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The permutation group method for the dilogarithm

GEORGES RHIN AND CARLO VIOLA

Abstract. We give qualitative and quantitative improvements on all the best pre-
viously known irrationality results for dilogarithms of positive rational numbers.
We obtain such improvements by applying our permutation group method to the
diophantine study of double integrals of rational functions related to the diloga-
rithm.

Mathematics Subject Classification (2000): 11J82 (primary); 33B30, 20B35
(secondary).

1. Introduction

1.1 For k > 1 integer, the polylogarithm Lix (x) of order k is defined, in the unit
disc |x| < 1, by the power series
o0 n

Liz (x) = Zz—k

n=1

In particular

Lij (x) =Z’;—n = —log(1 — x)
=1

and
X

Liz(x)zzz—z = —/bgﬂ%l‘)dt.

n=1 0

The polylogarithm, which arises in Euler’s work, is a typical instance of G-function.
Following Siegel ([6], erster Teil, Section 4, VII), a G-function is defined to be a
Taylor series )  a,x" whose coefficients are algebraic numbers such that, for a
positive constant C independent of 7, (i) a, and its conjugates do not exceed C”,
and (ii) there is a common denominator for the coefficients a, with v < n which
does not exceed C".
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As a special case of arithmetical study of such functions, we mention that
rational approximations to values of the dilogarithm Li,(x) at points x = 1/s with
s € Z were studied by Hata [3], who proved that Liy(1/s) is irrational for all
integers s € (—oo, —5]U[7, +00), and gave irrationality measures of Liy (1/s) for
the integers s satisfying 7 < s < 18 or —16 < s < —5. We refer to the introduction
of the paper [3] for an account of earlier results concerning irrationality properties
of Lia(1/s).

More generally, the broad subject of the irrationality or transcendence of values
of G-functions was widely studied, mainly in a paper by Bombieri [2], where the
author introduces the concept of Fuchsian differential operator of arithmetic type.
In the spirit of Siegel’s original method for E-functions [6], Bombieri makes a deep
study of G-functions satisfying Fuchsian differential equations of arithmetic type.
In particular ([2], Theorem 8), he obtains new algebraic independence results for
polylogarithms of suitable algebraic numbers whose heights are large enough, and
whose absolute values are sufficiently small, with an upper bound depending on
the heights. Thus, for polylogarithms of rational numbers r/s, the hypotheses of
Theorem 8 in [2] imply that s is sufficiently large with respect to r, similarly to our
assumptions in the present paper (see below). It is also worth mentioning that in
the introduction to the paper [2] Bombieri remarks that an approach alternative to
Siegel’s for the arithmetical study of values of special G-functions at rational points
can be obtained by explicit construction of Padé approximations to the functions
involved.

In this paper we use a method for the diophantine study of dilogarithms of
positive rational numbers which is independent of both Bombieri’s and Padé ap-
proximation methods. We apply the permutation group method introduced by the
authors in [4] and developed in [5] with the purpose of obtaining the best known
irrationality measures of ¢ (2) = Liy(1) = 72 /6 and ¢ (3) = Liz(1). Our method al-
lows us to prove a general result (Theorem 5.2) yielding the irrationality of Liy (r/s)
and an irrationality measure of this number under suitable quantitative conditions.
Moreover, it provides an effective algorithm, described in Section 6, to compute,
for any integer » > 1, a constant s1(r) > r such that for any integer s > s1(r) we
have Liy(r/s) ¢ Q, with an explicit irrationality measure of Li (r/s) depending on
r but not on s.

In the diophantine study of Li,(r/s), the restriction to the case r = 1 made by
Hata [3] is unnecessary for us. We also point out that the extension of our method to
the study of dilogarithms of negative rational numbers would require no new ideas,
nor would it entail really new difficulties, except for complications concerning the
asymptotic study of some double complex integrals. In order to avoid a lengthy
treatment of this technical point, in the present paper we prefer to confine ourselves
to the case of dilogarithms of positive rational numbers.

Concerning Liy (1/s) for positive integers s, we extend Hata’s results indicated
above by proving in Section 6 that Li,(1/6) is irrational, with irrationality measure

1 (Liz(1/6)) < 783.29036. ..,
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and we improve all the irrationality measures of Lix(1/s) given by Hata for 7 <
s < 18 (see [3], p. 386, Table 1). As usual, we denote by w(6) the least irrationality
measure of an irrational number 6, i.e., the least exponent p such that for any ¢ > 0
there exists a constant gy = go(e) > 0 for which

o2
q

for all integers p and ¢ with ¢ > qo.

We give further applications of our method by proving that Li>(2/s) ¢ Q for
s > 51, Lio(3/s) ¢ Q fors > 173 and Lip(4/s) ¢ Q for s > 423, together with
some irrationality measures in these cases.

1.2 The main ideas and the common features in the various applications of our
permutation group method, in the present paper as well as in our previous papers [4]
and [5], can be roughly described as follows. Let 6 be a constant related to integrals
of rational functions, in the sense that, for a certain dimension D depending on 0,

) f dxy - - - dxp
B A(xt,...,xp)
0,HP

where A(xy,...,xp) is a suitable polynomial with rational coefficients (we have
D =2for0 = ¢(2) and D = 3 for 6 = ¢(3), and the above integral representations
with A(x,y) =1 —xy for ¢(2) and A(x, y, z) = 2(1 — (1 — xy)z) for £(3) were
introduced by Beukers in [1]). For the study of diophantine properties of 0 we
consider a suitable family of integrals

/ (xfl(l —xp)e X1 —xD)bl’)" dx;---dxp (1)
A(xy,...,xp)° A(xy,...,Xxp) '
0,HP

where the exponents ay, ...,ap; by, ..., bp; c are integers, in general different

from one another (for ¢(2) and ¢ (3), the study of the case where such exponents
are all equal is also due to Beukers [1]).

Being optimistic, one hopes that the integrals (1.1), possibly under suitable
constraints for the exponents, represent linear forms in 1 and 6 with rational co-
efficients (this is indeed the case for ¢(2) and ¢(3)), and moreover that, for fixed
ai,...,ap; by, ..., bp; c and for n — oo, the corresponding linear form tends to
zero rapidly enough, in comparison with the growth of its coefficients and of their
denominators, to yield a good irrationality measure of 6.

The core of our method consists in the construction of a finite group of bi-
rational transformations of dimension D acting on the family of integrals (1.1).
Combining the one-dimensional Euler integral representation of the hypergeomet-
ric function with the above transformation group, we obtain a permutation group
acting on the set of exponents appearing in the integrals of the family. The alge-
braic structure of this permutation group yields strong information on the p-adic
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valuation of the coefficients of the linear form in 1 and 6 given by the integral (1.1)
for suitably fixed ay, ..., ap; by, ..., bp; c, so that, by removing common prime
factors of such coefficients, one can significantly improve the irrationality measure
of 0 that can be obtained from (1.1) by purely analytic methods. In some cases,
e.g. for & = Liy(1/6), the elimination of common prime factors of the coefficients
provided by our permutation group allows us to prove the irrationality of 6, a result
that cannot be obtained by any other known method.

The application of the general strategy outlined above to the study of Lix(r/s),
which we carry out in the present paper, is naturally related with our method for
£(2) = Lia(1) given in [4], but requires some essential modifications and involves
some new difficulties. As in the case of ¢(2), the integrals of type (1.1) for Liy(r/s)
have dimension D = 2; however the polynomial A(x, y) = x(1 — y) 4+ yz now
appearing in the denominator contains a parameter z > 1, subsequently chosen to
be z = s/r, and is no longer a symmetric function of x and y as it was for £(2). As
a consequence, we are forced to employ in our integrals a birational transformation
(i.e., the involution XA defined by (2.5) below) which transforms only the variable y
and acts identically on x, with an (inevitable) lack of symmetry, with respect to the
case of ¢(2), in the resulting permutation group. Moreover, the integrals (1.1) over
the unit square (0, 1)2, up to some controlled factors, yield linear forms not only in
1 and Li(1/z), but also containing logarithmic terms involving log z and Li; (1/z).
In order to get rid of these, as we do in Theorem 2.1, we have to treat simultaneously
both double integrals of type (1.1) over (0, 1)2, defined in (2.1) below, and double
integrals of mixed type, i.e. over the real interval (0, 1) in x and over a complex
contour in y, defined in (2.2). Also, similarly to our paper [4], the double contour
integrals defined in (2.3) yield the coefficient of Li>(1/z) in the linear forms.

ACKNOWLEDGEMENT. We are indebted to the referee for helpful comments and
suggestions on an earlier version of this paper.

2. Linear forms involving Li; and Li,

Let z € R, z > 1. For integer parameters 4, j, k, [, m > 0 we define

11
T =x)hyka =y

) _ —l-m x/(1—x)"y y

1O, j k. l,m) =z // =) Dy, @D

00

1 .
I, j, k1, m)
1

_ —l-m L % xj(l — x)hyk(l _ y)l )
o / <27Ti (x(1 — y) + yz)Jtk=—m+1 dyJdx, (22)

0
p-iz|=e
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1P, j, k1, m)

e 1 1 (A=) R A=y
l—m
= — — : dy )dx (2.3
L o ?§ <2ni f G —y) 4 yoy ot @ ) (23)
b—zl=o jy-Eii=o
for any o, 0 > 0, and
L(h, jk,m) = IO, j,k,1,m)— (logz) IV (h, j, k, 1, m). (2.4)

Changing x into 1 — x and y into 1 — y in the integral (2.1) yields

11
h _ j ll_ k
Y _ —l-m XH (1 =x)/y (1 —y)
L7 (h, j, k,l,m) =z // TG Dy —xy)in dx dy.
00

Hence in the limit case z = 1 we have
10, j,k,l,m) = I(h, j, k. 1,m),

where I (h, j, k,l, m) is the integral, related to {(2), defined through the notation
of the paper [4].

Here we are interested in the case z > 1, which we assume. For x # 0, x # z,
we consider the involution A = A, ; : y — Y defined by the equation

-y  x(1-y)

A Y = = , (2.5)
X% x(I=y)+yz
y
X
which satisfies
dy B dy
x(1-Y)+Yz  x(1—y) +yz

Clearly for any x > 0 the involution A maps the interval 0 < y < lonto(0 <Y < 1.
Hence the change of variable (2.5) in (2.1) transforms the double integral over the
unit square (0, 1)2 into a double integral over (0, 1)2. Also, for any fixed complex
number 7 # 0, 1, oo, the function ¥ = (1 — y)/(1 — ty) of the complex variable
y plainly transforms any circumference centred at 1/t into a circumference centred
at 1/7. Therefore, (2.5) transforms the contour integral over |y — x/(x — z)| = o
appearing in (2.2) and (2.3) into a contour integral over |Y — x/(x — z)| = ¢/, fora
suitable o’ > 0.

