem 1.1

To begin the proof we let 0<δ+
√
T be a fixed constant, we let (x0, t0) ∈ ST , δ

2 ≤
t0 ≤ T − δ2, and we assume that r < min{r0/2,

√
(T − t0 − δ2)/4,

√
(t0 − δ2)/4}.

For r̂ > 0 we define

f (r̂) = r̂−γ sup
!T∩C−

2r̂
(x0,t0)

u(x, t) (4.1)

where γ is the constant appearing in Lemma 3.1. Furthermore, we let

ρ = max{r̂ : r ≤ r̂ ≤ δ, f (r̂) ≥ f (r)}. (4.2)

By the definition of ρ in (4.2) we see that

sup
!T∩C−

2r (x0,t0)

u(x, t) ≤ (r/ρ)γ sup
!T∩C−

2ρ(x0,t0)

u(x, t). (4.3)

Furthermore, using Lemma 3.2 we see that

u(A−
2ρ(x0, t0)) ≤ c(ρ/r)γ u(A−

r (x0, t0)). (4.4)

In the following we prove that

sup
!T∩C−

2ρ(x0,t0)

u(x, t) ≤ cu(A−
2ρ(x0, t0)) (4.5)

for this particular choice of ρ. In fact, combining (4.3), (4.4) and (4.5) we see that

sup
!T∩C−

2r (x0,t0)

u(x, t) ≤ cu(A−
r (x0, t0)). (4.6)

To prove (4.5) we let K 4 1 be given as in Lemma 3.10, and we divide the proof
into two cases. First, we assume that δ/(2K ) < ρ. In this case ρ is large and
combining Lemma 3.7 and Lemma 3.9 we see that

sup
!T∩C−

2ρ(x0,t0)

u(x, t) ≤ cu(A+
2ρ(x0, t0)) ≤ c2u(A−

2ρ(x0, t0)), (4.7)

for some c = c(H,M, diam(!), T, δ, K ), 1 ≤ c < ∞. Hence, the proof is com-
plete in this case. Second, we assume that r ≤ ρ ≤ δ/(2K ) and we then first note,
by the definition of ρ, that f (2Kρ) ≤ f (ρ), i.e.,

sup
!T∩C−

2ρ(x0,t0)

u ≥ (2K )−γ sup
!T∩C−

4Kρ(x0,t0)

u.
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Obviously the above inequality implies

sup
!T∩C−

2Kρ,2ρ(x0,t0)

u ≥ (2K )−γ sup
!T∩C−

4Kρ,8ρ(x0,t0)

u,

and hence we can use Lemma 3.10 to conclude that

sup
!T∩C−

4Kρ(x0,t0)∩{(x,t):t=t0−64ρ2}
u ≥ c−1 sup

!T∩C−
2Kρ,2ρ(x0,t0)

u. (4.8)

In particular, using if necessary Lemma 3.7, and the Harnack inequality in Theo-
rem 2.2, we can now use (4.8) to conclude (4.5). This completes the proof of (4.5).
Furthermore, Theorem 1 now follows readily from (4.5).

!

4.2. Proof of Theorem 1.2

To prove Theorem 1.2 we first establish a few lemmas.

Lemma 4.1. Let K 4 1 be the constant appearing in Lemma 3.12, let (x0, t0) ∈
ST and assume that

r < min
{
r0/(2K ),

√
(T − t0)/(4K 2),

√
t0/(4K 2)

}
.

Let u and v be two nonnegative solutions to Hu = 0 in !T , and assume that v = 0
continuously on'(x0, t0, 2Kr). Then, there exists a constant c = c(H,M, r0) such
that

sup
!T∩C−

r (x0,t0)

v

u
≤ c

v(A+
Kr (x0, t0))

u(A−
Kr (x0, t0))

.

Proof. We first note that if we choose K large enough then, since (!T \ !r
T ) ∩

C−
Kr (x0, t0) ⊂ !T ∩ C−

Kr (x0, t0), we can use Remark 3.8 to conclude that

v(x, t) ≤ c1v(A+
Kr (x0, t0)) whenever (x, t) ∈ (!T \ !r

T ) ∩ C−
Kr (x0, t0). (4.9)

Furthermore, by the Harnack inequality we have that

u(x, t) ≥ c−12 u(A−
Kr (x0, t0)),

for every (x, t) ∈ ∂p
(
(!T \ !r

T ) ∩C−
Kr (x0, t0)

)
∩ ∂p!

r
T . For (x, t) ∈ (!T \ !r

T ) ∩
C−
Kr (x0, t0) let

ṽ(x, t) = v(x, t)/v(A+
Kr (x0, t0)),

ũ(x, t) = u(x, t)/u(A−
Kr (x0, t0)),

v̂(x, t) = c−11 ṽ(x, t) − c2ũ(x, t),
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and
û(x, t) = c2ũ(x, t).

