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Quaternionic maps and minimal surfaces

JINGYI CHEN AND JIAYU L1

Abstract. Let (M, J% «a = 1,2,3) and (N, 7% «a = 1,2, 3) be hyperkihler
manifolds. We study stationary quaternionic maps between M and N. We first
show that if there are no holomorphic 2-spheres in the target then any sequence of
stationary quaternionic maps with bounded energy subconverges to a stationary
quaternionic map strongly in W1-2(M, N). We then find that certain tangent
maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last
we construct a stationary quaternionic map with a codimension-3 singular set by

using the embedded minimal S? in the hyperkéhler surface Mg studied by Atiyah-
Hitchin.

Mathematics Subject Classification (2000): 53C26 (primary); 53C43, 58E12,
58E20 (secondary).

1. Introduction

A Riemannian manifold is called hyperkéhler if it possesses covariant constant
complex structures /, J, K which satisfy the quaternionic relation

1> =J? = K* = IJK = — identity.

Associated to 1, J, K there is a natural family of covariant constant complex struc-
tures al +bJ + cK where (a, b, ¢) is a unit vector in R3. A hyperkihler manifold
is Ricci-flat with dimension 4k. Let M and N be two hyperkihler manifolds with
complex structures J¢ and J# respectively for o, 8 = 1,2, 3 which satisfy the
quaternionic identities. A smooth map f : M — N is called a quaternionic map if

3
Z Agg TP odf o J* = df (1.1)

o, =1

where A,g denote the entries of a constant matrix A in SO (3). Since SO (3) pre-

serves the quaternionic identities, we can always choose complex structures J¢ for
M and JP for N such that Agg = 8ep in (1.1).
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Quaternionic maps arise from the higher dimensional gauge theory (cf. [C],
[DT], [FKS], [MS], [NN], [PG]). More precisely they naturally arise from the adi-
abatic limit of Hermitian Yang-Mills connections on SU (n)-bundles on a product
of two K3 surfaces. Its linear version in dimension four is the so-called Cauchy-
Riemann-Fueter equation (or quaternionic d-bar equations):

ax1f_i8x2f_jaX3f_kBX4f:O

for f : H — H where H is the space of quaternions and x| +ix + jx3 + kx4 € H.
Assume M is compact. For any smooth map u : M — N, consider the energy

functional 1
E() = —/ |Vul*
2 Ju

and the functional
Er(u) = Aaﬂ/ (wje, u*w7p)
M

and set

1
I1(u) = _/ ldu — Agg TP o du o J¥2.
2Jm

It is clear that /(u) = O if and only if u is a quaternionic map. Since u pulls
back the closed 2-form w 75 to a closed 2-form on M and wj« is closed, E7(u) is
homotopy invariant and depends on (Ayg). The following relation holds (cf. [C],
[CL1], [FKS])

1
E(u)+ Er(u) = Zl(u). (1.2)

If u is a quaternionic map, then it minimizes energy in its homotopy class so it is
harmonic.

Recall [Sc] that a map in the Sobolev space WL2(M, N) is a stationary har-
monic map if it is a critical point of the energy functional with respect to both of
the variations on M and N with compact supports. A stationary harmonic map is
smooth away from a closed set of zero (m — 2)-dimensional Hausdorff measure
where m = dim M. Let M and N be two hyperkéhler manifolds. A map u from M
to N is called a stationary quaternionic map if it is a stationary harmonic map and
it is a quaternionic map outside its singular set.

It is known that the existence harmonic 2-spheres plays an important role in
the study of stationary harmonic maps ([SU], [Lin]).

In this note we investigate the special minimal 2-spheres which arise from the
stationary quaternionic maps. We first show that if there are no holomorphic 2-
spheres in N then any sequence of stationary quaternionic maps with bounded en-
ergy subconverges to a stationary quaternionic map strongly in W2(M, N). This
result was stated and proved in [CL1] when M is of dimension four, and the proof
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we shall present here is essentially based on that in [CL1]. We then find that cer-
tain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere
equation:

3
dfJp = =Y xJrdf
k=1

where f : S* — N, (x1,x2,x3) € S? and Jg2 is the standard complex structure
on S?. We construct a stationary quaternionic map with a codimension-3 singular
set by using the embedded minimal S? in the hyperkihler surface Mg studied by
Atiyah-Hitchin [AH], where 1\73 is the double cover of the space Mg of centred
2-monopoles on R? and it is a complete and simply connected hyperkihler surface.