Consequently, if we apply the transformation A to the above integrals, i.e., if
we make the change of variable (2.5), we easily obtain, owing to the normalization
factor z /=" appearing in (2.1), (2.2) and (2.3),

I, jokm) = 1m0k, j)  (v=0,1,2), (2.6)
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whence, by (2.4),
I(h, j, k,l,m) = I,(h,m,l k, j). 2.7)

Thus with the action of the transformation A on (2.1), (2.2), (2.3) and (2.4) we as-
sociate the permutation A of the set {h, j, k, [, m} mapping h, j, k, [, m respectively
toh,m,l, k, j,ie., given by

A= mk D), (2.8)

and the values of (2.1), (2.2), (2.3) and (2.4) are invariant under the action of A.
As usual, for any integer n > 1 we define

d, = lL.e.m.{l1, ..., n},
and dy = 1. Moreover, let

H=max{l+m—j, m+h—k, h+j—1, j+k—m},
K=max{{+m— j, minfm+h —k, h+j—1}, j+k—m},

o =max{j +k, k+1, | +m}, (2.9)
B = max{0, k + [ — h},

d=max{h, m+h—k, h+j—1, j+k, k+1, | +m}.

By linearity, we extend the action of the permutation A on any linear combination
of h, j, k, [, m with integer coefficients. Thus A(j + k) = A(j) + A(k) =1 + m,
Al+m—j)y=A(I)+A(m)—A(j) = j +k —m,etc. We remark that] +m — j
and j + k — m cannot be both < 0, because ({ +m — j)+ (j+k—m) =k+1 > 0.
Hence the integers H, K, «, 8, § defined by (2.9) are all non-negative and clearly
invariant under the action of A.

Theorem 2.1. With the above notation and assumptions we have
dudgz®(z — DPL(h, j,k,1,m) = P(2) — Q(z) Liz(1/2)
and
dpdgz®(z — DPID(h, j k,1,m) = R(z) — Q(z) Lij(1/2),
where
P(2), Q(2), R(z) € Zlz], max{deg P(z), deg Q(z), deg R(2)} < 8.
Moreover, the polynomial Q(z) is given by
Q@) = dydgz*(z— DPIP(h, j k.1, m).

The proof of Theorem 2.1 is based on some arithmetical lemmas.
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Lemma 2.2. If

min{{ +m — j, j+k—m} <0

then Theorem 2.1 holds with Q(z) = R(z) = 0.

Proof. If j +k —m < 0, the function

(1= x)tyk(1 =)
(x(1 = y) + yz)/Hhomtd

is a polynomial S(x, y, z) € Z[x, y, z]. Therefore

whence

We have

Consequently

Sx,y,z)dy =0,

‘y—x—fz ’=Q

1 . 2 .
I, jk,my = 1P (h, jk,1,m) = 0.

deg, S(x,y,z2) =m+h—k—1,
deg, S(x,y,2) = l+m—j—1,
deg . S(x,y,2) =m—j—k—1

Amsh—tk diym—j ZH_mIZ(h, J ok, 1, m)

where, by (2.9),

so that dy /dy

11
=dpy dg /f S(x,y,z)dxdy = T(z) € Zl[z],
00

H :=max{l+m—j, m+h—k} < H,
K :=min{l4+m—j, m+h—k} <K,

and dg /dg: are integers, and deg T(z) < m — j — k — 1. Since

j+k—m<0,wenowhavek < j+k <m <[+ m,whencek +[1 <1+ m,

jH+k<l+m,

o = [ + m. It follows that

dydgz®(z — DVPI(h, j, k,1,m) = P(2) € ZIz],
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with
deg P(z) = B+degT(z) <B+m—j—k—1
=max{m—j—k—1,l4+4m—h—j—1}<l+m<5$.

This proves the lemma in the case j +k —m < 0.
Ifl +m — j < 0, the lemma follows from the invariance of I,(h, j, k, [, m),

Iz(l)(h, Jj. k, 1, m), IZ(Z)(h, J, k, 1, m) and of the integers (2.9) under the action of A,
and from the previous argument for j +k —m < O. U

Lemma 2.3. We have
1;(0,0,0,0,0) = Lix(1/z2),
1£9(0,0,0,0,0) = Lij(1/2),
12(0,0,0,0,0) = —
so that Theorem 2.1 holds for h = j =k =1=m = 0.
Proof. We have

1 dy 1
P = , (2.10)
27i x(1—=y)+yz 7—Xx
‘y—ffz)#)
whence
1;7(0,0,0,0,0) = p— = —log(1 —1/z) = Lij(1/2) (2.11)
and
1 d
12(0,0,0,0,0) = — f Sl
: 27 Z—X
[x—z|=0
Since
: d 1 1
/‘ y _ logz —logx ’ (2.12)
x(I —y)+yz z—X
0
we get

1 1
dxd dx 1
19(0,0,0,0,0) = // Y (logz)/— —/ 927 4,
x(1—y)+yz 7—X Z—Xx
0 0
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whence, by (2.4) and (2.11),

1
log x
1;(0,0,0,0,0) = — dx. (2.13)
Z—x

0

With the change of variables u = x/y, v = y we obtain

1 1 1
// du dv / dx /dy B /‘logx
Z—uv Z—x y
0 0

00 X
On the other hand
11 dud . L
// u dv _ _/ ZM v du dv
Z—uv z = z"
00 00 "=
1 1
R | - - 1 .
=er+1 /u du/v dv =Zznn2 = Lix(1/2).
r=0 n=1
0 0
Therefore
1
log x .
— dx = Lip(1/z2). (2.14)
Z—X
0

From (2.13) and (2.14) we obtain

1;(0,0,0,0,0) = Lia(1/z2). O

Lemma24. [fh = j =1 = m = 0 then Theorem 2.1 holds, with Q(z) = 0 if
k> 0.

Proof. It k = 0 we apply Lemma 2.3, so we may assume & > 0. By Cauchy’s
integral formula we have

1 7§ yk 1
A~ . dy = 9
27i (x(1 — y) + yg)k+! (z — x)k+1
X |
‘y—ﬁ)—g
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whence
19(0.0.£.0.0) = —— ?g & (2.15)
Z k) 9 ’ 9 - 27[1 (Z _x)k+1 _ .
|[x—z|=0
and
1 1 1
19(0,0,k,0,0) —/ S _ ) (2.16)
(Z _ x)k—i—l k (Z _ l)k Zk
Therefore
k(2 — D¥ID(0,0,k,0,0) = ¥ — (z — DX (2.17)

By partial integration we obtain

1
yk 1 1 yk—l

dy = — d
() +yok 1 kzk(z—x>+z—x0 G — )+ yo)F

On applying this formula recursively, we get

1

/ yk dy — kz_i 1 logz —logx

G-y 2 T T F T @k
J -

Thus

k—1

190,0, k,0,0) = /
b4 g (k _ I’)Zk r (Z _ x)r+1

log x
+ (logz)/ ( )k—i—l / (Z _x)k—i-l

whence, by (2.4) and (2.16),

k—1
log x

1.(0,0.k,0,0) = _Z(k—r)zk V,/(z—x)"“ - G @19

0
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By partial integration we find

1
1 1 d
/(Z _Oi;kﬂ =7 /(logx)a((z —x) k- z_k)dx
0

1

1
1 1 1\dx 1 1 =0
—%/<<z—x)k_z_k>7_ k/ Feof coeon O
0

1 1
1= e - x)k=1=r =l dx
k ;! Kz — x)k ; kzk=r O/ (z —x)rtl

()

~

Therefore, by (2.18),

1
k—1
1 1 1 dx
L(0.0,£.0,0) = Z(%_ k—r)zk_’ / (z—x)t

r=0
k—1

r 1 1 1 1 = -
_;k(k—r)zk—r?<(z—1)r_z) __kg (Z_l)r—1>.

We conclude that

di—1kZ"(z = D¥11,(0,0,k,0,0) = S(2) € Z[z],

with deg S(z) < k — 1. This, together with (2.15) and (2.17), proves the lemma,
since in the present case we have H = K = o = =§ = k. U

Lemma 2.5. Ifh = j = k = m = 0 then Theorem 2.1 holds, with Q(z) = 0 if
[ >0.

Proof. 1f 1 = 0 we apply Lemma 2.3. If [ > 0 the result follows from Lemma 2.4
by applying the permutation A. U

Lemma 2.6. I[fh = j = m = 0 then Theorem 2.1 holds, with Q(z) = 0 unless
k=1=0.

Proof. We may assume kl > 0, for otherwise we apply Lemmas 2.3, 2.4 or 2.5. We
have

dx o 1 ( 1 1 ) (2.20)
(=) +y)t k(1= \A+y@ -1k ykk ) ‘
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Hence

© 1 ya
L70.0.6L0) = 2 //(x(l—y)+yz)"“dxdy

1
1 yE(1 =yt

=—-— | ———d —.
i) Trye—nF T g
With the change of variable y = (w — 1)/(z — 1) we get
1
L[ ya =y /(w—l)k (z —w)!
kzl J (14 y(z — 1)k Ckd(z - 1)k+’ wk
0
- k— —1 1 [ k
_ r—s r+s—
- l)k-HZZO( D ()( s >Zs+1_/w dw.
r
1

It follows that

logz L (k) (11 1
0 =
1;7(0,0,k,1,0) = WZ <r)< s ) st

r=0 s=0 z
r+s=k—1
k 1-1 k—r—s
(=1 k\ (1 —1 1 1
k(z—l)k+lzzr+s—k+1(r>< s )(Zk—_—zm) (221
r=0 s=0
rds#k—1

1

+ klzk"‘l :

A similar computation yields the values of IZ(V) (0,0,k,1,0) forv = 1,2. Lety
denote a fixed contour in C enclosing the interval [(1 — z)~1, 0] on the real axis.
Then y encloses the point x/(x — z) for any x such that 0 < x < 1. Therefore, by
(2.2) and (2.20),

1
k 1= !
190,0,k,1,0) = / YA )
: 271 ) (x(1 — y) + yz)kt!
0 14
1
k!

