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On the boundedness of discrete Wolff potentials

CARME CASCANTE AND JOAQUIN M. ORTEGA

Abstract. We obtain characterizations of the pairs of positive measures p and
v for which the discrete non-linear Wolff-type potential associated to © sends
LP(dv) into LY (d ).

Mathematics Subject Classification (2000): 46E30 (primary); 46E35, 31B10
(secondary).

1. Introduction

The object of this paper is the study of L” — L7 imbeddings of discrete Wolff’s
potentials assocciated to nonnegative Borel measures.

We recall that Wolff’s potentials were introduced originally in [5] in relation
to the spectral synthesis problem for Sobolev spaces.

If u is a nonnegative Borel measure on R”, 1 < s < +o00 and « > 0, the Wolff
potential associated to u is defined by

+o0 N
W, s (1) (x) =/ (*M(B(x’ t))) ? x € R,
0

tn—()l

Letly(x,y) = m be the Riesz kernel in R”, 0 < @ < n. If u is a nonnegative

Borel measure on R”, let

Lo = [ O e
Re X — ¥l

The nonlinear potential associated to u is defined by

Va, p(1)(x) = Lo (I ()? "' d2) (x),
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and the energy of a positive Borel measure 1 in R” by

Earp (1) = NLaGOIY

/ V. prt (0 (x),
Rn

where %—i— # =1 and the last equality is an immediate consequence of Fubini’s the-
orem. Since there exists a constant C > 0 such that for any x e R", )V p L (nwx)<
’p—1

CVy,p()(x), we have that fR" Wap Ll(/x)(x)du(x) < C&, p(1). The converse
-

is the fundamental Wolff’s inequality (see [5]), which gives that there exists a con-
stant C > 0 such that

Ea, p(W) < C/ p, _(M)(X)du(x)

Wolff’s potentials have applications to many areas of analysis. In the last years,
there have been sustantial advances in the solvability of quasilinear and Hessian
equations of Lane-Emden type which heavily relies on systematic use of Wolff’s
potentials, dyadic models and nonlinear trace inequalities (see [6, 7, 9] and refer-
ences therein). If © is a bounded domain in R”, n > 2, and w is a nonnegative
Borel locally finite measure on €2, it is studied in [9] the existence problem for the
quasilinear equation

—divAGx, V) =u?4+w, u>0 in Qu=0 on 02,

where p > 1, > p—land A(x,¢) - ¢ > «a|¢|P, | A(x, ¢)| < Bl¢|P~L, for some
o, B > 0. This equation includes the model problem

—Apu=ul+w, u=0 in Qu=0 on IQ,

where A pu = div (|Vu|P~2Vu) is the p-Laplacian.
In [9] it has been obtained a criteria for solvability of quasilinear and Hessian
equations on the entire space R”, which in particular states:

Theorem 1.1 ([9, Theorem 2.3]). Let w be a nonnegative Borel locally finite mea-
sure on R", 1 < p < nand q > p — 1. Then there exists a nonnegative A-
superharmonic solution u € Lfoc (R™) to the equation

—divA(x,Vu) =u? + cw, in R", inﬂ{ u(x) =0, (1.1)
xeRn

for some ¢ > 0 if and only if there is a constant C > 0 such that

(Wp L () (x) < CW L a)(x) < 400, a.e.

Moreover, there is a constant Cq such that if the above condition holds, with C <
Co, then equation (1.1) has a solution u with ¢ = 1 which satisfies the two-sided
pointwise estimate

%Wp’ ﬁ(a))(x) <ulx) < KWp’ ﬁ(w)(x), x e R".
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One natural question that arises from the above existence theorem is the study of
the following L” — L9 trace estimates of the Wolff potential:

Given0 < g < 400, 1 < p < +00, which are the positive measures u on R"
such that

< ClIf L@, (1.2)
La(dp)

0,y tsam)™

p—1

for any f > 0?

A characterization of such measures would give information on the regularity
of the solution of the quasilinear equation given in the above theorem.

We can consider other measures v rather that the Lebesgue measure dx, and
define the corresponding Wolff type potential: If s > 0, « > 0, v is a positive Borel
measure on R”, and f is a nonnegative v-measurable function on R”, let

+00 d 5
Wa,s<fdv)<x>=/ [M} .

0 r”l—()f

’
The general trace problem reads as follows:

Given 0 < ¢q,s < 400, 1 < p < +o00, which are the pair of positive Borel
measures [, v on R" such that

1
| Wea, s (fdV))* lza@p < ClIf e, (1.3)

for any f > 0?