Then, we can apply Lemma 3.12 with u, v replaced by û, v̂ to first conclude that
v̂(x, t) ≤ û(x, t), for (x, t) ∈ !T ∩ C−

r (x0, t0), and then that

v(x, t)

u(x, t)
≤ v(A+

Kr (x0, t0))

u(A−
Kr (x0, t0))

c2

c1

(
v̂(x, t)

û(x, t)
+ 1

)

≤ c3
v(A+

Kr (x0, t0))

u(A−
Kr (x0, t0))

whenever (x, t) ∈ !T ∩ C−
r (x0, t0). This completes the proof of Lemma 4.1.

Lemma 4.2. Let K 4 1 be the constant appearing in Lemma 3.12, let (x0, t0) ∈
ST and assume that

r < min
{
r0/(2K ),

√
(T − t0)/(4K 2),

√
t0/(4K 2)

}
.

Let u and v be two nonnegative solutions to Hu = 0 in !T , assume that u = 0
continuously on ST , that v = 0 continuously on '(x0, t0, 4Kr), and that u and v
are not identically zero. Then, the quotient v/u is Hölder continuous on the closure
of !T ∩ C−

r (x0, t0).

Proof. To prove this lemma we proceed similarly to [20]. Given (x, t) in the closure
of !T and ρ > 0 we define

ω(x, t, ρ) = sup
!T∩C−

ρ (x,t)

v

u
− inf

!T∩C−
ρ (x,t)

v

u
. (4.10)

Then, to start with, we note that Lemma 4.1 implies that

ω(x0, t0, 2r) ≤ 2c
v(A+

Kr (x0, t0))

u(A−
Kr (x0, t0))

≤ C < ∞. (4.11)

In the following we let (x, t) be an arbitrary point in !T ∩ C−
r (x0, t0) and we

consider 0 < ρ ≤ r . Let d := d(x, ∂!) = dp(x, t, ST ). We divide the proof into
the cases ρ ≤ d and ρ > d.

The case ρ ≤ d. Assume first that, in addition, ρ ≤ d/2. We note that we can
assume, without loss of generality, that

(i) 0 ≤ v(y,s)
u(y,s) ≤ 1, for (y, s) ∈ C−

ρ (x, t),

(ii) ω(x, t, ρ) = 1,

(iii)
v(x,t−ρ2/2)

u(x,t−ρ2/2)
≥ 1

2 .
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To see this notice that to achieve (i) and (ii) we can replace v by

v̂ ≡ ω(x, t, ρ)−1
(

v −
(

inf
!T∩C−

ρ (x,t)
v/u

)
u

)
.

Furthermore, if (iii) does not hold, then we can replace v by v̄ ≡ u − v̂ ≥ 0 to
achieve (iii). Next, using the Harnack inequality we first see that

v(x, t − ρ2/2) ≤ cv(y, s), u(y, s) ≤ cu(x, t + ρ2/2)

whenever (y, s) ∈ C−
ρ/2(x, t). Moreover, as in the proof of Theorem 1, we derive

that

u(x, t + ρ2/2) ≤ cu(x, t − ρ2/2).

Thus

1

2
≤ v(x, t − ρ2/2)

u(x, t − ρ2/2)
≤ c

v(y, s)

u(y, s)
≤ c,

whenever (y, s) ∈ C−
ρ/2(x, t), and hence

ω(x, t, ρ/2) ≤ θ̃1ω(x, t, ρ) (4.12)

where θ̃1 = 1 − 1/(2c) ∈ (0, 1). Furthermore, iterating the estimate in (4.12) we
deduce that

ω(x, t, ρ) ≤
(
2ρ

d

)σ1

ω(x, t, d) (4.13)

whenever ρ ≤ d/2 and where σ1 = − log2 θ̃1. Obviously this estimate also holds
whenever d/2 < ρ ≤ d.