= - —fyk(l—y)’_l< ! — 1)dy
2 (I +y@—1)k  ykgk

11 yE(1 = )it
il P Uty ¥
Y
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We apply again the change of variable y = (w—1)/(z—1), which transforms y into
a contour y’ enclosing the interval [0, 1] in the w-plane. Similarly to the previous
case we obtain

119(0,0,k,1,0)

k
[ —1 1 1
— k—r— rds—k
- 1)k+l Z Z(_]) S( )( s )ZS—H 27ri w'™ " dw,

r=0 s=0 !
14
whence
1 k 1—1 k [ —1 1
(D) = —
IZ (anykalao) - k(z_l)k“rl Z Z(r)( N )Zs+1
r=0 s=0
r+s=k—1
| mintk, I} /¢ [—1\ 1
_ v — 2.22
k(z — 1)FH ; (k—t)([—])zt (2.22)
Therefore

ke z™nE D — DM 0,0,k,1,0) = S(2) € Zlz]
with deg S(z) = min{k, [} — 1. Since in the present case we have
H =K =max{k,l}, a=p=8=k+1,
we get
dpdgz*(z — DPI1D(0,0,k,1,0) = R(z) € Zlz],

with deg R(z) =k +1 —1 < §. From (2.4), (2.21) and (2.22) we obtain

IZ(O’Oakslio)

B Xk:ll(l)"rskl—l 1 Ly, !

o 1)’<+l S ts—k+1 s k= st ) klgk
r+s#k—1

whence

dmaxtk—1, 0k 2 (2 — DFL0,0,k,1,0) = T(2) € Zz]
with deg T'(z) < k +1 = é. Consequently
dudgz®(z — DPL(0,0,k,1,0) = P(z) € Z[z]

with deg P(z) =degT(z) <.
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We have to compute

120, 0, k,1,0)

o b 7§ RS 7g yea -y )
=z 77 <27_”, G =) Ty dy Jdx. (2.23)

|x—z|=0 x|
Y-z =

Note that |x — z| = o if and only if |x/(x — z) — 1] = z/o. Hence the contour
[y — x/(x — z)] = o in (2.23) can be replaced by |y — 1| = o provided that
oo > z, since under this assumption the circumference |y — 1| = o encloses the
point x/(x — z) for any x satisfying |[x — z| = o. After this replacement, we may
interchange the integrations over |x — z| = o and |y — 1| = p. It follows that

12(0,0,k,1,0)
_ 7{ K-y (A 7{ dx dy, (2.24)
2 Y Y\ 2ri @l —y) +yok1 )& =

ly—=1l=e ‘x_ﬂ‘:(,

I dx .,
(] _ y)kJrl (x _ vz >k+l - Y%
AT

since k > 0. We conclude that IZQ) 0,0, k,1,0) = 0, and the lemma follows. ]

Lemma 2.7. Ifk =1 = 0and m = j, then Theorem 2.1 holds.

Proof. From (2.12) we get
1

J(1 = x)" . 1 —1
’I(O)(h 7,0,0, /) = x/( X) — " dxdy = xf(l—x)h de
x(l—y)—|—y 7—X

1
i1 —x)h J(1 —x)"
z—X Z—X
0 0

and from (2.10)
1

. ] . 1 x/ (1= x)"
1M, 0,0, j) =_/<2—m % md)’ dx
0 |- |=e

! i _ h
_ / A= (2.25)

—X
0
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Therefore
1 j 1 h
L, j,0,0,)) = —/ MA =07 e v dx, (2.26)
—X
0

Wewritex =z —(z—x)and | —x = (z —x) — (z — 1). From (2.25) we obtain

1V, j, 0,0, j)

J h h . !
Z Z( r+h s( )(S>er(z _ l)hfs /(Z —X)H»Sildx.
0

r=0 s=

Splitting the double sum into r = s = 0 and (r, s) # (0, 0) we get by (2.11)
1V, j,0,0, /) = (=D"27(z — D" Lij(1/2)

r+h—s —r¢, _ 1\h—s Zr—',—s —(z— 1)r+S
+ZZ( D ()()’ z—1) . . (27

r=0 s=0
(r,$)7#(0,0)

Wenowhave H=K =§=h+ j, « = j, B =0. By (2.27) we obtain
dydxz®(z = DPID(h, j,0,0, j) = diyy; 2/ 17 (h, j,0,0, ))
= R(z) — Q(2) Liy(1/2),
with Q(z), R(z) € Z[z], max{deg Q(z), degR(z)} =h + j =6, and
Q) = (=)"*dp, /- (2.28)

Similarly, by (2.26),

2 1(h, j, 0,0, )

J h h . !
Z Z( r+h S( )(S)ZJT(Z_ l)hS/(Z_x)F+Sl IOng)C.
0

r=0 s=

By (2.14), the contribution for » = s = 0 equals

1
— (=D (z - W/%d’c = (=)' (z — D' Lip(1/2).
0
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As in (2.19), for (r, s) # (0, 0) we get by partial integration

1 1

1 Zr-‘rs _ (Z _ x)r-‘rs
— | z=x)P ogxdx = / dx
/( ) g r+s 7—(z—x)
0 0
1 r-+s | .
— r—+s—t . t— d
T 45 z; z /(z X) X

0
1 r4s

= Zz’+s—t d ==
r+s t ’

t=1

It follows that
2Lk, j,0,0, j) = (=D"z/ (z = D" Lia(1/2)
L & O AYI AN h
_1 r —S J—r _ 1 —S
+ Y Y (=D (r) <s)z (z—1

r=0 s=0
(r,s)#(0,0)

1 r+s 1 N o .
_ r+s _ rr—s— _
X ;Zl t(z 7N = 1)).

Hence
deKZO[(Z - l)ﬁIZ(hi j? 07 O? J) = d]/%_;’_J ZJIZ(h’ j? Oa 07 .])
= P(2) — Q(2) Li2(1/2),

with Q(z) given by (2.28) and with P(z) € Z[z], deg P(z) <h+ j =3.
By (2.10) we get

, 1 1 Ta—x)h
Z]I(z)(h7j’o’0’ ]) = . % ~ . ‘¢A udy dx
< 2mi 2 x(1—y)+yz

|x—z|=0 y_)CxTZ‘:Q
1 71— x)!
=_T¢ A=
2mi z—X
|x—z|=0 .\
il — .
- — esu = -7 =",
x=z X —Z
whence, by (2.28),
0@ = —di /(1 —2" = d} ;1P (R, }.0,0, )

= dpdgz®(z — DPIP (h, j,0,0, j).

This completes the proof of the lemma.
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Finally, we require the following lemma relating the values of «, B and ¢ in (2.9).
Lemma28. If B=k+1—h, then § = a.

If B=0and o = j+k, then 6 =h+j—1.
If B=0and a« =k +1, then § = h.
If B=0and o« =1+ m, then § =m + h — k.

Proof. If B =k+I[—h wehave k+]—h > 0,whence h < k+I[, m+h—k <Il+m
and h + j — [ < j + k. Therefore

8 = max{j +k, k+1, | +m} = «.

If =0 wehave k+1—h <0,whence k+1 <h,l+m <m+h —k and
j+k<h+j—1 Therefore

8 = max{h, m+h—k, h+j—1}.

Ifoao=j+kthenk+Il<j+k I<jh<h+j—lLand[+m<j+k,
m+h—k<h+j—I,whence S=h+j—[.Ifa=k+1[then j+k<k+I,
j<Lh+j—Il<handl+m<k+Il, m<k, m+h—k <h,whence § = h.
foa=I+mthen k+[<l4+m, k<m,h<m+h—k,and j+k <I+m,
h+j—1l<m+h—k, whence § =m+h — k. O

Proof of Theorem 2.1. If min{/ +m — j, j +k —m} < 0 we apply Lemma 2.2.
Thus we may assume [ +m — j >0 and j+k —m > 0. If km > 0, we use the

linear decomposition of the integrals IZ(”)(h, Jok,l,m) (v=20,1,2) given by the
identity y =1 — (1 — y). We have

10, j k.1, m)

L1 f 1 yhok—101 _
- // — X/ (1 =x)"y" " (1 —y) (1= (1—y)dxdy
00

1—y)+ yz)j+(k—l)—(m—1)+1
=z, jok—1,L,m=1) — 100, j, k—1,14+1,m—1),

and similarly for Iz(l)(h, j.k,1,m) and Iz(z) (h, j, k,l, m). Hence the same decom-
position holds also for I,(h, j, k, [, m):

L(h, jk,l,m)=z""L(h, j,k—=1,1,m —1)—L(h, j,k—1,1+1,m —1). (2.29)
For brevity, denote the tuples on the right side of (2.29) by

(h19 ]17 k17 lls ml) = (h7 js k - 19 lv m — 1)’

2.30
(hz’ j27 k27 125 m2)= (ha ]ak_19l+17m_1) ( )
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If we denote by H,, Ky, ay, By, 8, the integers (2.9) associated with the tuple
(hy, Jg: kg, lg, mg) (g =1,2), we easily get

H <H, K =<K, ai=a-1, B-1=<p1=<B, §—-1=<6=9,

(2.31)
H)y<H, K)<K, aoa—-1<mwm=<a p=B 06-156=<46.

Since H; < H and K, < K, the quotients dH/qu and dK/qu are integers. Hence
if Theorem 2.1 holds for each of the tuples (2.30) we have, forg = 1, 2,

dydgz®(z —DPi L (hg, jg. kq. lg, mg)=Py(2) — Qq(2) Lin(1/2)
dyd 2%z —DPI (hy. jg. kg, lg. mg)=Rq(2) — Qq(2)Liy(1/2)  (2.32)
dyd 22z =PI (hy. jg. kq. lg. mg)=04(2)
with
Py(2), Q4(2), Ry(z) € Z[z], max{deg P,(z), deg Q,(z), deg R,(2)} <8,. (2.33)
From (2.29), (2.30), (2.31) and (2.32) we obtain

dpdgz®(z — DPL(h, j, k.1, m)
= dpydgz*(z — VP (27" L(h, j, k=1, 1, m—1) — L(h, j, k=1, [+1, m—1))
= dydgz* @ = D@ = DR L, i,k L my)
—dydgz® 7 (2 = VP L(ha, jo, ko, b, m2)
(z = DPP(P1(2) — Q1(2) Lia(1/2)) — 2% (Pa(z) — Q2(2) Liz(1/2))
P(z) — Q(z) Lix(1/2),

where
- P() = (z— DFPIPi(z) — 2“7 Py(2)
Q) = = DFP1Qi(2) — " 01(2). (2.34)
Similarly
dydgz"(z = DIV, j k 1,m) = R(@) = Q(2) Lii(1/2),
dudgz®(z — DPIP (b, j. k. 1.m) = 0(2),
with

R(z) = (z— DPPIRI(z) — 2™ Ry (2)

and with Q(z) given by (2.34).
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By (2.31) we have 8 — 1 > 0 and « — ap > 0. Hence, by (2.33),
P(2), Q(2), R(2) € Zlz],
with
max{deg P(z), deg Q(z), deg R(z)} < max{B — f1 + 81, ¢ — a2 + 52}. (2.35)
We claim that
max{f — B + 81, @« — a2 + 8} < 4. (2.36)
By (2.31) we know that gy is either B or B — 1. If B = B we get
B— B+ =38 =4 (2.37)
If 1 = p— 1, since B = max{0, k +[ — h} and, by (2.30), f; = max{0, k — 1 +
[—h},weget B=k+[—h >0, gy =k+1—h— 1, whence, by Lemma 2.8 and
by (2.31), §1 = a1 = a — 1 =8 — 1. Therefore
B—PBi+8=1+8—1=3. (2.38)
Similarly, again by (2.31), « is either « or « — 1. If oy = « then
a—oy+ 8 =8 <. (2.39)
If wp =« — 1, since
a=max{j+k, k+1, I +m}
and, by (2.30),
ap=max{j+k—1, k+1, | +m]},
we have « = j+k, ap = j+k—1. If B = B = 0, by Lemma 2.8 we get
S=h+j—-1,6=h+j—-1—-1=6—-1.1t B =p=k+1— h,again by
Lemma 2.8 we get §2 = ap = a — 1 =6 — 1. In either case
a—ay+&H=14+6§—-1=34. (2.40)

From (2.37), (2.38), (2.39) and (2.40) we deduce (2.36). From (2.35) and (2.36) we
have

max{deg P(z), deg Q(z), deg R(2)} < 4,

and we conclude that if Theorem 2.1 holds for (&, j, kK — 1,1, m — 1) and
(h, j, k—1,1+1, m — 1), itholds also for (&, j, k, [, m).
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If km = 0 but jI > 0, we use the invariance of (2.2), (2.3), (2.4) and of
the integers (2.9) under the action of the permutation A, and then apply the linear
decomposition (2.29). Therefore, if Theorem 2.1 holds for (h, j — 1, k, I — 1, m)
and (h, j — 1, k+ 1,1 — 1, m), it holds also for (h, j, k, [, m).