In [5] it also was introduced a dyadic version of Wolff’s potential. If D = {Q}
is the collection of all dyadic cubes in R", | Q| is the Lebesgue measure of the cube
Q, and u is a positive locally finite Borel measure on R”, Wo? (M is defined by

N S 1 N
= (Yo (2 (st )

Sep \1Q|'h Sep \1Q|'h

Here xo denotes the characteristic function of the cube Q. The discrete Riesz
potential I(? () is

12(w)) = QX;) |g Tff)g Xo ().

and the discrete energy associated with w is given by

!

p
r u(Q)
Sfp[ulsz (Io?[u]) dx =/R” (Z XQ(x)) dx. (14

Sep 101w

An alternative expression for &P p» 18 an immediate consequence of Fubini’s theo-
rem:

€D [ul = /R PP dx) dp,
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where IaD [(IaD [M])p/_ldx] is a dyadic analogue of the nonlinear potential of Havin—
Maz’ya (see [1, 8]).

A dyadic version of Wolff’s inequality established in [5] shows that, for 1 <
p < 400, and v a nonnegative Borel measure on R”, there exist constants Cy, Cr >
0, such that

gr vl < L[v](x)dv(x) < CED v].
Rn —1

The purpose of this paper is to study a discrete version of trace estimate (1.3): Given
0<g,s <+400,1 < p < 400, which are the pair of positive Borel measures u, v
on R” such that

H (fdv)

< Cll fllLr vy (1.5)
Li(dw)

for any f > 07 The relative position of p and ¢ and of p and s will play an esential
role in the proof of the above characterization. The main result we obtain is the
following theorem.

Theorem A. Let0 < ¢g,5s < +00,1 < p < 400,00 < o < n and u, v locally
finite positive Borel measures on R”.

1. If p < g, there exists C > 0 such that

< CllfllLr@v),
L9 (dw)

H fdv)

if and only if one of the following cases holds:

(1) s > p and there exists C > 0 such that for any Q € D,

/ (Z ( M?_L) XQ/) du] =< Cv(Q).
R* \orco |Q'|

(i) s < p and there exists C > 0 such that for any cube Q € D, the following
two conditions are satisfied:

q/s ﬁ

/ ) /m

@ AH<Z(|;Eﬁ)a)V(§Q/?)XQ/> du | =cvioyr.
Q'eD "

1
PN , (p/s) /sy
(b)/ (v(Q)a) M(QﬂQ)XQ/> | <cuoan
R”? 'eD

Q|1 w(Q")
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2. If ¢ < p, and the following additional condition is satisfied: There exists A > 0
such that forany Q € D, x,y € Q,

> ( V(Q)a) Xo() <A > (%) X0 ()
Q'co

Q') goo N

where A does not depend on Q € D. Then there exists C > 0 such that

(o2

< ClIflLrav), (1.6)
L9 (dp)

if and only if one of the following cases hold:
(i) s < pand

Q) \' ((Q)\7 w0) ¥\ o
Q2127<|Q|1_%> (V(Q)) (Z (IQII_‘>> X0 €L~ (dp).

(iv) p <sand

q

L P—q

(Z (%) xQ/(x)> 1(Q)
0'co !

d .
/Rn o 2(0) ulx) < +oo

Observe that in the case that dv = dx, the additional condition on the second part
of the theorem holds automatically, since for any Q € D and x € Q,

> (ﬁ> Xo () > Q]

Q,CQ |Q/|1 "

This implies that the original problem (1.2) can be solved without any further hy-
pothesis. In particular, condition (i) corresponding to the case p < g and g < p
reads as the following simple test condition, namely: there exists C > 0 such that
g(1_er
forany Q € D, u(Q) < C|Q|7»"' 7.
Condition (iii) corresponding to the case ¢ < p and s < p reads as

Z 101 ( M(1Q15> X0 € L300 (dp).

QeD
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And finally, condition (iv) corresponding to the case ¢ < p and p < s is just that

sup M(sz ELPqTq(d,u).

xe0 [QI'T W

In [5] it is shown that there exists C > 0 such that for any x € R”,

$ +o0o s
WESU(X)= Z ( V(Q) ) XQ(x) < CWa’SU(x) :[) (M) ﬂ

- —
Sap\1ol' - t

The results in [5] imply that although the pointwise estimate in the other direction
does not hold in general, the L'(d(v))-norm of both potentials is equivalent.

In particular from the above pointwise estimate and Theorem A we deduce
necessary conditions, in terms of dyadic cubes, for the continuous general trace
problem (1.3).

In [1, page 121], it is introduced a bigger dyadic potential,

Uy =y < ve) ) X0 ),

sGep \lQl'™n

which is pointwise equivalent to W, sv. However, the techniques used in this paper
for the dyadic potential WZZ 4V do not apply directly for the bigger potential Z/IO? sV
(See Remark 2.10 ).