The case ρ > d. Assume first, in addition, that ρ < r/2. Note that C−
ρ (x, t) ⊂

C−
2ρ(x̃0, t) for some x̃0 ∈ ∂! such that d = d(x, x̃0). Then by arguing as in the

proof in the case ρ ≤ d, using Lemma 4.1, it follows as in [20] that

ω(x, t, ρ) ≤ ω(x̃0, t, 2ρ) ≤
(
4Kρ

r

)σ2

ω(x̃0, t, r)

≤
(
4Kρ

r

)σ2

ω(x0, t, 2r),

(4.14)

for some σ2 ∈ (0, 1). Obviously (4.14) also holds in the case r/2 ≤ ρ ≤ r .

Combining (4.13) and (4.14) we see that

ω(x, t, ρ) ≤
(
2ρ

d

)σ1

ω(x, t, d) ≤
(
2ρ

d

)σ1
(
4Kd

r

)σ2

ω(x0, t, 2r)
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also when ρ ≤ d < r/2. Finally, using (4.11) we obtain for some σ3 ∈ (0, 1)

ω(x, t, ρ) ≤ cK

(
ρ

r

)σ3

ω(x, t, 2r) ≤ cK

(
ρ

r

)σ3

C,

whenever ρ ≤ d < r . Combining these estimates completes the proof of the
lemma.

Proof of Theorem 1.2. The interior case is straightforward since both u and v are
Hölder continuous and since we only consider solutions which are nonnegative and
not identically zero. Hence, we have that the quotient v/u is Hölder continuous in
!′
T ⊂⊂ !T ∩ C−

r (x0, t0). Then to prove Theorem 1.2 we first assume that u = 0
continuously on ST . In this case, using Lemma 4.2, we see that v/u is Hölder
continuous on the closure of !T ∩ C−

r1
(x̂, t̂), for some small r1 > 0, whenever

(x̂, t̂) ∈ ST ∩ C−
r (x0, t0). Combining this fact with the interior argument we see

that v/u is Hölder continuous on the closure of !T ∩ C−
r (x0, t0). In the general

case we represent u in the form u = u0 + u1, where Lu = Lu1 = 0 in !T , u0 = 0,
u1 = u on ST and u0 = u, u1 = 0 on ! × {t = 0}. Then by the argument
above we see that v/u0 as well as u1/u0 are Hölder continuous on the closure of
!T ∩ C−

r (x0, t0). Using this we can conclude, as

v

u
= v

u0

1

1+ u1

u0

,

that also v/u is Hölder continuous on the closure of !T ∩ C−
r (x0, t0). This com-

pletes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

The objective of this section is proving Theorem 1.3. With this in mind, we first
need to introduce some additional notation. In particular, for (x0, t0) ∈ Rn+1,
0 < r1 < r2, and K 4 100, we define,

/+
K (x0, t0, r1, r2) ={(x, t) | d(x, x0) ≤ K |t − t0|1/2,

r1 ≤ |t − t0|1/2 ≤ r2, t > t0}.
(5.1)

Furthermore, given (x0, t0) ∈ ST , 0 < ρ, µ ∈ (0, 1), and a function u, we let

f u1 (x0, t0, ρ, µ) = inf
{(x,t): x∈!µρ′∩Bd (x0,ρ), t=t0+ρ2}

u(x, t) (5.2)

where ρ′ = min{ρ, r0}. Similarly, given (x0, t0) ∈ ST and a function u we define

f u2 (x0, t0, ρ, K ) = sup
{(x,t)∈!T∩∂pCKρ,ρ(x0,t0)∩{(x,t): |t−t0|<ρ2}}

u−(x, t), (5.3)

where u−(x, t) = −min{0, u(x, t)}.
To establish Theorem 1.3 we will first prove four lemmas.
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Lemma 5.1. Let ω(x,t) be the H -parabolic measure at (x, t) ∈ !T . Let (x0, t0) ∈
∂p!T and assume that r<min{r0/2}. Then, there exists a constant c=c(H,M, r0),
1 ≤ c < ∞, such that

ω(x,t)(C2r (x0, t0) ∩ ∂p!T ) ≥ c−1,

whenever (x, t) ∈ !T ∩ Cr (x0, t0).

Proof. First, let (x0, t0) ∈ ST . By Lemma 2.8, we can choose a set U which is
regular for the Dirichlet problem and such that

Bd(x0, 3r/2) ⊂ U ⊂ Bd(x0, 2r).