If Al > 0, we may use the linear decomposition of IZ(V)(h, Jok,l,m) (v =
0, 1, 2), and hence of I,(h, j, k, 1, m), given by the identity

IT=-x)A=-y)=z—(-=DU—=y) =& —=y) + y2).
Thus we obtain

Lh, jkl,m) = L(h—1, j, k, 1 —1, m)
= DLG—=1, j ok L,m)—Lh—1, j, k=1, m+1), (241)

and similarly for IZ(V)(h, Jik, 1, m).
We denote the tuples on the right side of (2.41) by

(h3a ]3’ k39 137 m3) = (h - 15 ja ka l_ 1y m)7
(h’43 j47 k47 l43 m4) = (h - 13 ja k’ l? m)7 (2'42)
(hs, Js, ks, Is, ms) = (h =1, j, k, [ =1, m+1),

and again by H,, K,, o4, By, 8, the integers (2.9) associated with the tuple
(hq. Jg kg, lg,mg) (g =3,4,5). We easily see that

Hy<H, K3<K, a—-1<o3=<a, pB3=B 06-1=<68 <3,
Hy<H, Ki<K, asg=0a B=<ps=<pB+1, 5—-1=<68=<6, (243)
Hs <H, Ks<K, a—-1=<as<a, Pps=p, §—1=<68 <46.

Thus if Theorem 2.1 holds for each of the three tuples (2.42), we have (2.32) and
(2.33) for ¢ = 3,4, 5. Similarly to the previous case, by (2.41), (2.42) and (2.43)
we get

dpdiz®(z = DPL(h, j.k.1.m) = P(2) — Q(z) Lia(1/2),
dudgz®(z — DP IV (h, j k,1,m) = R(z) — Q) Lit(1/2),
dudgz*(z — DP I (h, j k,1.m) = 0(2),

with
P(z) = 2% P3(z) — (x = DPTI7PPy(z) — 2745 Ps(a),
0(z) = 27 03:) — @ — PP 04(z) — 7% Q5(2).
R(z) = 2% ®R3(z) — (z — DPHI7PR.(z) — 2% Rs(2).
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By (2.43)wehave ¢ —a3 >0, B+ 1 — B4 >0 and o — a5 > 0. Thus by (2.33)
for g = 3,4, 5 we get

P(2), 0(2), R(z) € Z[z]

with

max{deg P(z), deg Q(z), deg R(z)}
< max{foa —a3+83, B+ 1—Bs4+84, 0 —as+655}. (2.44)

A discussion analogous with the one given in the previous case, again based on
Lemma 2.8 and on (2.43) for ay, B, 8, (g = 3,4,5), easily yields

max{oa —a3+383, B+ 1—P4+84, @ —as+ 365} < 4, (2.45)
similarly to (2.36). From (2.44) and (2.45) we have
max(deg P (2), deg Q(2), deg R(2)} < 6,

so that if Theorem 2.1 holds for (h — 1, j, k, [ — 1, m), (h — 1, j, k, [, m) and
(h—1, j, k, I — 1, m 4+ 1), it holds also for (&, j, k, [, m).

If hl = 0 but hk > 0, we apply first the permutation A and then the linear
decomposition (2.41). Hence if Theorem 2.1 holds for (h — 1, j, k — 1, I, m),
(h—1, j, k, [, m)and (h—1, j+1, k—1, [, m), it holds also for (h, j, k, I, m).

With the notation (2.30) and (2.42), if for at least one ¢ (1 < g < 5) the tuple
(hg, Jg» kg, lg, my) satisfies at least one of the inequalities kymg > 0, jzlg > 0,
hgly > 0, hyky, > 0, we iterate the linear decompositions (2.29) or (2.41), up to
applying the permutation A.

We remark that such an iteration process must terminate in finitely many steps,
because

htj+k+l+m>hg+j,+kg+l+mg >0  (g=1,...,5).

Hence if we iterate the decompositions (2.29) and (2.41) sufficiently many times,
we end up with finitely many tuples for each of which either min{/ +m — j, j +
k —m} < 0, in which case we apply Lemma 2.2, or km = jl = hl = hk =
0. Thus Theorem 2.1 will be proved in general, if we show that it holds for any
(h, j,k,1, m) satisfying km = jl=hl =hk=0,l+m—j >0, j+k—m > 0.
We distinguish some cases.

First case: j > 0. From jl = O we get/ = 0. Since [ +m — j > 0 we have
m > j > 0, and from km = 0 we get k = 0. Since j+k —m > 0 we have j > m.
Therefore m = j. Thus we have the tuple (&, j, 0, 0, j), and we apply Lemma 2.7.

Second case: j =0, k > 0. From km = hk = 0 we get h = m = 0. Thus we
have (0, 0, k, [, 0), and we apply Lemma 2.6.
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Third case: j =k =0, [ > 0. From hl = 0we geth = 0, and from j+k—m >0
we get m = 0. Thus we have (0, 0, 0, /, 0), and we apply Lemma 2.5.

Fourth case: j =k =1=0, h > 0. Since j +k —m >0 we have m = 0. Thus
we have (h, 0, 0, 0, 0), and again we apply Lemma 2.7.

Fifth case: j =k =1=h =0. Againby j+k —m >0 we get m = 0. Thus we
have (0, 0, 0, 0, 0), and we apply Lemma 2.3. O

3. The permutation group

In this section we show that the integrals (2.1), (2.2), (2.3) and (2.4) for z > 1 can
be equipped with an algebraic structure, though not so rich as in the case z = 1
treated in [4]. Our aim is to construct a permutation group acting on 4, j, k, [, m
together with the integers [ +m — j, m+h—k, h+ j—I, j+k—m occurring in (2.9),
similarly to the construction in [4], and to derive the corresponding transformation
formulae for the integrals (2.1), (2.2), (2.3) and (2.4).

Let

S=1hjkl,ml+m—jm+h—k,h+j—1 j+k—m}. (3.1
We recall from Section 2 that the permutation A given by (2.8) acts on the set S as
follows:

A=GmkDl+m—j j+k—m(m+h—k h+j—1). (3.2)

We now use the hypergeometric integral transformation, based on Euler’s inte-
gral representation of the hypergeometric function. It is well known that for any
a, b, ¢ € C satisfying Rec > max{Rea, Reb} and min{Rea, Reb} > 0, and
forany t € C\ [1, +00), we have
1 1
/x”JG—xY%_%u__F@ﬂYc—m x4 (1 — x)ema-!
(1 —xt) - I(@TI'(c—a) (1 —xt)b
0

dx, (3.3)
0

where I” denotes the Euler gamma-function (see [4], formula (3.2)). Hence, choos-
inga=j+k—-m+1,b=j+1,c=h+j+2,andt = (y — 1)/(yz) for
0<y<1<z weget

1 .
X (1 —x)"

/ 1 — y\Jjtk—m+l dx

vz

h!j! : xj-i-k—m(l _ x)m-i-h—k
_ . —__dx, (34)
—k)! —m)! 1— +1
m+h—-Kk!'(+k m).0 <1+x )’)J

vz
provided m +h —k >0 and j+k—m > 0.
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Multiplying (3.4) by

—l—m yk(l - y)l

and integrating in 0 < y < 1 we easily obtain
0 .
19, j, k,1,m)

h! j! o .
S ARGtk e Rk kmmom L. G5)

As for Iz(l)(h, J>k,1,m), let y denote a fixed contour in C enclosing the interval
[(1 =2)~!, 0] on the real axis. As in the proof of Lemma 2.6 we have

) . —l—m 1 yk(l - )’)I 1 xj(l - x)h
IV (h, j k. l,m)=z —
(1 + x

27i (yz)j-l-k—m-‘rl 1 — y)j-‘rk—m-H dx,
Y vz
and using again (3.4) for y € y we get

I, j,k,1,m)

h!j! ,
= (m+h_k)'(j+k_m)‘Iz(l)(m+h—k, jH+k—m, m 1, k). (3.6

By (2.4), (3.5) and (3.6) we have

IZ(h?jvkalam)
L I h—k, j+k I, k). (3.7
=t h—kl( k= Rk AR mm LR G)

We now transform IZ(Z) (h, j, k,l,m). Similarly to (2.24) we have
1P (h, j, k,1,m)

_ w1 ?g (L 7g (1 =2y - y) )
= 27i 2mi (x(1 — y) + yg)/thk—m+1 dr)dy. 38

[y—1l=0 ‘ vz

We require the analogue of (3.3) for contour integrals and for integer exponents,
which can be elementarily proved.
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Lemma 3.1. Let a, b, ¢ be integers satisfying ¢ > max{a, b} and min{a, b} > 0.
Lett € C, t # 0. Then, for any o > 0,

1 f xb—l(l _x)c—b—l

2mi (1 — xr)¢
[x—1/t|=0

_(b=Dlc—b-D1! 1 yg x4 (1 — x)ema-!
T (@-Dlc—a—1! 27 (1—x0)®

[x—1/t|=0

Proof. Using Cauchy’s integral formula we have

1 f xh—l(l_x)c—b—l < l)a 1 f xb—l(l_x)c—b—l
— dx = (- -) — dx
2mi (1—x1)@ t) 2mi (x—1/1)4

[x—1/t|l=0 lx—1/t|=0

N 1 gt o
= (— ;) @Dl |:dxa1 (xb 1(1 —X) b 1):|
x=1/t

N\ <&! c—b—1\(b—1+r\ 1
) D S G [ =
t) ) r a—1 t

{0, a
b=l b+
=(_1)a+b CZ (c—b—l)(b—l—i—r)(_l) r.
r=max{0, a—b} r a—1 t
If we set r = a — b + s, the last sum becomes