The proof of Theorem A will be obtained by reformulating it as a particular
case of the following problem of discrete multipliers: Given 0 < ¢,s < 400,
1 < p < +oo, and a sequence (cg) o of nonnegative reals, which are the pair of
positive Borel measures w, v on R” such that

1

(Z ch SQXQ) <C| su%(AQXQ)”LP(dU)?
Q€D L4(dw) o

Notations. Throughout the paper, the letter C may denote various non-negative
numerical constants, possibly different in different places. The notation f(z) <
g(z) means that there exists C > 0, which does not depends of z, f and g, such
that f(z) < Cg(2).

ACKNOWLEDGEMENTS. We are deeply thankful to Professor Igor Verbitsky for
several helpful conversations during the preparation of this paper.
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2. Discrete multipliers
We will begin formulating the discrete version of (1.2) we have given in the in-

troduction. The question we want to deal with is then: Given 0 < g < +o0,
1 < p < 400, which are the pair of positive measures w, v on R” such that

1
v(Q) \'( 1 / >S D
a d — Was d a
(;;)(IQIU) (v(Q) Qf Y XQ) [ We. s (fdV)|La (@) (1)

La(dp)

< CllfllLravys

for any f > 0?
The following lemma shows that (1.5) can be rewritten in terms of discrete
multipliers.

Lemma 2.1. Assume 1 < p < +o00. Then estimate (1.5) holds if and only if there
exists C > 0 such that for any sequence (Lg) g of nonnegative numbers,

1
v(Q) '
(Z <W> )LSQXQ) =< Cl| sup (Ao xo)llLr(av- (1.2)
QeD La(dp) QeD
Proof. Assume that (1.5) holds, and let f = sup,(Ag x¢). Since
1 / fd 1 (x )dv > 1 A d A
V= sup Xo')av = —— X Y = ,
() Jo v(Q) Jo grep ¢7° v(Q) Jo 0" ¢
(1.5) gives that
1
v(Q) '\’ '
(Z ( 1_g> )»SQXQ) < C|l sup (Ao x0)llLr(@v),
gep \MOITTr oo Q€D

which is (1.2).
Conversely, assume that (1.2) holds, and let 1o = %Q) f 0 fdv, f = 0. We

have that since p > 1, the dyadic maximal operator with respect to v, M, given
by
M2 s = sup s [ gav
x) = — ,
Y xeQ V(Q) 0
is of strong type (p, p) with respect to v. Hence the hypothesis gives that

NORNAR sy
d
<QX€;><|Q|12‘) (v(Q)/Qf ”) XQ)

<C| s eoxo)llr@yy = CIMP fllLevy < CIFlLeav)- O
€

Li(d)



316 CARME CASCANTE AND JOAQUIN M. ORTEGA

In what follows we will study the more general discrete multiplier problem given
by
1
(Z CQ)‘QXQ> < C|l sup (Ao xQ)llLrav)- (1.3)
QeD

0eb L9(dp)

The different characterizations we will obtain depend in the relative position of p
and g, and in any of the possibilities we will need to consider the different relative
positions of p and s. More specifically, we will consider the following cases:

(1) p<gands > p.
(2) p<gands < p.
(3) g <pands < p.
(4) g < pands > p.

2.1. Thecase p <gands > p

1
If in (1.3) we replace Ao by 1), the estimate can be rewritten in an equivalent way

[z

where 1 < % and 1 < £. Next, this last estimate can be expressed in terms of

P
q

CSQXQ) du | =Cll sup (Aoxo) g (1.4)
QeD

Q=

Sl

a /s
weighted mixed norms. Namely, if we denote L, (lf Q) the weighted mixed norm
space defined by

q s
L} <lch) =1 (k0oXx0)0eD: ||()~QXQ)QED|| q(ﬁ)
‘g

N\
/n(Z*QCQXQ) du ) <+oor,

QeD
then (1.4) is reformulated as

I(Aox@)oepll ¢, s\ < Cll sup (Aoxo)llLi(gu- (1.5)
Li(L”Q) QeD

Observe that if for any Q € D we consider sequences (1) o satisfying that Ao =
1 for any Q' C Q and zero elsewhere, we have that

I sup (horxo) I L1ay) = V(Q),
Q'eD
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and consequently, if (1.5) holds, then

l(xo)genll 4
Ly

m

‘0 Q'co

<l%) = /Rn ( Z C‘b/xQ/> du ] =< Cv(Q). (1.6)

The object of the following theorem is to prove that the converse is also true.

Theorem 2.2. If p < g and s > p, the discrete multiplier problem (1.3) (and
consequentely (1.5)) holds if and only if there exists C > 0 such that for any Q € D,

r

/ﬂ ( > cSQ,fo) dp| < Cv(Q). (1.7)

Q'co

Proof. The necessity of condition (1.7) have just been proved. Before we give the
proof of the sufficiency, we make some simplifications:

Step 1. It is enough to show the sufficiency for sequences (1p)o with a finite
number of nonzero terms, with constant C which do not depend on the number
of nonzero terms. This is a consequence of the Lebesgue monotone convergence
theorem.