Since ! is NTA, there exists a point A′
r (x0) ∈ Rn \ ! such that

r

M
< d(A′

r (x0), x0) ≤ r, and d(A′
r (x0), ∂!) >

r

M
.

Furthermore, using Lemma 2.8 once again we can also find a set U ′, which is H -
regular for the Dirichlet problem, such that

Bd(A
′
r (x0), r/4M) ⊂ U ′ ⊂ Bd(A

′
r (x0), r/2M) ⊂ U \ !.

Using this notation we let

C := U × [t0 − 4r2, t0 + 4r2], C ′ := U ′ × [t0 − 4r2, t0 + 4r2],

and B = U ′ × {t0 − 4r2}. We also let v(x, t) = ω
(x,t)
C (B) and v′(x, t) = ω

(x,t)
C ′ (B).

By the maximum principle, we have ω(x,t)('(x0, t0, 2r)) ≥ v(x, t) in Cr (x0, t0) ∩
!T , and v(x, t) ≥ ṽ(x, t) in C ′. By the Harnack principle applied in C , we have

inf
Cr (x0,t0)∩!T

ω(x,t)('(x0, t0, 2r)) ≥ inf
Cr (x0,t0)∩!T

v(x, t)

≥ c−1v(A′
r (x0), t0 − 2r2)

≥ c−1v′(A′
r (x0), t0 − 2r2).

We can extend the function v′ to the cylinder C ′′ = U ′ × [t0 − 5r2, t0 + 4r2] by
setting

v′(x, t) = ω
(x,t)
C ′′ (∂p(C

′′ ∩ {t ≤ t0 − 4r2})),
that is, letting v′ = 1 below B. We now apply the Harnack inequality to v′ in C ′′
and obtain

v′(A′
r (x0), t0 − 2r2) ≥ c−1v′(A′

r (x0), t0 − 4r2) = c−1,

and we are finished. The case when (x0, t0) is on the bottom of ∂p!T is similar, but
simpler.
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Lemma 5.2. Let K 4 1 be given, (x0, t0) ∈ ST , and assume that u be a solution

to Hu = 0 in !T such that u ≥ 0 in !T ∩ /+
K (x0, t0, ρ0, R) for some ρ0 and R

such that 0 < 2ρ0 ≤ R ≤ νr0, where ν > 0 is a fixed constant. Then, for every
µ ∈ (0, 1) there exists a γ1 > 0 depending on H , µ, K , ν, and r0, such that

inf
ρ0≤r≤2ρ0

f u1 (x0, t0, r, µ) ≤
(

ρ

ρ0

)γ1

f u1 (x0, t0, ρ, µ)

for all ρ such that 0 < 2ρ0 ≤ ρ ≤ R.

Proof. To prove Lemma 5.2 we let ρ satisfy 0 < 2ρ0 ≤ ρ ≤ R. We define

D(x0, t0, ρ, µ) := {(x, t) : x ∈ !µρ′ ∩ Bd(x0, ρ), t = t0 + ρ2},

and note that we can apply the Harnack inequality to conclude that

f u1 (x0, t0, ρ, µ) = inf
D(x0,t0,ρ,µ)

u(x, t)

≥ 2−γ1 sup
D(x0,t0,ρ/2,µ)

u(x, t) ≥ 2−γ1 f u1 (x0, t0, ρ/2, µ),
(5.4)

for some γ1 = γ1(H,M, r0, µ) > 0. In particular, iterating k times the inequality
in (5.4), where k satisfies 2ρ0 > 2−kρ ≥ ρ0, we see that

f u1 (x0, t0, ρ, µ) ≥ 2−kγ1 f u1 (x0, t0, 2
−kρ, µ)

≥
(

ρ0

ρ

)γ1

f u1 (x0, t0, 2
−kρ, µ).

This latter inequality implies the statement in Lemma 5.2, thus completing the
proof.

Lemma 5.3. Let K 4 1 be given, (x0, t0) ∈ ST , and assume that u is a solution to

Hu = 0 in !T such that u ≥ 0 in !T ∩ /+
K (x0, t0, ρ0, R) for some ρ0 and R such

that 0 < ρ0 ≤ R. Furthermore, assume that

u(x, t) = 0 whenever (x, t) ∈ ∂p!T \ Cρ0/2(x0, t0).