C_ail c—b—1\/a—1+s _1““
a—b+s a—1 t

s=max{0, b—a}

L b=Dlc—b—1! K" fe—a—1\f{a—1+5\[ 1\"
T @—-Dlc—a—1) Z ( s >( b—1)(_?> ‘

s=max{0, b—a}

Since the factor (—1)4*? is symmetric in a and b, the lemma follows. ]
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From Lemma 3.1 we obtain, it m +h —k >0 and j+k—m >0,

1 /(1 —x)h

27i 1 — y\Jj+thk—m+1

2mi ; (1+x )’>
=55 = iz

h! j! 1 % xj—i—k—m(l _ x)m+h—k
N — )\ (j+k—m)! 27i 1= y\J+l
m+h—-—K'(G+k—m)! 2mi ! <1+x )7)
= v2

Multiplying by z7/=" y¥(1 — y)!/(yz)/**="*+! and integrating over |y — 1| = o
yields, by (3.8),

2 .
12, j,k,1,m)
m+h—k!'(+k—m)! '~

m+4+h—k, j+k—m,m, 1, k). (3.9)

In order to simplify our notation, we denote by
JZ(hﬁ ja k7 l7 m)

any one of the integrals (2.1), (2.2), (2.3) or (2.4). By (2.6), (2.7), (3.5), (3.6), (3.7)
and (3.9) we have the transformation formulae

S, jklm) = J(h,m, 1k, j) (3.10)

and,if m+h—k>0and j+k—m=>0,

J.(h, j, k, 1, m)
At !
S mAh =) (j+k—m)

' Jm+h—k, j+k—m,m, 1, k). (3.11)

From now on, we assume the non-negative integers h, j, k, [, m to be chosen so
that I +m — j, m+h—k, h+ j—1, j+k — m are also non-negative. The
transformation formulae (3.10) and (3.11) can be written as

L, j ok m)  J(h,m, Lk, j)
Mjtk\m!  h'mlilk! ]!

(3.12)

and

Jo(h, j k,l,m)  J.(m+h—k, jt+k—m, m, I k)
RUjUKITIm! (m+h =) +k—m)!m!lk!

(3.13)
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respectively. Let ¢ be the hypergeometric integral transformation acting on the
quotient

Jz(h,.J,k,l,m) (3.14)
h! jlEN ! m!

as is given by (3.13). It is natural to associate with ¢ the permutation ¢ mapping 4,

J, k, 1, m respectively tom + h — k, j + k — m, m, [, k, and extended by linearity

to any linear combination of £, j, k, [, m with integer coefficients. Thus the action

of the permutation ¢ on the set S defined by (3.1) is the following:

o=t m+h—-k)(j j+k—m)k m). (3.15)

Similarly, the transformation A defined by (2.5) acts on the quotient (3.14) as is
given by (3.12), and we associate with A the permutation A whose action on § is
given by (3.2).

We remark that both A and ¢ act identically on the integer k + [ — h, which
occurs in the definition (2.9) of 8. Hence k + [ — h can be excluded from the
present discussion. Accordingly the sign of k + [ — & is immaterial, and we allow
k+1—hZ0.

As in [4] pp. 38-39, if we apply to (3.14) any product x of transformations
each of which is either ¢ or A, we plainly have

‘]Z(hvj’kvl’m) _ JZ(X(h)vX(])7X(k)7X(l)’X(m))
RUGUR D m!  x (! x G x ) x (D! x (m)!

, (3.16)

where x is the corresponding product of permutations ¢ or A in reverse order. Thus
the value of the quotient (3.14) is invariant under the action of the permutation

group
P = (p,A)

generated by A and ¢.

We have seen that @ acts on the set S. Similarly to the papers [4] and [5],
however, the structure of the group @ is best analysed by considering the actions of
A and ¢ on the integers

h+j, j+k k+1, I+m, m+h,

which, for brevity, we denote by uj, us, u3, us, us respectively. From (3.2) and
(3.15) we see that the actions of A and ¢ on such integers are the following:

A= (uy us)(uz ug),

3.17
@ = (u3 uyg). ©17)
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Moreover, if a permutation x € @ = (@, A) acts identically on uy, ..., us we get
by linearity
2x(h) = x2h) = x(u1 —uz +u3 — us + us)
= X (u1) — x(u2) + x (u3) — x (us) + x (us)

= uy —uy+u3z—uqs+us = 2h,

and similarly 2x (j) = 2j, etc. Hence x acts identically on &, j, k, [, m, and we
infer that x is the identity. This shows that the permutation group @ acts faithfully

on {uj, ..., us}, and in particular @ is isomorphic to a subgroup of the symmetric
group Gs.
It is plain from (3.17) that @ = (g, A) is intransitive over the set {u1, ..., us},

since each of the two subsets {u1, us} and {u>, u3z, us} is mapped onto itself by both
A and ¢. Also, we easily see that pApAe = (uy u4) whence QAQAPA = Aprplp =
(u1 us), and therefore

(ur us), (uz ug), (u3 usg) € P.
Thus @ is isomorphic to the product of the symmetric groups of permutations of
{ur, us} and of {uy, uz, us}:

d = 6, x Gs,

whence its order is |@| = 2! - 3! = 12.
Clearly @ is intransitive also over the set S, since the cardinality |S| = 9 does
not divide the order |@| = 12. In fact, each of the two subsets {h, m + h — k, h +
j—1}and {j, k, I, m, [ +m — j, j+k—m}is mapped onto itself by both A and ¢.
With any permutation x € @ we associate the quotient

h! jlEkV Y m!
XMW x (D x ) x D x (m)!

resulting from the transformation formula (3.16) for J,(h, j, k, I, m). Plainly if
X, x' € @ lie in the same left coset of the subgroup

(3.18)

A=)

of order 2in @, i.e., if x = x'x” where x” is either the identity or A, the quotient
(3.18) equals the analogous quotient with x’ in place of x (for any permutations
X1 and x,, we denote by xx, the permutation obtained by applying first x, and
then x ;). Therefore, with each left coset of A in @ we associate the corresponding
quotient (3.18), where x is either permutation lying in the coset considered.

For any x € @, we simplify the quotient (3.18) by removing the factorials of
the integers appearing both in the numerator and in the denominator, i.e., lying in

{h, j. k. Lmy O {x (R), x (), x (k), x (1), x (m)}
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independently of the numerical values assigned to A, j, k, [, m. If, after simplifying
(3.18), the resulting quotient has v factorials in the numerator and v in the denomi-
nator, we say that x is a permutation of level v, or that the left coset x A is of level
v. For instance, from the transformation formulae (3.10) and (3.11) we see that A
and ¢ are permutations of levels 0 and 2, respectively.

Since |@| = 12 and |A| = 2, there are 6 left cosets of A in @, as follows:

1 coset of level 0,
3 cosets of level 2,
2 cosets of level 3.

The coset of level 0 is the subgroup A itself. For each of the remaining 5 left cosets
of A in @ we choose one of the two permutations lying in the coset, and write below
the corresponding transformation formula (3.16) for J,(h, j, k, [, m), together with
the permutation chosen.

‘]Z(h’7j7kvlvm)
ht ! .
=t h—llG Ak —mt TRk gk LR ©)
him! . o
TGt ontam gy P b D 0)
kil . o
= Uam oGk —my 2 S m = A k= m m) - (@Aerg)

h! jlk!
h+j—=D'A+m—D'(j+k—m)!
XJ(h+j—1L1+m—j, j+k—m,m 1) (pAp)
h' 1 m!
m+h—Ik)(G+k—m!I+m—j)!
xJm+h—k, j+k—m,l+m—j, j k) (Aprp)

4. The arithmetical correction

As we remarked, the integers H, K, «, 8, § defined by (2.9) are invariant under
the action of the permutation A given by (3.2), and it is easy to see that «, 8, § are
also invariant under the action of the permutation ¢ in (3.15), while H and K are
not. However, in order to apply the group-theoretic arguments developed in Section
3 we require, in place of H and K, suitable integers M and N invariant under the
action of the whole permutation group @ = (g, A). Thus we define

M = max S, 4.1)
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where S is the set (3.1). Also, for the successive maxima in a sequence we use the

notation max, max/, ...: if A = (ay, ..., ay) is any finite sequence of real numbers
and iy, ..., iy isareorderingof 1, ..., n such that a;; > a;, > ... > a;,, we set
max A = a;,, max' A = a;,.

Then we define
N=max{max'(h,m +h —k,h+j—10), j,k,l,m, [ +m—j, j+k—m}. (4.2)

In other words, N is the maximum in the sequence of the eight integers obtained by
omitting from S the maximum of &, m +h — k, h + j — [ (with only one omission,
even if (h, m + h — k, h + j — [) contains more than one maximal element).

The integers M and N are invariant under the action of the group @ since, as
we remarked in Section 3, @ is intransitive over S and maps the subset {h, m +
h—k, h+ j — 1} onto itself. Also, H and K defined in (2.9) plainly do not exceed,
respectively, M and N defined by (4.1) and (4.2). Therefore Theorem 2.1 holds
a fortiori with M in place of H and N in place of K. Moreover, by the invariance
of M, N, «, B, § under the action of the whole group @ it follows that, for any
X € @, Theorem 2.1 holds with &, j, k, [, m respectively replaced by x (h), x (j),
x(k), x(1), x(m) and with polynomials Py (z), Qy(z), Ry(z) € Z[z] depending
on the left coset x A, but with M and N in place of H and K respectively and with
o, B, 8 all independent of .