Step 2. It is enough to show the sufficiency for the case where the finite number of
Ag’s different from zero are the ones corresponding to a fixed cube and its descen-
dents. This is due to the fact that if the finite number of nonzero terms correspond to
the descendents of m disjoint cubes Q j j=1,---,m, we can deduce this general
case from the particular one just observing that

sup (Agxp) = sup (Agxp) +---+ sup (Apxp),
QeD 0CQ; 0COm

and consequentely,
I(oxo)oepll 4 /5
(1))

q

P P
s a ¢ q
< /R<Z CSQXQ’) di| 4ot /( 2 CSQXQ’> d

Q'cO Q'COm

<C (/ sup (AQXQ)dv—i—---—l—/ sup (AQXQ)dv>=C/ sup (Agxp)dv
R" 0CQ, R" 0CQn R" geD

= C|l sup (Ao x) L1 (gv)-
QeD
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Step 3. By the previous reductions, we just may assume that the finite number of
A’s different from zero correspond to a fixed cube Q° and its descendents up to
order m, which we denote by Qk s k=1,--- miy,--ip =1, . Our
next observation is to observe that in addltlon we may assume that the sequence of
A’s satisfies the following monotone condition, namely, Ago < AQ 1’11 for any i| =

1o+, 2" andforanyfixedk = 1, m,andiy, .-~ ig =1, 22 =<

)thJlrll i for any ix+1 = 1, ---,2". Indeed if any of these inequalities does not

hold, i.e., there exists k € {1,--- ,m},and iy, ---i € {1,---,2"} with )tk — >

)thJ,rl__ ~, we just substitute AI‘Q+1 , by 0. . We then have that whlle the
iy ikt

expression on the right hand of (1.5) does not change the expression on the left
hand side increases. We have that for these monotone sequences,

sup (Apxo)

= Z )”gil,u,imV(Q?:wwim)‘
QcQ?

Lidv) i sim

In summary, the above steps give that in order to prove the sufficiency it is enough
to show the following assertion:

Assume that there exists C > 0 such that for any Q°, and for any fixed finite
number of descendents, Qﬁ,---,ik’ k=0,---,m, i, -~ ,ipm = 1,---,2" (here
we are assuming that when k = 0 we just have the cube Q), we have that if
J=0,  myiyee i =1, 2",

il Jop— s im= P (i
‘ k=j oo smiijpn,eim=1, 2" Ly (lch>

Then for any (Agp)g, satisfying that A9 # O only if Q is one of the fixed finite
number of descendents and satisfying also the monotone condition, we have that if
j:()a"' 7m?i1“' ’lj = 15"' 72’”’

Aok Xpk )
O i, MO L )
‘( el ) e sy e im=1,e 20 || P (1P
s (1.9)

<C Z Aan , i) =Cll sup (Roxo)llpiay)-
0CQp

=CvQ) ). (13

sim

Before we give the proof of the assertion in the above general situation, we begin
by briefly sketch the simpler case where the only A’s different from zero correspond
to a fixed cube QY and its first and second generations of descendents, Q1 lel iy
i1,ip = 1,---,2" We split the sequence of A’s as a sum of a finite number of
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sequences as follows,

(Aox0)ocoo = Z (()»Qz - )»Qill))(Qz )

i1,io=1,---,2" i,ip fin
=l ! oco;
+2Ago(X0)oco-

Since s/p > 1 and ¢/p > 1, the mixed space L% (lc’_'Q) is normed. Then

||<AQXQ>QCQ0||L%(I%>50 D (gr, —ho V(O] L)

. it
‘o i,ip=1,--,2"

+ Y ()LQIJI_)\QO)V(Qz'll)

iy=1,-2n
0
+agov(Q°)
=C Z )”Q,»2 i V(lel,iz)’
ilig=1,-on 12

which gives the desired estimate for this particular situation.

For the general setting, we use the same type of argument and decompose
(Ag) o as afinite sum of sequences as follows,

(Aox0)pcoo = Z N (()»Q:rltlm - )»mel )XQ;.’I’W,,I.m)

: : i1 sim—1
i, im=1,-,

—+ ()\. m—1 — A m—2 )X m—k )

ilenimeg =1, 28 tm—1 stm=2 s tm—k
soolm—1=1,00,

(1.10)

—+ Z (()\.Qm—Zl —)\,Qm—3 )XQm—k
.on 1

. . [P [ iy ) _ . .
ilim_n=1; 1im=2 Ltm=3 m=k / k=0,1,25ip—1,im=l,2"

+ o+ Aog (XQ)QCQ0 :