Then, there exists γ2 > 0, which depends on H , M , K and r0, such that

f u2 (x0, t0, ρ, K ) ≤
(
2ρ0

ρ

)γ2

f u2 (x0, t0, ρ0, K )

for all ρ such that 0 < ρ0 ≤ ρ ≤ R. Moreover, γ2 → ∞ as K → ∞.
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Proof. By simply using the maximum principle, we first note that since u = 0
continuously on ∂p!T ∩ {t : t ≤ t0 − ρ20}, we also have that u ≡ 0 on !T ∩
{t : t ≤ t0 − ρ20}. Furthermore, again by the maximum principle, applied to u in
!T \ CKρ,ρ(x0, t0), we see that as a function of ρ ∈ [ρ0, R], the f u2 (x0, t0, ρ, K )
decreases, and therefore the conclusion of Lemma 5.3 holds for ρ ∈ [ρ0, 2ρ0].
Hence it remains to consider ρ ∈ (2ρ0, R]. For such ρ we see that there exists
(x̂, t̂) ∈ !T ∩∂pCKρ,ρ(x0, t0)∩{(x, t) : |t−t0| < ρ2} such that f u2 (x0, t0, ρ, K ) =
u−(x̂, t̂). Note, in particular, that d(x0, x̂) = Kρ and that (x̂, t̂) ∈ C+

2ρ(x̂, t0 − ρ2).

Hence,

f u2 (x0, t0, ρ, K ) = u−(x̂, t̂) ≤ sup
!T∩C2ρ(x̂,t0−ρ2)

u−. (5.5)

We claim that that there exists K̂ 4 1, K̂ + K , K̂ = K̂ (H,M), such that

sup
!T∩C2ρ(x̂,t0−ρ2)

u− ≤ θ sup
!T∩C

K̂ρ,2ρ
(x̂,t0−ρ2)

u− (5.6)

for some θ ∈ (0, 1). This is proved by arguing as in Lemma 3.3, except that the
proof is simpler: we only need the function71, and can omit72, since u

− vanishes
on the bottom of !T ∩ C

K̂ρ,2ρ(x̂, t0 − ρ2).

To proceed with the proof of Lemma 5.3 we note that (5.5) and (5.6) imply that

f u2 (x0, t0, ρ, K ) ≤ θ sup
!T∩C

K̂ρ,2ρ
(x̂,t0−ρ2)

u−.

We next note that:

1) the sets !T ∩ C
K̂ρ,2ρ(x̂, t0 − ρ2) and

!T ∩ ∂pCKρ0,ρ0(x0, t0) ∩ {(x, t) : |t − t0| < ρ20}

are separated by the cylindrical surface

S = {d(x0, x) = (K − K̂ )ρ} = {d(x0, x) = qKρ},

where q = (K − K̂ )/K ∈ [1/2, 1), provided K ≥ 2K̂ ;
2) that

!T ∩ ∂pCKqρ,qρ(x0, t0) ∩ {(x, t) : |t − t0| < (qρ)2} ⊂ S;
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3) and that u ≥ 0 in

S \ (!T ∩ ∂pCKqρ,qρ(x0, t0) ∩ {(x, t) : |t − t0| < (qρ)2}).

In particular, by the maximum principle, we obtain that

f u2 (x0, t0, ρ, K ) ≤ θ sup
{!T∩∂pCKqρ,qρ(x0,t0)∩{(x,t): |t−t0|<(qρ)2}}

u−

= θ f u2 (x0, t0, qρ, K ) = qγ2 f u2 (x0, t0, qρ, K )

where γ2 = logq θ > 0. Next, we choose k ≥ 1 so that ρ0 ≤ qkρ ≤ 2ρ0, and by
iteration we derive

f u2 (x0, t0, ρ, K ) ≤ qkγ2 f u2 (x0, t0, q
kρ, K )

≤
(
2ρ0

ρ

)γ2

f u2 (x0, t0, ρ0, K ).

Finally, for K ≥ 2K̂ we have

1

q
= 1+ K̂

K − K̂
≤ 1+ 2K̂

K
, ln q−1 ≤ 2K̂

K
,

γ2 = logq θ ≥ K ln(θ−1)

2K̂
→ ∞ as K → ∞.

In particular, this completes the proof of Lemma 5.3.

In what follows we let

![t0+ρ2,T ] = !T ∩ {(y, s) ∈ Rn+1 | t0 + ρ2 < s < T }.