There are interesting results on decomposition of differential forms in quater-
nionic geometry using representations of special groups (e.g. [Bo], [K], [Sa], [Sw],
[W], etc). It is commented in [W] that the quaternionic maps between hyperkihler
manifolds can be described by the splitting of Sp(1)-representations. The authors
thank the referee for his bringing this point and the related references in quater-
nionic geometry to their attention.

2. Compactness of stationary quaternionic maps

A sequence of stationary harmonic maps with bounded energies subconverges to
a stationary harmonic map strongly in W2 topology if there are no harmonic 2-
spheres in the target manifold [L]. For stationary quaternionic maps, the absence of
holomorphic 2-spheres is sufficient to conclude the strong convergence.

Theorem 2.1. Let M and N be compact hyperkdhler manifolds with dim M = m.
Suppose that uy is a sequence of stationary quaternionic maps with bounded ener-
gies. If N does not admit holomorphic S*’s with respect to the complex structure
a; J' on R? restricted to S* and the complex structure a; J' on N for some con-
stants a; (i = 1,2,3) with ) _; ai2 = 1, then there is a subsequence of {uy} which
converges strongly to a stationary quaternionic map u.

Proof. We can always assume that uy — u weakly in W'2(M, N) and that
|Vuk|2dx — |Vu|%dx + v in the sense of measure as k — oo. Here v is a non-
negative Radon measure on M with support in 3, and X is the blow-up set of the
sequence uy; which is m — 2 rectifiable [L]. We will prove the Hausdorff measure
H™2(X) = 0 which implies the strong convergence in W!2(M, N). Assume
H" 2(%) # 0. Then [L] there is a nonconstant harmonic map v : R — N
with finite energy and Vyv = 0. Here we have identified the tangent space of
Y at0 € R” = R™ 2 x R? with R"~2 x {0} so Vx means the differentiation
along R"™~2 x {0}. The rescaling process for constructing v is taken place around
smooth points of u#; which approach 0, therefore v is also a smooth quaternionic
map (cf. [CT]).

At the point 0 € R™, suppose that e is in the normal direction of . Let K be the
linear space spanned by J%e fora = 1,2, 3,50 K L e. Since rank dv = 2, we have
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dv(e) # 0. This implies, from the quaternionic map equation, Z?:l Jidv(Jie) #
0 and in turn dv(J'e) # 0 for some i. Hence dimdv(K) = 1. It then follows that
there are real constants ap, a», az with alz —I—a% —I—a% = | such thatg; Jie € {0} x R2
and dv(a; J'e) # 0. Notice that we then have three vectors a; Jie — aj Jie,i #*J
which are perpendicular to e and to Z?:l a;J'e, so they belong to T X. We there-
fore have (ayJ' — ajJ?)e € Ker(dv), (a3J' — ajJ¥)e € Ker(dv), (apJ? —
azJ*e € Ker(dv), J%dvJ® = dv, thus dv(}; a;J'e) can only have compo-
nents on J%(dv(e)). By a simple calculation, one easily checks that

3 3
dv (Zaijie) = Z dev(aiJjJie)
i=1

ij=1

3
= — Za,-jfdv(e) + T dv(aJ I + azJ' JP)e

i=1

+T2dv(@ J* T + azJ?T)e + Tdva P I + ar 73 T)e

3
= — Zaijidv(e).

i=1

At any other point (0, x) in R”~2 x R?, the vectors ¢ and Z?: L a;J7e still belong
to {0} x R?, and the vectors (a1 J* — ar J Ve, (a2 T?* — az T e, (a1 T> —az T Ve
lie in R”~2 x {x} hence in the kernel of dv at (0, x), so we can repeat the argument
above to conclude v is holomorphic at (x, 0) with respect to the same complex
structures Y >_, a;J' and Y3_, a; 7. Tt follows that v induces a holomorphic map
from S? to N. But no such holomorphic map can exist by assumption. So we must
have H"~2(X) = 0 and in turn u; converge strongly to « in W' norm. U

Remark 2.2. The strong convergence is equivalent to H”~2(X) = 0 and is equiv-
alent to that the Hausdorff dimension of the singular set sing(ux) of u is no bigger
than m — 3. Moreover sing(u) is rectifiable since N real analytic [Si].