Since by hypothesis the space Ly (lfQ> is normed, we obtain from the above de-
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composition that

[G-0x0)oce HL%(J;,)

< Z A om —A H m E

= . ( Qil’“"i Ql ’m l) (XQil,u-,im) L% 12
i, =120 ‘e

+ Z ()\‘ m—1 — A m—2 ) <X m— k )
) ) —~ u Q"l-"‘-‘-mfl Qil,w.im,z Q Sim—k k= 01
i im—1 =1, 2 im=1,--,2"
o (g oz, QZ-’j,,U,,vmf_;) XQ'” cimt ) k=0,1,2;
i1, im—=1,-,2" im=1, 2”

+-+ 2, [ (X0 oco HJ(:';’ ) -
‘o

Since (1.8) holds, we have that the above is bounded by

¢ ( Z ()\’er‘yll-"wim o )\le.n—“]_ i )V(Ql(rlls"wim)
i1, im=1,-- 20 eslm—1
X Gger =R W@ )

i1, iy =1, 2" tm—1 -
9 sfm—1—1 )

D

i1, im—=1,-,2"

11 im—2 i sim—3

vesin) = Cllsup Ao x|t (avy»
0CQo

which gives (1.3).

2.2. Thecase p <gands < p

If we renormalize (1.3) by sustituting AS by A, and denote p = g andg = =

estimate can be rewritten in an equlvalent way as

q q
/ (Z )\QCQXQ) du < C|| sup ()‘QXQ)”LF(du)'
QeD

QeD

WO 2, )+ hgev(Qo)

(1.11)
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Lemma 2.1 gives that the above is equivalent to

s

i o\7
C
./]1‘{" (Z V(Z) XQLde) du < Cllf L7 avy- (1.12)

QeD

But if we define the discrete operator 7p by

S

C
Tp(fdv) =Y TZ)XQ/Qde,

QeD

the above estimate (1.12) can be rewritten as

1

</Rn TD(de)a(x)dM(x))q < Cllf i3 @av)- (1.13)

In [10, Theorem 3.2], gives then:

Theorem 2.3 ([10]). If p < g, the estimate (1.13) holds if and only if there exists
C > 0 such that for any Q € D, the following two conditions are satisfied:

1
@ ( /R ,1 Tp(mdvﬁdu) < Cu(Q)F.
1

~ 7 L
(b) (/R Tp(xedw)” dV> =Cu(Q)7.

As an immediate consequence we have:

Theorem 2.4. If p < q, and s < p, the discrete multiplier problem (1.12) (and
consequently (1.3)) holds if and only if there exists C > 0 such that for any cube
Q € D the following two conditions are satisfied:

s i \7
‘o o 1
NQxg | d Cv(Q)7.

(a) fR (QE/ED o' @ Q)xQ) wl| <cov

1
s 7

Cph P 1
b Q N | a C 7.
(b) A (QZ; oM@ Q)xQ) v| <o)

-~/

In fact, in [10] it is proved that provided we assume some extra mild condition on
integrability, in conditions (a) and (b) of Theorem 2.3 it is enough to integrate on the
cube Q. In particular, if dv = dx and ¢ = 191 condition (a) in Theorem 2.4 is

=5

reduced to the trivial test condition on cubes: there exists C > 0 such that for any
4q_ee
0 eD,u(Q) =clop ™).
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We observe that the techniques used in the previous subsection, allows to give
a simple characterization of (1.3) for the particular case where p = g, s = 1 and
1 = v which does not use the proof given by [10], and that we think has interest by
its own.

Theorem 2.5. Let 1 < p < +00, and  a positive Borel measure on R". Then the
following assertions are equivalent:

(a) There exists C > 0 such that for any sequence of nonnegative numbers (1) g,

1
P P
(/~ <§ :AQCQXQ) dﬂ) = Cll sup (Ao xo)llLr(@w- (1.14)
R7 QeD

QeD

(b) There exists C > 0 such that for any sequence of nonnegative numbers (Ag) o,
(00)g,

1 1

ZCQM(Q))»QOQEC(/ Sup()»QXQ)de) </ SUP(UQXQ)p/dM) . (L.15)
R" Q R Q

QeD
(¢) There exists C > 0 such that for any Q € D,
Y con(Q) = Cu(Q). (1.16)
o'co

Proof. Duality gives that (a) is equivalent to the discrete bilinear multiplier problem
(b). The fact that (b) implies (c) is immediate, if we just consider for any fixed cube
Q € D, the sequence (X¢) o such that Ay = o/ = 1, for any Q" C Q and zero
elsewhere.