For h, j, k,I,m fixedandn = 1,2, ..., we replace the tuple (&, j, k, [, m) in
Theorem 2.1 by (hn, jn, kn,In, mn). Hence M, N, «, B, § are replaced by Mn,
Nn, an, fn, én respectively. Also, we choose the number z > 1 to be rational. We
denote

z=s/r with r,seZ, 1 <r <s.
Then Theorem 2.1 yields in particular

dyn dyn(s/r)*" (s /r — 1)ﬁ”1s/r(hn, jn, kn,Iln, mn)
= Pn(s/r)—Qn(s/r)Liz(r/s) (43)

dptn dnn(s/7)" (s/r — DP IS (hn, jn, kn, In,mn) = Q,(s/r),

s/r

where P, and Q, are polynomials with integer coefficients of degrees not exceeding
8n. It follows that %" P, (s /r) and r*" Q,, (s /r) are integers. Thus, multiplying (4.3)
by %" we obtain

dyin dyn s (s — r)P" r(a_o‘_ﬁ)"ls/r(hn, jn, kn,ln, mn)
— A, — By Lia(r/s) @b

dyrn dyn s9" (s — r)Pn r(‘S*“*ﬁ>”IS(/22(hn, jn,kn,ln,mn) = B,

with A,, B, € Z.
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At the end of Section 3 we have defined the level of a permutation x € @ (or of
a left coset x A). Here we choose any permutation of level 2, e.g., the permutation
¢ in (3.15). By the invariance of M, N, «, B, § under the action of @ we have,
similarly to (4.4),

dMn dNn San(s _ r)ﬁn r(S—a—ﬂ)n
X I/ ((m+h —kn, (j +k —m)n,mn,In, kn) = A, — B, Lis(r/s)

dyin dnn gan (S _ r),Bn r(S—a—,B)n

X 1;/22((m +h—kn, (j+k—mn,mn,ln, kn) = B,

with A, B, € 7Z. Therefore, if we apply in (4.4) the transformation formula at the
end of Section 3 corresponding to ¢, we obtain

T (hn)! (jm)! o
n = BaLia()) = (o s (A = B Lin(r/5)
(hn)! (jm)! ,

= B
((m+h—lmW'((j+k—mn)! "

n ’

whence, substituting the second equation in the first,

(m+h—km!((j+k—mn)! A, = (hn)! (jn)! A,

4.5)
((m+h—kn)! ((j+k—m)n)! B, = (hn)! (jn)! B,

For any prime p, let
{p = vp(((m +h—kn)!((j+k— m)n)!),

np = vp((hm)! (jm)Y),

where v, (W) denotes the exponential p-adic valuation of the integer W > 0, i.e.,
the exponent of p in the factorization of W into powers of distinct primes. Since
v,(W!) =[W/p] for p > /W, where [x] denotes the integral part of x, from the
definition (4.1) we infer that for any prime p > +/Mn we have

¢ = |:(m+h—k)n}+|:(j+k—m)n],
p p
hn jn:|
" [p} [p

w = {n/p} = n/p—In/pl

Let
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be the fractional part of n/p. Following the arguments in [4] pp. 44-45, we get
1= —np =lm+h—-bel+[(j+k—-mo]—[ho] - [jo] < 1.

Thus, removing the primes p > +/Mn dividing the factorials on both sides of each
equation (4.5), we conclude as in [4] p. 45 that any prime p > +/Mn for which

[((m+h—Kol+[(+k —mo] < [ho] + [jo] (4.6)

divides A, and B,,.

A similar discussion applies to the transformation formulae, listed at the end of
Section 3, corresponding to the permutations A and gA@Ae, which are also of level
2. We now consider a permutation in @ of level 3, e.g., pAp. Again by Theorem
2.1 we obtain

dpn dnn " (s — r)ﬁn p@—a=pn
xIg/r((h+j—Dn, (I +m— j)n, (j+k—m)n,mn,in)=A, — B, Lix(r/s)

dyn dnn s (s — r)ﬁ" F(@—a=p)n

<IN ((h+ j—Dn, (L +m = j)n, (j +k —m)n,mn, In) = B

with A/, B)! € 7. Hence, applying in (4.4) the transformation formula correspond-
ing to @Ag and arguing as above, we get

((h+j—=Dm)((l+m—jn)! (j+k—m)n)! A,
= (hn)! (jn)! (kn)! A}
4.7)
((h+j—=Dm)((l+m—jn)(j+k—m)n)! B,
= (hn)! (jn)! (kn)! B)..

Let, for any prime p,
O =v,((h+ j =D (A +m — Hm) (( +k —m)n)!),
£, = vp((hn)! (jm)! (kn)!).

Then, as in [4] p. 46, for p > V' Mn we have

Up —&p=[lh+ j—Dol+ [(+m— o]+ [(jt+tk—m)w] — [ho] — [jo] — [ko]
=Vi+ Va,

with

Vi=[h+j—-Dol+[(+m— jo] - [ho] - [mo],
Vo = [mo]l +[(j +k —mo] — [jo] — [ko]
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satisfying —1 < V; < 1 and —1 < V, < 1. Therefore -2 < ¢, —§, <
2. Removing the primes p > +/Mn dividing the factorials on both sides of each
equation (4.7), we conclude as in [4] pp. 46-47 that any prime p > +/Mn for which

[(h+j—Dol+ [ +m—jo]l+[(j+k—m)o] < [ho]+ [jo] + [ko] (4.8)
divides A, and By, and any prime p > ~/ Mn for which

[((h+j—Dol+[0+m— jo] < [ho] + [mo]

4.9)
[mo] +[(j +k —m)w] < [jo] + [ko]

is such that p2 divides A, and B,,.
From (4.6), (4.8), (4.9), and the similar inequalities arising from the other per-
mutations in @ of levels 2 and 3, we obtain the following

Lemma 4.1. Let o = {n/p}. Any prime p > /Mn satisfying at least one of the
Sfollowing five inequalities:

[(m+h—ko]+[(j +k—m)w] < [ho] + [jol,

[(h+ j—Do]+[I+m—j)w] < [ho] + [mw],

[l4+m—jol+[(j +k—m)w] < [ko] + [lo], 4.10)
[((h+j—Dol+ [ +m—jo]l+[(j +k—mow] < [ho] + [jo] + [ko],

[(m +h—ko] +[(j + k—m)w] + [ + m— j)o] < [ho] + [lo] + [mo]

divides the integers A,, and B,, in (4.4).
Any prime p > ~/ Mn satisfying at least one of the following two conditions:

[+ —Do]l+ [ +m— o] < [ho] + [mw] and
[mo] +[(j +k —m)w] < [jo] + [ko],

@.11)

[(m+h—kw]l+[(j+k—mo] < [ho] + [jo] and
ol+[l+m— o] < [lo]+ [m]

is such that p2 divides A, and B,,.

Let £2 be the set of real numbers w € [0, 1) satisfying at least one of the five
inequalities (4.10), and let £2” be the set of real numbers w € [0, 1) satisfying at
least one of the two conditions (4.11). Since each of (4.11) implies one of the last
two inequalities (4.10), we have 2’ C £2. Moreover, let

A= 1 po A= [ »p =12
p>~Mn p>~Mn
{n/p}es2 {n/p)es2’
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where p denotes a prime. From Lemma 4.1 we get A, A} | A, and A, A) | B,.
Thus, if we define

A , _ B
an - A A/ k) n — A A/ k)
n n=n
we have a,, b, € Z. Denoting
dyn d
Dn _ YMn ]/Vn ’
A A

if we divide (4.4) by A, A}, we obtain

D, s¥(s — r)P" r(‘s’“’ﬂ)”ls/r(hn, jn, kn,Iln, mn)=a, — b, Li2(r/s)
5 (4.12)
D, s% (s — r)Pn r(é—a—ﬁ)nls(/z(hn’ jn, kn,In, mn)=b,.

Since, by the prime number theorem, dys, dy, = exp((M + N)n +o0(n)), we have

1 1 1
lim —logD, = M+ N — lim —logA, — lim —logA/,
n—-oon n—-oon

n—oon

and it is well known that

n—oon

1 1
lim —log A, =/d1ﬁ(x), lim —log A), =/d1/f(x),
n—o0o n
2 2

where ¥ (x) = I'’(x)/I(x) is the logarithmic derivative of the Euler gamma-
function (see [4] p. 51, or [7] pp. 463-464 for a full proof). Hence

nlirgoélogDn =M+N — /dlﬁ(x) +[d¢(x) . (4.13)
2 '

We remark that in order to get a good asymptotic behaviour, as n — o0, of
Is/r(hn, jn, kn,In, mn) and I‘Y(/z;(hn, jn,kn,In, mn) in (4.12), a natural choice
of the parameters would be j = k = | = m. However, with this choice the
inequalities (4.10) become [hw] + [jo] < [ho] + [jol, 2[jw] < 2[jw] and
[hw] + 2[jw] < [hw] + 2[jw], and therefore are all false, whence £2 = &. Thus
the arithmetical correction

/dw(x) +/d1ﬁ(x) (4.14)

2 '

in (4.13) vanishes for j = k = [ = m. As a consequence, the qualitative and
quantitative irrationality results for Liy(r/s) that can be obtained with the choice
j = k =1 = m are worse than those given by suitable choices of the parameters
yielding a positive arithmetical correction (4.14).
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5. The irrationality measure of Liy(r/s)

We henceforth assume the integers #, j, k, [, m to be > 0, and such that [ +m — j,
m+h—k, h+j—1, j+k—m are also > 0. We seek the stationary points, with
respect to x, y, of the function

(1= x)tyk(1 = y)!

S2(x,y) 1= (1 _y)+yZ)j+k_m

(z> 1) (5.1)

for which x(1 — x)y(1 — y) # 0. Since

L af; d o h (J+k—m)(1—y)
i A

f. ox 9x x l—x x(I1—=y)+yz
1 af; 0 k l (J4+k—m)(z—x)
=5 = logfy = —— -

fz 9y 9y y I-—y x(1—=y)+yz

we seek the solutions of the system

1 (j h )_ j+k—m

1—y x 1—x  x(1—y)+yz
(5.2)
1 ( k [ ) _ Jtk—m
z—x Ny l—y/  x(l—y)+yz’
Equating the left sides of (5.2) and then solving with respect to y yields
kx(1 —x)
y (5.3)

T k(=) +G—0G =+ x)
If we substitute this into the first of (5.2), by a straightforward computation we
obtain the cubic equation in x:
Ux):=x(m+h—kx+k—m)((h+j—Dx+1-j)
—z(th+ Hx = j)((h+m)x —m) =0. (5.4)
We have
U@)=—jmz < 0,
' R2jl(j +k —
U( J ,): J(]+.3 m
h+j (h+J) (5.5)
U(l)=—h*z—1) < 0,

Uzx) = —2(z=1)(@=DUm + h—k) + k(h + j)) + h(k +1)) <0,
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and the leading coefficient of U (x) is (m +h —k)(h+ j —1) > 0. Hence U (x) has
three real roots xg, x1, X3 satisfying

0<xo<ﬁj<x1<l<z<x2. (5.6)
If we set

kx, (1 —xy)
Tk Dx(—x) + @ =2 — B+ j)x)

Yv v=0,1,2), (5.7

by (5.3) we have the three stationary points (xo, yo), (x1, y1), (x2, y2) of the func-

tion f;(x, y), satisfying df,/dx = df;/dy =0, f, #O.
From (5.6) we have xo > 0,1 —x9 > 0,z —x9 > Oand j — (h + j)xg > O.
Therefore (5.7) yields

0<y<1. (5.8)

In order to get further information on y; and y», it is convenient to go back to the
system (5.2), and solve the second equation with respect to x. We get

UG l+m—-j)y+j—m
1=y k=(+m—j)y

(5.9)

Substituting this into the first of (5.2), we easily obtain the cubic equation in y:
V) i=G@=Dy(l+m—j)y—h—m)(l+m—j)y+j—m)
+(+m—j)k+1—h)y? (5.10)
+ (hm — j) —mk +1) —k( +m — j))y +km = 0.