3. Quaternionic minimal surfaces via quaternioinc maps

In this section we study a special class of minimal surfaces which arise from certain
tangent maps of the quaternionic maps.

Assume that M is 4-dimensional hyperkihler manifold and N is a 4n-dimen-
sional hyperkihler manifold. We can choose a coordinate system around a point
x in M so that the matrix expressions of the complex structures on M take the
following form:

0001 0 010 0-10 0
. [oo=10) » [0 o001)] 5 [10 00
=lo1o00]'"={=1000]"7 =100 01
100 0 0 -100 00 —10
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Note that the three Kéhler forms wy,, i = 1, 2, 3 have variable coefficients in these
coordinates. For f : M — N, if we denote o by fr for k = 1,2,3,4 in the

0xk
coordinate system we have just chosen, the quaternionic map equation (1.1) reads

fi = a3 T f2+ a2 J” 3+ aa1 T fa =0 (3.1
where we take summation over «.
Now assume that f is a homogeneous degree-0 quaternionic map from R* to
N and satisfies f(xy, x2, x3,x4) = f(x1,x2,x3,0). So f is singular along the
X4-axis or it is constant. Note that such an f is just a tangent map, with a line of
singularities, of a quaternionic map from M to N.
As a radially independent harmonic map, f induces a smooth harmonic map
from S? to N: ¢ (x) = f(x, x4) forx € S*> ¢ R3.
Lemma 3.1. With f and ¢ as above, then
dp Jy = —aupxpJ* d¢. (3.2)

Proof. Because f is a homogeneous degree-0 map,

4
Y xfi=0
k=1
and this combined with (3.1) leads to
(x2 4+ x1a03J%) f2 + (x3 = x1000J%) f3 = 0.
In the spherical coordinates

X] =rsinacosd
Xo = rsina sinf
X3 =rcosa,

it reads
(x2 + x1003J%) (cosa sin@f, + cosQJﬁ) + (x3 — x1ag2J%) (—sinafy) = 0.
Multiplying this equation by sin(«) yields
(2 + x1a43J%) (x3x2fa +x1 %) — (%3 — X162 ") (x] +x3) fou = O
i.e.

—X| (x2+X1aa3J“)Sifﬁ = (X2X3(X2 + X1ag3J%) — (x3 — X1a2J ) (x7 + X%)> fa-
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Multiplying x5 — x1a,3J“ from left on both sides of the equation above, we obtain,

J

0
—x1(x12 + xzz)m = xl(x12 + x%) (X101 J* 4+ x2a02J% + x30037%) fu

here we have used aq3J% - agJ B = a,1J7 with the summation convention over
repeated indices applied. So we see ¢ satisfies the equation:

dp Jsp = —agpxgJ* d¢.
This finishes the proof. U

Note that agxg J“ is only defined along the image surface f (S?) and f cannot
be holomorphic with respect to any complex structure in the 2-sphere family of
complex structures on N.

Let ¥ be a Riemann surface, N** a hyperkihler manifold with the complex
structures J!, J2%, J3 which satisfy the quaternion relation J L72 — 73, Let
a = (ai, a2, a3) be smooth functions & — SZ.

Definition 3.2. Let f : ¥ — N*' be a smooth immersion which satisfies

3

df Js ==Y aJ*df. (3.3)

k=1

where d = (ay, az,a3) : & — S?. We say [ is a quaternionic surface in N*_If in
addition f is harmonic, we say f is a quaternionic minimal surface.

Condition (3.3) requires the image of df lying in the span of jldf, jzdf, J3df.
In the twistor space approach to minimal surfaces and harmonic maps, this condi-
tion is called "inclusive” (see [AM], [ES], [R], [Sa] and the references therein).