If we substitute c - w(Q") by cg’, and use the same reductions of Theorem 2.2
we are left to show the following: Assume that there exists C > 0 such that for any
QeD,

> o= Cu(Q). (1.17)
Q'co
Then there exists C > 0 such that for any sequence (1p)¢ of nonnegative num-
bers with a finite number of nonzero terms corresponding to a fixed cube Q° and
its descendents, and any sequence (o) of nonnegative numbers, such that both
sequences satisfy the monotone condition given in Step 3, we have

1

7

r , P
> corgog < c(/ sup(,\QXQ)PdM) (/ sup(apx0)” d,u) . (1.18)
Rn 0 Rn [0)

QeD

In order to simplify the notations, we will just give the proof for sequences (1¢o/) o,
(0g") ¢/, with nonzero terms corresponding to a cube, and its first and second gen-

eration of decendents, which we will denote by QO, Qi,i1=1,---,2"and Q;, ,,
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i1,ip = 1,---,2" respectively, and satisfying the monotone condition. We have
that (1.17) gives that the following estimates are satisfied:

Z Lot Z 0, o0 <C Y 1(Qiyiy) = 1(QO).

ezl =l i1,iz
Z €Qiip, T€0; = CM(Qil), ip=1,--.,2"
in=1,-,2"
Qi i, < C(Qiyir)s il in=1,---,2"
We have that

Z €0, i, 40i,1,90i,0, T Z Qi1+ 0;,00;, + ok googo
i1,ip=1,--,2" i1=1,.--,2"

= Z Z (A'Qil,izo—Qil.iz _)\'Qilo—Qil>CQil.i2

ii=1,-,2"i1=1,--

+ Z ()‘QiloQil — )\QOO'QO) (CQl1 + Z CQl1 12)

i1=1,- ir=1,-

i1 ip=1,- 20 =1, 2n

=C Z Z (A‘Qil,izaQil,iz - )‘QilaQil> n(Qiy.ir)

i1=1,--- 2" ir=1,-

+ Z (AQiIOQil—)\QooQo)< Z M(Qil,i2)>

=1, iy=1,- 2

+ )"QOGQO ( Z M(Qi],iz)) =C Z )"Qi],izo—Qily,'z:u'(Qi],iz)

i1,ip=1,-- 2" i1,ip=1,--,2"

<C ( Z ) )Lgil'lzﬂ(Qi],iz)) ( Z Q’l ,ZM(QII 12))

l],i2:1,~~-, n i],i2:l,~~,2
The general case is proved anagously to Theorem 2.2. U

The version of the above theorem for general pairs of measures 1 and v does
not hold in general. The condition (c) which corresponds to the general case is now
given by: There exists C > 0 such that for any Q € D,

> cou(@) < CL(Q)Pv(Q)7 . (1.19)
0'co

The following example gives that (1.19) is not, in general, sufficient in order that
the discrete bilinear problem holds.
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Proposition 2.6. There exists a pair of positive measures 1 7%= v on R" and a
sequence (cg)o of nonnegative numbers satisfying condition (1.19) with C =1
but where the estimate

1
2 2
» CQM(Q))»QGQS(/ sup(AQXQfdu) (/ sup(aQXQ>2dv> (1.20)
R* Q R* Q

QeD
does not hold for every sequences (Ag) o, (00) o of nonnegative numbers.

Proof. We fix a cube Q0 € D, and consider the first generation of its descendents,
that we denote by Q;,i =1, --- , 2". We will construct a sequence of non negative
numbers (cg) o satisfying that cp = 0 for any cube P different from Q and its
first generation of descendents. In such situation, condition (1.19) reduces to

ZCQiM(Qi) + CQ()/,L(QO) < /’L(QO)%V(QO)%,

1 1 .
co; Qi) < n(Q)2v(Qi)2, i=1,---,2"
On the other hand, estimate (1.20) for nonnegative numbers satisfying Ao, > A o,
0g; = 0go, i =1,---,2" can be rewritten as
Z)\.QiO’QiCQiM(Qi) + )\,QOO—QOCQO/L(QO)
i

(1.21)

E(ZAZQiM(Qi)> <Zoéiv(gi>> :

We define the sequence (cg) ¢ in terms of the measures w and v (to be constructed)
as follows:

co,m(Qi) = V(@) (0N, i=1,--.2"
con(@") = (@")Tv(Q")? = Y w(0NI(Q)?.

1

Observe that by Holder’s inequality, cg > 0.
With that choice, and for the particular case where hoo = 0go = 1, (1.21)
reduces to

Y hg,00,v(01)2 (1) + (u(Q(’)%u(QO)% - Zu(Qi)%v(Qi)%>

1
2

1
2
5(2@#(@)) (Zoéy(gl-)) :
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forany g, > 1,00, > 1,i =1, ---,2". But the above can be written as

1 1
<Zv<Q,-)) (ZM(Q:‘)) — > w07 u(Q)?