We have V(0) =km > 0, V(1) = —I(h+ j — )z < 0, and the leading coefficient
of V(iy)is(z— DU +m — j)2 > 0. Hence V (y) has three real roots, one of which
is < 0, one lies in (0, 1), and one is > 1, and such roots must coincide with the
values (5.7). Thus (5.9) yields

wz (+m—jyw+j—m

Xy = : v=0,1,2), (5.11)
T l—yy k=0 4+m— )y

with the same x,,, y, as in (5.6) and (5.7) satisfying U(x,) = V(y,) = 0. From
(5.11) we obtain

o UAm=ytj—m
v

xv_Z_ (k+l)YV_k

, (5.12)

whence

w Gk -myu—D)
Xy — 2 (k+l)yv_k ’

Y — (5.13)
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We know from (5.8) that yg is the root of V (y) lying in (0, 1). If we temporarily
denote by y, the root of V (y) satisfying y, > 1| and by x, the corresponding root
of U(x) given by (5.11) for y, = y,, we have

I4+m—j)ys+j—m>1>0 and (k+Dy,—k>1>0,

whence, by (5.12),

Xy

> 0. (5.14)
Xy — X

By (5.6) we have x, > 0. Thus (5.14) yields x, > z whence, again by (5.6),
Xy = X2, Vx = y2. From (5.13) we obtain

X2
y2 — > 0,
X2 — 2
whence
X2
v > > 1.
X2 —Z

Finally, the remaining root y; of V(y) corresponding to x; must satisfy y; < 0.
From (5.13) we get

X1

yi— <0,

X1 —2z2
whence, by (5.6),

X1
< 0.

V1<
X1 —2z2

We conclude that the three stationary points (xg, yo), (X1, ¥1), (x2, y2) of the func-
tion (5.1), for which x(1 — x)y(1 — y) # 0, satisfy (5.6) and

<0<y<l1l< < y. (5.15)

X1 — 2 X2 —Z

Y1 <

By our assumptions on 4, j, k, [, m, the function f;(x, y) defined by (5.1) is clearly
continuous on the compact unit square {0 < x < 1, 0 < y < 1}, vanishes on the
boundary and is positive inside. Hence the maximum of f(x, y) in the unit square
is attained at the stationary point (xg, yo). As in Section 4, we now replace i, j, k, [,
m by hn, jn, kn, In, mn respectively, where h, j, k,[, m are fixedandn = 1,2, ....
Then f.(x, y) is replaced by f;(x, ¥)". The integral (2.1) becomes

11
IZ(O)(hn,jn,kn,ln,mn) = z_(l+m)"/ Sfo(x, )"
00

dx dy
x(I—y)+yz’



THE PERMUTATION GROUP METHOD FOR THE DILOGARITHM 425

and by the simplest form of Laplace’s asymptotic method we plainly have

1
lim —log I (hn, jn, kn,In,mn) = —(l +m)logz + log f:(xo, y0). (5.16)
n—oon
We now evaluate
1
limsup — log |IZ(”)(hn, jn, kn, ln,mn)| v=1,2).
n—oo N

Let x be fixed, with 0 < x < 1. On the circumference |y — x/(x — z)| = o, the
function

IyF 11—y
Ix(1 — y) + yz|/Hhk=—m+1

equals

IyE 11—y
(Q(Z _ x))j+k—m+1

and hence is maximal at the point y = x/(x — z) — 0. Therefore

1 yea -y q
2mi ?g (1 — y) + yo)i teomtT & '

|- |=e
X k X l
1 (Q+—) <1+Q+ )
Z—X Z—X
z—x (0(z — x))Jtk=m '

Since the radius p is arbitrary, we can take the minimum of the right side of (5.17)
when o > 0 varies. Such a minimum exists, because k +/ > j + k — m since
[+m—j>0. Leto+ x/(z—x) =v,whence v > x/(z —x) and p(z — x) =
v(z—x)—x = |x(1 +v) —vz|. Since 1/(z — x) < 1/(z — 1), we see that the left
side of (5.17) does not exceed

=

(5.17)

1 , VR (1 + v)!
min A .
z—1 v>z%x |x(1+U)_UZ|]+k_m

Hence

/

1 X (1 =)k —y)!
<% % (x(1 —y) + yz)ith=m+l dy>dx ’

[y |=e

k 1
. 1
max x/(1 —x)" min v+

- . (518
— z—1 o0=x=1 T Ix(1 4 v) — vz|ithk—m (5.18)
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With the change of variable v = —y the right side of (5.18) becomes

I .
max min X, .
o7 e, min (£ )|

“¥—z
By (5.6) and (5.15),

max min |f;(x,y)]
0<x<l y<_X_
X—Z

is attained at the saddle point (x1, y1). It follows that

e 21,y

I (h, jok,lm)| < z R

Therefore, again replacing A, j, k, [, m by hn, jn, kn, In, mn,
%log|lz(1)(hn, jn,kn,ln,mn)‘
< —(I+m)logz +log|f:(x1, y)| — %IOg(z —D.
We conclude that

1
limsup —log |IZ(1)(hn,jn,kn,ln,mn)|
n

n—oo

< —(+m)logz +log|fz(x1, yD)|. (5.19)

We now fix a point x such that |x — z| = o. For |y —x/(x — z)| = 0 we have

Il—yli‘y— . ‘+‘ - —1‘:Q+£
xX—z X —z o
and
z
l=1+ly-1Il=l+e+—.
Consequently
| Z\k z\!
11—y <(+Q+;) (‘”E).
|x(1_y)+y2|j+k—m+1 - (Qo-)j+k—ln+1

It follows that

| Z\k z\!
i yg (- <1(+9+;) (“;)_
2mi (x(1 = y) 4 yz)d th=m+1 T o (0o )i Fk=m

y—yz =
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Since z > 1, on the circumference |[x — z| = o we plainly have |x| < z + ¢ and
|1 — x| <z+4 o — 1. Therefore

b ?§ e % -0t
2mi (2711‘ (x(l—y)+yz)j+k—m+1 y> X

|x_Z|=U ‘y_ix =0

(z +0) (z4+0 - 1)'(z+0 +00) (z + 00)
O~k+l (QO-)J+/< m

(5.20)

for any o, 0 > 0. Hence, denoting 0 = u and oo = v, the left side of (5.20) does
not exceed

GH+uwlGz+u—D"z+u+v)E+ v)’
u v>0 uk+l yj+k—m

(5.21)

The minimum exists since the above function of u and v is easily seen to be large
outside a compact subset of {# > 0, v > 0}.

With the change of variables u = x — z and v = —x(1 — y) — yz, (5.21)
becomes

(1= )y — 2k — )l (x — 2)!

min . = min X, ).
i (x — )k (x(1 = y) 4 yz)ithk—m x> | fz(x, ¥
Y>x—= o

By (5.6) and (5.15) this minimum is attained at (x3, y»). Therefore
1P (h, jok Lm)| < 277" | £, y),

whence

limsup — 10g|1(2)(hn jn,kn,ln, mn)|

n—oo

< —(+m)logz +log|f:(x2, y2)|. (5.22)
As in Section 4, we now take z = s/r with r,s € Z, 1 < r < s. In order to

get from the above estimates an irrationality measure of Li>(r/s), we assume that
h, j, k, I, m are chosen so that at the stationary points (xq, yo) and (xp, y;) of

fz(x,y) = fs/r(x,y) we have
Ssyr(x0, yo) > | fsyr(x1, y)I- (5.23)

We apply to (4.12) the following standard lemma (see [4], Lemma 4.3):
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Lemma 5.1. Let L € R, and let (ay), (b,) be sequences of integers satisfying

1
lim —logla, —b,L| =

n—-oon

and

1
lim sup —10g|b | < B

n—00
for some positive numbers A and B. Then L ¢ Q, and
wy =24,
A
From the first equation in (4.12) and the definition (2.4) we have

|an — b, Liz(r/s)| = D, s (s — r)P" r(‘s_a_ﬁ)"l(o)(hn jn, kn,In, mn)

S/r(hn jn, kn,ln, mn)
1 —log(s/r) ) : . (5.24)
1, (hn, jn,kn,In, mn)

s/r
By (5.16), (5.19) and the assumption (5.23) we get

()
Is/r

im —
=00 I .(hn, jn,kn,ln, mn)

(hn, jn, kn,ln, mn)

Therefore, applying (4.13) and (5.16) in (5.24),

nlggollog|an—b Lia(r/s)| = M+ N — (/dw(X) +/dw<x))
2 Q'
+(a—Il—m)logs+ @B —a—B+1+m)logr (5.25)

+ Blog(s — r) + log f5/r(x0, y0)-

Similarly, from the second equation in (4.12), from (4.13) and (5.22) we obtain

lim sup —loglb | <M+ N — (/dl,b(x) —I—/dtﬁ(x))
Q

n—00 2
+(a—1l—m)logs+ (@ —a—B+1+m)logr (5.26)
+ Blog(s —r) +log| fy/r (x2, y2)I.

By Lemma 2.8 we have, in any case,

S—a—p+Il+m=m+h—k. (5.27)
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For brevity, let

co=—log fs/r(x0, y0), cr=—log|fs/r(x1, yD|, ca=log|fs;r(x2, y2)|, (5.28)

so that the assumption (5.23) is ¢g < ¢y, and let

c3 = M+N—</dxp(x) +/d1/r(x)>
2

Q/
4+ (a@—1—m)logs+ (m+h—k)logr + Blog(s —r). (5.29)

From Lemma 5.1 and from (5.25), (5.26) and (5.27) we obtain the following theo-
rem.

Theorem 5.2. With the above notation and assumptions, if c3 < ¢y < c| then
Liy(r/s) ¢ Q and
)+ c3 co+ 2

+1=

w(Liz(r/s)) = :
co — €3 co — €3

We remark that, owing to (5.27), the irrationality measure of Li(r/s) in Theo-
rem 5.2 is independent of 8, i.e. of an upper bound for %max{deg P,,deg O0,},
where P, and Q,, are the polynomials in (4.3).

6. Numerical results

In this section we give some applications of Theorem 5.2. For this purpose, we
first require upper and lower bounds for the roots of the polynomials U (x) and
V (y) improving upon (5.6) and (5.15) when z is large. We see in (5.4) that U (x) is
invariant under the action of the permutation A given by (3.2). Therefore, from the
value of U(j/(h + j)) in (5.5) we get, by applying A,

( m )_hzkm(l-i-m—j)
h4+m/ (h +m)3

Hence, by (5.6), both j/(h + j) and m/(h 4+ m) lie between the roots xp and x; of
U(x).