It is not difficult to see that if f satisfies (3.3) then f is conformal. Further-
more, any conformal immersion from (X, Jx) to a 4-dimensional hyperkihler man-
ifold satisfies the equation (3.3). In fact, suppose that eq, e is an orthonormal frame
of ¥. Because f is conformal and df (e;) L df(ez), we have

df(e1) = c;J'df(e2) and df(ez) = d;J'df (e1)
with 3", ¢ = land )_; d* = 1. It is clear that

cildf (e = (df (er). J'df (e2)) = —(J'df (e1). df (e2)) = —d;|df (e1)|*.
Since |df (e2)|? = |df (e1)|* = 1/2|df|*, we have ¢; = —d; hence (3.3) holds.

Lemma 3.3. Letu : X1 — X, be a holomorphic map between two Riemann sur-
faces with complex structures Jx, and Jx, respectively. Then for any smooth map
f : 2o — N which satisfies (3.3) witha : £1 — S?, fou : £1 — N satisfies
B3) withdaou : £y — S*. If f(o) is a quaternionic minimal surface, then
[ ou(Xy) is also a quaternionic minimal surface.
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Proof. Then for any x € ¥

d(fou)xJs,(x) = dfuw) oduxJs, (x)
= dfuw) o Iz, (u(x)) duy
= —a; () Ty dfucx) © duty
= —a; (W) Ty d(f ou)y.

If f is harmonic and u is holomorphic, f o u is harmonic. U

Proposition 3.4. A quaternionic surface in N*' is a minimal surface if and only if
a is holomorphic with respect to the complex structure on ¥ which makes the metric
g Hermitian and the standard complex structure on S*. @ is constant if and only if
the quaternionic surface is a holomorphic curve.

Proof. Since f is conformal, a quaternionic surface in N** is a minimal surface if
and only if f is a harmonic map from X to N. Let e, e> be an orthonormal frame
on X which satisfies Ie; = ep, Ieo = —ej. Note that, by the definition,

3 3
fri=dflen) =Y al'fo. fa=df(e) ==Y al fi.

i=I i=1
Taking the normal coordinates centred at x and f(x), we have

3 3
Af ==V, (Zaiﬂ) fi+V (Zaﬂ’) f
i=1

i=1

3 3 3
= (—ZVzaiJi — (Z VlaiJi) (Zaﬂ’)) fi
i=1 i=1 i=1

= (—Vaa) — a3Viaa + a;Viaz) J' fy
+ (=Vaas — a1 Viaz + a3Viay) J? fi
+(=Vaaz — axViay + a1 Viaz) J° fi. (3.4)

Since f is harmonic, it follows that
Voay + az3Viay — ayViaz =0
Voar +ajVias —az3Via; =0 3.5)
Voas +ayViar — aiViay = 0.
Solving (3.5) and using a; Voay + a; Voas + azVaaz = 0, one gets
Viay + apVoaz — azVoar =0

Viay +aszVaa; — a1 Voaz =0 3.6)
Viasz + a1Voay — apVoa; = 0.
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We can rewrite (3.5) as
Vod =a x Vid,

and rewrite (3.6) as
Via = —a x Vaa.

Noting that the standard complex structure on S? at @ is @x, we can see that @
satisfies the equations (3.5) and (3.6) if and only if it is a holomorphic map with
respect to the complex structure on X which makes the metric g Hermitian and the
standard complex structure on S°. O

Remark that if we write the equation in b; = —a; then b is anti-holomorphic
and if N is 4-dimensional the above result was obtained in [ES] and by S.S. Chern
it N = R%.

In particular, when a quaternionic surface is minimal, the mapping a satisfies
the harmonic map equation to the standard sphere:

Ad + |Val|*a = 0. (3.7)

The following theorem is known to be true for minimal surface in a Kihler-Einstein
manifold of real dimension 4 (¢f. [CW]) by noticing that a; = cos ox where oy is
the Kiéhler angle of the surface f(X) with respect to the Kihler form w 7« in N.

Theorem 3.5. If a quaternionic surface in N* is a minimal surface with a =
(a1, a2, a3) : & — S?, then

Vai|*a
Aay +2|"7|2" — 0.
I —a;

Proof. We only need to prove the result for a;. First we compute the Laplacian
of aj as follows. Again we take the normal coordinates centred at x € M and at
f(x) € N. Differentiating in V3 of

Voay = apViaz — azViay

yields
2 2 2
Viay = VoarViaz + axViyaz — VoazViay — azVias.