3
(Zﬂ e )) (ZMQ w(Q; )) — Y r0,00,7(Q0)?1(Q)?
If we consider the vectors in R?" given by
= (v@nt v, w' = (1012, 1(Q2)?)
vi= (R0 (@D 20 v(02)7) vl =(00,m(QDY, -, 00, 1(02)?),

this last inequality reduces to
lu?l2llvll2 —u” - v < gl llvg ll2 — uy - v"o,

forany Ag, > 1,09, > 1,i =1, ---,2". Now, we just need to define the measures
v and p such that the vectors " and v? are close to be “orthogonal”, and 1o, > 1,
og; > 1,i =1,---,2", such that the vectors u; and vk are equals to finish with
the construction. For instance, if 0 < ¢ < 1, consider

ut=(,¢e,---,1,¢8), u'=(1,---,¢,1))

1 —1 1
and Aoy, = Loy = 5, k=0,---.2"" — 1 o9y, = 5.00y = Lk =
0,---,2" ' — 1. Then

(1) 1
lu’ 2" s — u” - vH =277 (14822 — 2",

whereas [|u} ||2]|v5 2 — u} - v¥5 = 0. O

23. Thecaseq < pands < p

As in the case p < g and s < p, if in (1.3) we substitute AS by A, put p = and
g = €, and we obtain that the estimate can be rewritten as
1

q 7
f <Z AQchQ) du| =c sup, o x| L5
€

QeD

where now 0 < g < p and p > 1. Using again Lemma 2.1 we have that the above
is equivalent to

1
q

q
d d Cllfl L aw 1.22
/Rn (Q;IQIJ f chxg> w)| =ClIflay.  (1.22)
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This inequality has been studied in [4]. In order to write down the characterization,
we need to introduce some more notations.

If K : D — R*, and v is a positive Borel measure on R", we define the
generalizad Riesz dyadic operator TI? given by

TEl =Y v(QK(Qxg.

QeD

We also define the function K (Q)(x) supported on Q given by

K(Q)(x) =

oo L K@W@)xe®.
Y Q'co

We say that the pair (K, v) satisfies the so-called dyadic logarithmic bounded os-

cillation condition (DLBO):

sup K(Q)(x) < A inf K(Q)(x), (1.23)
x€Q x€Q

where A does not depend on Q € D. Assume K is a radially nonincreasing kernel
and dv = dx or K(Q) = rg_", 0 < o < n and v satisfies a dyadic reverse
condition, i.e. there exists C > 0 and y > n — « such that forany j > 0, Q € D,
v(2/ Q) > C2/7 v(Q), where 2/ Q is the unique dyadic cube in D such that Q C
2/ and rig = 2/ ro. Then in any of these cases we obtain that the pair (K, v)
satisfies the (DLBO) condition (see [3] for more details).

For (K, v) € (DLBO), we set K (Q) = infycp K(Q)(x), Q € D,ifv(Q) # 0,
and K(Q) = 0if v(Q) = 0. The generalized Wolff potential of a measure o
introduced in [3] can be defined when the pair (K, v) satisfies the DLBO condition
in an equivalent way by:

WE ol = Y K@K T o (@1 7@ xo(x).  (1.24)

QeD

Theorem 2.7 ([4, Theorem 2.1]). Let K : D — R*, 0 < g < p < +o0o, and
1 < p < 4o00. Let u and o be nonnegative Borel measures on R". Suppose that
(K, v) € (DLBO). Then there exists a constant C > 0 such that the trace inequality

| TxpLfdvl|? diw < ClfG oy, f € LP@v), (1.25)
- (dv)

holds if and only if

q(p—D

WE Jlul e L r= (dp). (1.26)
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Given (cg) o a sequence of nonnegative real numbers, we define
CiQ)(x) = Y chpxp k).
o'co
We will say that the pair ((c¢ Q) 0, V) satisfies the DLBO condition if the pair (K, v)

satisfies the DLBO condition, where K(Q) = 5 ( Q)

infyep C,(Q)(x), which by hypothesis is equivalent to SUPyep Cs(0)(x). The
Wolff-type potential is now

In that case we define C 0,5 =

_ , (p/s)'~1
WR 1) = Y ¢ [Cos1P/Y ! (%) X0 (x).
QeD

We can now state the characterization.

Theorem 2.8. Let 1 < p < 400, g < pands < p, and let i, v be two nonneg-
ative Borel measures on R". Assume that the pair ((CSQ)Q, v) satisfies the DLBO

condition. We then have that (1.22) (and consequently (1.3)) holds if and only if:

> <o (M(Q))H 6i)(g e L0 (dp). (1.27)

QeD

24. Thecaseq < pand p <s

With the same substitution of the previous case, we have that the estimate (1.3) can
be rewritten as

q 7
/ (Z chSQxQ> du | = Cll sup (o X)), (1.28)
n QED

QeD

wherenow 0 < ¢ < p < 1.