For a given Borel set E ⊂ ∂p![t0+ρ2,T ], we will denote by ω
(x,t)
![t0+ρ2,T ]

(E) the value

in (x, t) ∈ ![t0+ρ2,T ] of the H -parabolic measure of E .

Lemma 5.4. Let K 4 1 be given, (x0, t0) ∈ ST , and suppose that 0 < 2ρ ≤ νr0,
where ν > 0 is a constant. Then, there exist constants µ ∈ (0, 1) depending on M ,
and ĉ depending on H , M , ν and K , such that

ω
(x,t)
![t0+ρ2,T ]

(!T ∩ (Rn × {t0 + ρ2}))

≤ ĉ ω
(x,t)
![t0+ρ2,T ]

(!
µρ′
T ∩ (Bd(x0, ρ) × {t0 + ρ2})),

whenever (x, t) ∈ !T ∩C2Kρ(x0, t0) ∩ (Rn × {t0 + 4ρ2}), where ρ′ = min(p, r0).
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Proof. Follows just as the proof of [39, Lemma 4.5]. One also needs to prove the
equivalent of [39, Theorem 2.4], which also follows just as in that article. These
proofs make use of Lemma 4.1, Lemma 5.1 and the Harnack inequality. We omit
the details.

We are finally in a position to establish the main result of this section.

Proof of Theorem 1.3. To start the proof we choose K 4 1 large enough to guar-
antee that γ1 < γ2, where γ1 and γ2 are the constants of Lemma 5.2 and Lemma 5.3
respectively. Moreover, for this choice of γ1, γ2, and given the constant in Lemma
5.4, ĉ = ĉ(H,M, ν, K ), 1 ≤ ĉ < ∞, we let r̂ = r̂(H,M, ν, K ) be

the smallest r̂ which satisfies 4−γ1(r̂/4r)γ2−γ1 ≥ ĉ. (5.7)

Below we will, in the end, distinguish between the cases νr0 ≤ r̂ and νr0 > r̂ . Let
µ be the constant in Lemma 5.4. To prove Theorem 1.3 we intend to prove that
there exists a constant c = c(H,M, ν, K ) such that

u(x, t) := cω(x,t)('(x0, t0, r)) − ω(x,t)('(x0, t0, 2r)) ≥ 0, (5.8)

whenever (x, t) ∈ /+
K (x0, t0, 4r, νr0). To start the proof of (5.8) we first note, using

Lemma 5.1 and the Harnack inequality, that

ω(x,t)('(x0, t0, r)) ≥ c̃−1, (5.9)

whenever (x, t) ∈ !
µρ′
T ∩ (Bd(x0, 2Kρ) × {t0 + 4ρ2}), 0 < 2ρ ≤ R ≤ νr0, for

some c̃ = c̃(H,M, ν, K , R), 1 ≤ c̃ < ∞. Let ĉ be the constant in Lemma 5.4.
Then, using (5.9) and Lemma 5.4 we see that

ĉc̃ω(x,t)('(x0, t0, r)) ≥ ĉω
(x,t)
![t0+ρ2,T ]

(!
µρ′
T ∩ (Bd(x0, ρ) × {t0 + ρ2}))

≥ ω
(x,t)
![t0+ρ2,T ]

(!T ∩ {t : t = t0 + ρ2})
(5.10)

when (x, t) ∈ !
µρ′
T ∩ {(x, t) : x ∈ Bd(x0, 2Kρ), t = t0 + 4ρ2}. Note that the

first inequality in (5.10) uses (5.9), the trivial inequality 1 ≥ ω(x, t,!
µρ′
T ∩ {(x, t) :

x ∈ Bd(x0, ρ), t = t0 + ρ2},![t0+ρ2,T ]) and the maximum principle on !T ∩ {t ≥
t0 + ρ2}. Furthermore, let 4r ≤ 2ρ ≤ R ≤ νr0. Then, and this is a simple
consequence of the maximum principle,

ω
(x,t)
![t0+ρ2,T ]

(!T ∩ {t : t = t0 + ρ2}) ≥ ω(x,t)('(x0, t0, 2r)), (5.11)

whenever (x, t) ∈ /+
K (x0, t0, 4r, νr0)∩ {t : t = t0+4ρ2}. In particular, combining