Multiplying a3, az, a1 accordingly to the following three equations

azViay = Voay +a1Vias
aVia; = aiViay — Vaas
a1Viar = —axViay — azViaz

then summing them up leads to

Viar = a3Vioar — arVisas.
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Differentiating in V| gives
2 2 2
Viia1 = ViazVoar + a3V ay — ViaxVoaz — ax Vi as.

Now we conclude
Aay = 2(Via3Vaaz — ViaxVaas)

and we may write the right hand side in terms which only involve V; as follows:
ViasVoay — ViaxVoas = Vias(azVia) —aiVias)
—Viax(a1Viay — axViay)
= a3Via1Vias — a1|Vyas|?
—a1|Viaz|* + a2ViaVia
= —ai((Via1]* + |Viaz|* + |V1a3]?).
So we have just shown
Aay = —2a1(|V1a1* + |Viaa|? + [Viaz ). (3.8)
On the other hand, we have
IVai|* = |Viai|* + | Vaay |*
= |Viai|* + (@2Via3 — a3Via2)?
= |Via1|* + a§|V1a3|2 + a§|V1(12|2 — 2aa3ViaaVias.
However,
(1 —aD(Via1]* + [Viaao|* + [Vias|?) — |Va |?
:—a12|V1a1 |2+ (1 — a12 — a§)|V1a2|2+ (1 — a]2 — a%)|V1a3|2+ 2arya3ViarVias
=—al|Viai|* + a3|Viaz|* + a3 |Via3|* + 2axa3Via2 Vi a3
=0 3.9

by recalling a; Via; = axViaz + azVias.
Putting (3.8) and (3.9) together, we have

\V/ 2
Aaj = _2| ai 211’
I —aj
which completes the proof. O

Theorem 3.6. Suppose that f is a minimal quaternionic surface in N 4. Then either
f is constant or the Euler characteristic number % X (N f (X)) of the normal bundle
of f(2) is 2g —2 —2deg a. In particular; if f € C*(S?, N*) satisfies the equation
3

dfJo ==Y x; J'df, (3.10)

1

i=

where x € S? C R3, then either f is constant or the Euler characteristic number
of the normal bundle of f(S?) is —4.
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Proof. Let X9 = f(X). Xp is a minimal surface in N because f is harmonic
and conformal. Proposition 4.2 and Proposition 4.3 in [CT] assert, for a compact
minimal surface in a Kdhler-Einstein surface N, that the generalized adjunction
formula

1
x(TZo) + x (NZo) =/§212+Q34—§/ |V Js, *
) s

1
= 27'[/ acl(N)——/ Vs |?
¥ 2 /s

holds for some function o on X, where 17, Q34 are the curvature tensors of N
along the tangential and normal directions of X respectively. The term |V Jx, 12 is
equal to 2|hi’2 — h%l 12+ 2|h§2 — h?2|2 where hi.‘j are the second fundamental forms
of Ypin N.

Since ¢1(N) = 0, we have

1
X (TS0) + (o) =—5f Vg, P (3.11)
P

In particular, an embedded holomorphic S? has self-intersection number —2 in M
with C1(M) = 0.

On the other hand, for any solution of (3.5), by Proposition 3.4 and Theorem
3.5 and Proposition 3.2 in [CL2] (specializing the general formula for cosine of
the Kihler angle along the mean curvature flow to minimal surface) and (3.7), we
always have

. 2|Va?
Vs, = vap? = 240 G.12)
fori =1, 2, 3. One then has
1 1 ~9
—x(NZ) = —— [Val®+2g -2
2w 4 e
= 2g —2—2dega.

Here we recall for holomorphic a to S,

dega : /J @) 1/|a*|2 1f|V*|2
egad = ———=— acla) = — a = — al.
ERRTSTED Y ar Js, 87 Js,

Now if & = S? and a(x) = (x1,x2,x3), f : S* — N is harmonic because
a:S? — S?is the identity map. We conclude

1 1 5
— x(NZ)=—-2— — | |Vx* = —4.
2 4 S2

This completes the proof. U
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Based on the results we obtained so far, we next construct an example of sta-
tionary quaternionic map from R* with a line of singularities. For any smooth map
¢ : S? — N, we have an extension f(x,x4) == ¢(x/|x|) for any x € R3\{0}.
Moreover, the proof of Lemma 3.1 can be reversed to produce a quaternionic map
with the x4-axis as its singular set from a map ¢ which satisfies (3.2).