Theorem 2.9. Let g < p and p < s, and let i, v be two nonnegative Borel mea-
sures on R". Assume that the pair ((CSQ)Q, v) satisfies the DLBO condition. We
then have that (1.28) (and consequently (1.3)) holds if and only if.

_q_

(Z CQ/XQ) n(Q)
Q'co

d ) 1.29
/Rni‘;‘; (0) s oo (129
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Proof. We begin with the proof of the necessity. If O € D, take Ag = ZQcQ’ 0o’
Since p < 1, we have that

(Z pQ’)ﬁf (Z PQ’)ﬁS > Pg'-

QcQ’ Q'eD Q'eD
On the other hand,
D hocpxo =Y, o ) PoXe= ), Po' Y CpXo-
QeD QeD QcQ’ Q'eD Qco’

Consequently if (1.28) is satisfied, we obtain that

1
q ~ 1
(5w 5 ) ) (L o)
Q'eD  QcQ R"
SUP(Z PQ/XQ)

Qco’

= ¢| sup o)1y = €

LP(dv)

> poxe

Q'eD

~ L
P
sup ( E PQ/XQ)

0D \ gy L)

= (Z pév(Q/))

Q'eD

L'(dv)

So we have shown that if (1.28) holds, then

~ L 1
q q 7
/" (Z pQ’FQ,SXQ> du) =C ( Z ,OZ/V(Q/)>

Q'eD Q'eD
Applying the characterization in [11, Theorem 3.d] (since ¢ < p < 1), we have

that the above holds if and only if

q

(Co.5x0) ' 1(Q)\ "™
AJ?Z( v(0) ) i < +o0,

which is what we wanted to prove.
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Conversely, we have that if we apply Holder’s inequality with exponent g > 1,

q
L ()
n 0eD

g dp(x)
< Z XQCQXQ(X) ) (1.30)

w(@)
QeD Cp
MPre0 T 0570y

FEN_I I’p‘!
A/ ,.(5250” )

The second term on the right is finite since we are assuming that (1.29) holds. For
the estimate of the first term on the right, we will use that by Theorem 2.2,

we obtain:

RSPASY]

2
dp(x)
/ Z )»QCQXQ(X)>
(er Sup,eq Ch, “((S)) (1.31)

< C| sup h x|l L5(av)»
QeD

if and only if

sup 1 (Z corXo (x)>p du(x) < 400
2 /
e

But

g d
[ (Z CQ,XQ«x)) " =), Coxo? p“(()Q)—wQ),

; = H)
e SPre € 0.7 ) Cos70)

and hence (1.31) holds. Plugging this in (1.30), we deduce that

»och X0 duill sup hoxo) 95
/(Z o 0eD LP(dv)

QeD

and that finishes the proof of the theorem. O
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Remark 2.10. Itis worthwhile to mention a pointwise estimate that relates the con-
tinuous Wolff potential W, sv considered in this paper and another type of discrete
potential. If 0 = 3Q, for any Q € D, we denote by

UD ) =Y < ”(Q_)g> X0 ().

sep \lo!!

Following the arguments of the estimate in [1, (4.7.15)], it can be shown that there
exists C > 0 such that for any x € R",

cWesv(0) = UDv(x) < CWy, v(x).

Indeed, if x € R" and k € Z, let Q; € D be the unique dyadic cube such that
x € Qg and | Q| = 2™ Then B(x, 2X) C Qk, and consequently,

+o0 N
Weor = [ (7”(3,3;”)) °
0 t t

v(B(x,25) v(Ok) s (1.32)
X,
= Z( k(=) ) <> (—k__> X0 (%) = CUZ v (x).

1 o
kez ez \|Qkl ™7

In addition, if we fix a nonnegative integer m such that 2~ m+l /n < 1, then if
x € Ok, |0kl = 2%, we have that Oy C B(x, 2"*%), and thus

v(B(x,2"F))\*
Uv) = D (W)

kel

v(B(x, 2K))
_Z< ) ) >~ Wy, sv(x).

keZ

(1.33)

Observe that if v is a doubling measure, i.e., there exists C > 0 such that for any
x € R, R > 0, v(B(x,2R)) < Cv(B(x, R)), we have that the two discrete
potentials Ug sV and WZB ¢V above introduced satisfy that there exists A > 0 such
that for any x € R”,

%W}st(x) <UD v(x) < CWE ().

But since the measure fdv which appears in (1.3) is not doubling for all f, the
above equivalence can not be used to obtain an equivalent to theorem A for the
continuous general trace problem.

It would be interesting to characterize the inequality (1.5) for the discrete po-
tential U, D ;v. However, the methods applied in this paper for the discrete potential

W£ ¢V can not directly be used for the bigger discrete potential Ug sV
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