From now on, we assume j 7# m. Then without loss of generality we may
restrict our discussion to the case

i<m, 6.1)

for otherwise we apply the permutation A which interchanges j and m. By (6.1) we
have
j m

- < .
h+j h+m
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Since U(j/(h + j)) and U(m/(h + m)) are independent of z, an easy argument
involving U’ (x) and U” (x) yields

<ﬁ%—m:0mm (z — +00) 6.2)

and
m

Using the leading coefficient and the constant term of U (x), for the third root x, of
U (x) we get, by (6.2) and (6.3),

B jmz B (h+ j)(h + m)
C m+h—k(h+j—Dxox;  (m+h—kh+j—1

X2 Z+ 0(1)-

On the other hand, a straightforward computation shows that, for any z > 1,

( (h+ j)(h+m) )
U - z|) > 0.
m4+h—-kth+j-—1

Therefore, by (5.6),

(h + j)(h +m)
mth—kyh+j—1)°

—x2 = O(1) (z = 400). (6.4)

A similar elementary discussion gives asymptotic estimates for the roots of the poly-
nomial V (y) defined in (5.10). Since

. ik —
V( m J.>=J(J+ ™ o
[+m—j l+m—j
and
h h h—kyh+j—1
V( —I—m_):_(m—l— )( -.FJ )<0
[+m—j [+m—j
are independent of z, and since
km
yir= - N 5
(z = DU +m—j)” yoy2
we easily obtain
m_ i
0 < 30— = 0(1/2). (6.5)

l+m—j
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Lmj — 0(1/2), (6.6)

0 _
= l4+m—

n km
YT mym = iz — 1)

0 <y = 0(1/z%), (6.7)
for z - +o0.

In turn, such estimates for the roots of U (x) and V (y) yield asymptotic formu-
lae for the quantities cg, ¢; and ¢, defined by (5.28) as z = s/r — +oo withr > 1
fixed. We have

co = — jlogxp — hlog(l — xo) — klog yo — I log(1 — yo)
+ (J +k —m)log(xo(1 — yo) + Yoz)

= (j+k—m)logz+ O(1), (6.8)
cy = — jlogx; —hlog(l —x1) — klog|yi| —log(l — y1)
+ (j +k—m)log |x1(1 = y1) + yiz|
= klogz + O(1), (6.9)

cy = jlogxy +hlog|l —x2| + klogys +1log|1 — ya|
— (j+k—m)log|x2(1 — y2) + yaz|

= (m+h—k)logz+ O(1). (6.10)
Finally, by (5.29) with s /r = z, r fixed and s — +o00,
c3=(+B—-1—m)logz+ O(1). (6.11)

From (6.8) and (6.9) we get
cp—co = (m— j)logz+ O(1),

whence, by (6.1), c; — c¢p > 0 for any sufficiently large z. Also, all the constants
implied by the O-symbols in the preceding asymptotic formulae can be explicitly
and easily computed. Therefore, by (6.8), (6.10), (6.11) and Theorem 5.2, we obtain
the following

Corollary 6.1. Let h, j, k, I, m > 0 be integers satisfyingl +m — j,m +h —k,
h+j—1Lj+k—m=>0, j <m,and

a+p < jrk+I, (6.12)

where o and B are defined by (2.9). For any fixed integer r > 1 there exist effec-
tively computable constants s = s1(r) > r and C = C(r) > 0 (both depending
also on h, j, k, I, m) such that for any integer s > s1 we have Lix(r/s) ¢ Q, with
h+j (1 C )

uLior/) < e (T s
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In the sequel we describe an effective algorithm, implicitly given in Corollary
6.1, which allows us to compute, for any integer r > 1, an admissible value for the
above constant s1(r), and an irrationality measure of Liy(r/s) depending on r but
not on s and valid for all integers s > s1(r). Naturally, for suitably fixed s (not
necessarily > s1(r)) the values of &, j, k, [, m used in the algorithm for the given
r can be modified, in order to improve the irrationality measure of Li(r/s) for the
special value of s chosen if s > s1(r), or to give a new irrationality measure of
Lir(r/s) if s < s1(r).

For any fixed r, the algorithm consists of the following three steps.

1. We choose integers &, j, k, [, m satisfying

h, j, k, I, m>0, (6.13)
l+m—j m+h—k, h+j—1, j+k—m=>0, (6.14)
j<m, (6.15)
k+1—h<0 (6.16)
whence 8 = 0, and
a=1+m, (6.17)

so that (6.12) holds. Also, by (5.29), (6.16) and (6.17),

3 = M+N—</d1ﬁ(x) +/dx//(x))+(m+h—k)logr
2

Q/

is a constant independent of s.

2. In view of the asymptotic formulae (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), using the
values h, j, k, I, m in Step 1 we compute constants &y, 1o, &1, 11, &2, 12 > 0
and z; > 1 such that for any z > z; we have

T
h+j z h+j’
m—j <y < m—j Lo
l+m—j 0 l+m—j z-1"

+ —,
h+m< <h+m z
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_ km _ - km
h+mm— -1 (h+mm—Ne—1+m)
(h+ j)th+m) — b < 1y < (h+ j)th+m) .
m+h—kh+j—-0 = " mth—kh+j-0"
h+m _ - h+m " 12
[+m—j Y2 I+m—j z—-1"

Next, using these upper and lower bounds in (6.8), (6.9) and (6.10), we compute
numerical approximations c;,, ¢; of co; ¢} of ¢1; ¢ of ¢, all depending on z,
such that for any z > z; we have

ca<cy<co<cy<cp<chand ¢ <cj, (6.18)

whence the assumptions of Theorem 5.2 hold, and such that

/ /7
o+ 6
co— €3

is a decreasing function of z. Thus, by Theorem 5.2, for any integer s > s1(r) :=
z1r we obtain Liy (r/s) ¢ Q, with

/ 1/
w(Lia(r/s)) < [ “©*a ] . (6.19)
o~ 3 l= 1

. We find integers so(r) and s2(r) with r < so(r) < s1(r) < s2(r), and for each
s =so(r), so(r)+1, ..., s2(r) we compute ex novo h, j, k,l, m depending on
s and satisfying (6.13) and (6.14), but not necessarily (6.15), (6.16) or (6.17),
so that, by a direct application of Theorem 5.2, for any integer s with so(r) <
s < s2(r) we obtain Lip (r/s) ¢ Q together with a good irrationality measure of
Liy(r/s), improving upon (6.19) for all s with s1(r) < s < s52(r).

Here we give some examples of the above algorithm, by explicitly treating the cases
r=1,2,3,4.

Case r = 1.

(Step 1) We take

h =40, j=20, k=25 1=15 m =31,

whence

c3 = 75.10604. ...
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(Step 2) We find
& =0.08, np=0.25, & =0.21, ny =1, & =0.55, n,=0.75,

with z; = 15, and we compute ¢, c(; c; ¢, satisfying (6.18) for z > 15, such
that

ch+cl
[ 0 2} — 16.13928. ...
CO_C3 z=15

Therefore, by (6.19), we get Lip(1/s) ¢ Q and
w(Liz(1/s)) < 16.13928...

for all integers s > 15.

(Step 3) We find so(1) = 6, and choose s(1) = 20. For s = 6 we take the
following values:

h=98, j=49, k=71, [ =34, m =091,

whence

l+m—j=76, m4+h—-—k=118, h+j—-1=113, j+k—m=29,
M=m+h—-—k=118, N=h+j—[1=113,

a=125 pg=1,

/dlﬁ(x) =42.71230..., /dlﬁ(x) =1.30962...,

2 il

c3 =198.24413 ...,

co=199.01324..., ¢; =199.20868 ..., ¢y =403.42718...,
so that, by Theorem 5.2, Li»(1/6) ¢ Q and
w(Liz(1/6)) < 783.29036....

For 6 < s < 20 we find the following values:
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s | h ] jlk] 1] m] n@iids)< |
6 98 [ 49| 71 | 34 | 91 783.29036 . ..
7 80 |40 | 58 | 29 | 72 69.68879 ...
8
9

106 | 53 | 72| 36 | 90 47.42514 ...
92 | 46 |59 | 32| 75 30.43779 ...
10 ] 74 | 37 |49 |24 | 59 24.04068 ...
11| 70 | 35|46 | 24 | 55 19.79502 ...
12 ] 40 | 20|25 | 15| 31 17.59873 ...
13 | 110 | 55 | 69 | 41 | 84 16.29461 ...
14 || 152 | 76 | 94 | 57 | 114 15.12865 ...
15 62 | 31|39 |23 | 46 14.39699 . ..
16 || 98 |49 | 60 | 38 | 72 13.70717 ...
17 || 66 | 33 | 40 | 26 | 48 13.17790 . ..
18 || 68 | 34 |42 |26 | 49 12.71390 ...
19 | 70 | 35|43 |27 | 50 12.30058 ...
20 72 |36 | 44|28 | 51 11.94109 ...

These values should be compared with Hata’s irrationality measures of Liy (1/s) for
7 <s < 18([3], p. 386, Table 1).

Case r = 2.

(Step 1) h=126, j=63, k=74, [ =52, m =86,

c3 =234.72812....

(Step2) £ =0.14, 19 =0.52, £ =0.28, 1 =2, & =0.58, 7y = 0.79,

71 =34,

c/ +C//
[ 0 2] = 74.21062....
3 1=34

o
Therefore, by (6.19), for any integer s > 69 we have Lir(2/s) ¢ Q and

n(Lizx(2/s)) < 74.21062....

(Step 3) We find s¢(2) = 51, and choose s>(2) = 71. Thus we get
Lir(2/s) ¢ Q for all integers s > 51,

and for 51 < s <71 we find the following values:
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s L h [ Jj k]I [m] plLia2s)< |
51| 126 | 63 | 74 | 52 | 86 || 374.80498 ...
53| 78 | 39 | 46 | 32 | 53 || 202.04426 ...
55| 34 | 17| 20 | 14 | 23 || 138.0429 ...
57| 98 | 49 | 58 | 40 | 66 || 105.94462 ...
59 || 118 | 59 | 69 | 49 | 79 || 84.43554 ...
61| 12 | 6] 7] 5| 8| 72.03610...
63 || 98 |49 | 57 | 41 | 65| 63.18738...
65| 62 | 31| 36| 26| 41| 57.13550...
67 || 50 | 25|29 | 21 | 33 || 52.513901...
69 | 38 | 19 | 22 | 16 | 25 || 48.52733...
71| 26 |13 | 15| 11 | 17| 44.65752...

Case r = 3.

For brevity, in this case and in the next we only give values for so(r), and values of
h, j, k, 1, m yielding an irrationality measure of Liy(r/s) for s = so(r).
For r = 3 we find 50(3) = 173, so that

Lir(3/s) ¢ Q for all integers s > 173,

and, taking
h=50, j=25 k=28, =22, m=3l,
we get
w(Liz(3/173)) < 8872.70681....
Case r = 4.

Here we find so(4) = 423, i.e.,
Lir(4/s) ¢ Q for all integers s > 423.
For
h=68, j=34, k=37, 1 =31, m=40
we get

w(Liz(4/423)) < 40596.78637....
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