(5.10) and (5.11) we can conclude that

ĉc̃ω(x,t)('(x0, t0, r)) ≥ ω(x,t)('(x0, t0, 2r)), (5.12)
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whenever (x, t) ∈ /+
K (x0, t0, 4r, νr0) ∩ {t : t = t0 + 4ρ2}. Therefore the function

u in (5.8), defined with constant c = ĉc̃, satisfies u ≥ 0 in /+
K (x0, t0, 4r, νr0). In

particular, if νr0 ≤ r̂ , where r̂ = r̂(H,M, ν, K ) is as in (5.7), then the constant c̃,
and hence c, can be chosen to only depend on H,M, ν, K , and we are done. Hence,
it only remains to consider the case νr0 > r̂ . However, by arguing as above, we
see in this case that there exists c = c(H,M, ν, K ) such that, if we consider the
function u in (5.8) with this c, then

(i) u(x, t) ≥ 1, for (x, t) ∈ !
µρ′
T ∩ {(x, t) : x ∈ Bd(x0, ρ), t = t0 + ρ2}, for

2r ≤ ρ ≤ 4r ;
(ii) u(x, t) ≥ 0 for (x, t) ∈ /+

K (x0, t0, 4r, r̂).

In the following we prove that (i) and (ii) imply(5.8)for all(x,t)∈/+
K (x0,t0,4r,νr0).

To do this we argue by contradiction. Hence, we assume that there exist ρ > 4r
such that u ≥ 0 whenever (x, t) ∈ /+

K (x0, t0, 4r, ρ) and that u(x̂, t̂) < 0 at some
point

(x̂, t̂) ∈ !T ∩ {(x, t) : x ∈ Bd(x0, 2Kρ), t = t0 + 4ρ2} ⊂ /+
K (x0, t0, 4r, 2ρ).

Let ω!T\CKρ,ρ(x0,t0)denote theH -parabolic measure with respect to!T\CKρ,ρ(x0,t0).
Then, we first note that

u(x̂, t̂) ≥
∫

!
µρ′
T ∩(Bd (x0,ρ)×{t0+ρ2})

udω
(x̂,t̂)
!T \CKρ,ρ(x0,t0)

+
∫

!T∩∂pCKρ,ρ(x0,t0)∩{(x,t): |t−t0|<ρ2}
udω

(x̂,t̂)
!T \CKρ,ρ(x0,t0)

.

(5.13)

Let

E1 = ω
(x̂,t̂)
!T \CKρ,ρ(x0,t0)

(
!

µρ′
T ∩ (Bd(x0, ρ) × {t0 + ρ2})

)
,

and

E2 = ω
(x̂,t̂)
!T \CKρ,ρ(x0,t0)

(
!T ∩ ∂pCKρ,ρ(x0, t0) ∩ {(x, t) : |t − t0| < ρ2}

)
.

Using (5.13), Lemma 5.2 and Lemma 5.3 we deduce that

u(x̂, t̂) ≥ E1

(
2r

ρ

)γ1

− E2

(
8r

ρ

)γ2

. (5.14)

Furthermore, by the maximum principle and Lemma 5.4 we see that

ω
(x̂,t̂)
!T \CKρ,ρ(x0,t0)

(!T ∩ ∂pCKρ,ρ(x0, t0) ∩ {(x, t) : |t − t0| < ρ2})

≤ ω
(x̂,t̂)
![t0+ρ2,T ]

(!T ∩ {t : t = t0 + ρ2})

≤ ĉω
(x̂,t̂)
![t0+ρ2,T ]

(!
µρ′
T ∩ {(x, t) : x ∈ Bd(x0, ρ), t = t0 + ρ2}),

(5.15)
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and so E2 ≤ ĉE1. In particular, using that 0 > u(x̂, t̂) and combining (5.14) and
(5.15) we can conclude that

4−γ2(ρ/2r)γ2−γ1 < ĉ ≤ 4−γ2(r̂/4r)γ2−γ1,

and hence that 2ρ < r̂ . This implies that /+
K (x0, t0, 4r, 2ρ) ⊂ /+

K (x0, t0, 4r, r̂).

Since (x̂, t̂) ∈ /+
K (x0, t0, 4r, 2ρ)we can therefore conclude from (B) that u(x̂, t̂) ≥

0. This contradicts our choice of (x̂, t̂) and hence (5.8) must be true. This completes
the proof of Theorem 1.3.
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