In the monograph [AH], Atiyha and Hitchin considered the space Mg of cen-
tred 2-monopoles on R? with finite action. It is a complete hyperkihler manifold
of dimension 4. SO (3) acts on Mg isometrically and this action lifts to a double
(also Riemannian universal) covering 1\718 . The space of axisymmetric monopoles,
which constitute a special class of solutions to the monopole equations, defines an
embedded minimal R P? in Mg . This R P? lifts to an embedded minimal S? in the

hyperkihler manifold 1\73 .

Corollary 3.7. There does exist a nontrivial minimal quaternionic sphere ¢ in the
hyperkdhler manifold Mg with a = (x1, x2, x3). The extended map f from ¢ is a

stationary quaternionic map from R* to Mg with the entire x4-axis as singular set.

Proof. We take the nontrivial embedded minimal S? in Azg discussed above. The
Euler characteristic number of the normal bundle of this minimal 2-sphere is —4 as
shown in [AH].

By Theorem 3.6, we know that the minimal 2-sphere is a minimal quaternionic
sphere ¢ with a function 4 in its definition, and degdg = 1. Since ap : S* — S?
is holomorphic and of degree 1, it is diffeomorphic because the sum of orders of
the zeros of |ddg| is — deg(dp)(2 -0 —2) + (2 -0 — 2) = 0, |ddo| has no zeros, and
therefore the inverse a; ! of 4 exists and is holomorphic. So, ¢ := ¢ o a, lisa
nontrivial minimal quaternionic sphere with @ = (x1, x2, x3) by Lemma 3.3.

Recall that action of the complex structure Jg at x € S? is given by the stan-
dard cross product x x. Write ag = (a1, doz, ag3). Then

(dgo(x x e), T'd¢o(e))x
|dox(e)|?

ap; (x) = —

and d¢y at x is the same as d¢ at —x because ¢y is the lift from RP2. We then
conclude

Go(—x) = —do(x), dy'(—x) = —dy "' (x).

The chain rule implies
Vo (—0)|* = Vo ' (—x)*|Vay ' (—x)?
= |Vgo(—dy ' ()| — Vay ' (x)[?

= Vo (dy ' () *Vay ' (x)* = |V (1))
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because ¢y is the lift from R P2, Therefore fori = 1,2,3,

/ x|Vl = 0.
SZ

The fact that the extended map f is stationary follows from the lemma below. [

The lemma below is known to experts. For the sake of completeness, we
present a proof of it.

Lemma 3.8. Let ¢ be a smooth harmonic map from S* to a Riemannian manifold
N. Then the extended map f of ¢, which is defined by f(x,x') = ¢(x/|x|) for
x = (x1, %2, x3) # (0,0,0), x" € {0} x R"=3 C R™, is a stationary harmonic map
if and only if ¢ satisfies

/xi|V¢|2=o, i=1,2,3, (x1,xx3) €S2
SZ

Proof. In fact, we have

af
Vof =05 =0 r=\q+d+d

Define a cut-off function by

1 r>ce
2
ne(r,a, B,x") = —(r—%) €/2<r<e
€
0 r<e/2

where x| = r sina cos 8, xo = r sin« sin 8, x3 = r cos .
For any smooth vector field X = (X, ---, X;;) in R with compact support,
because f is smooth away from {0} x R” 3, we have

0= /Rm(WfFaij = 2VifV; )VimeXi)
= me(WfFaij = 2VifV; H)VjneXi
| (V18 = 290V, HneViXi.

It then follows

(IVfI*8;j —2Vi fV; /HV;X; = lim / IV fI1*8:j = 2Vi fV; FIneV, Xi
Rm e—0 Jrm

— lim UV fI1?8:j = 2Vi fV; IV neXi

—0 Jrm
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Therefore, f is stationary if and only if

tim /R (V£ P8 — 29 'V £)V;0eXi = 0,

Direct computation shows that the above condition is equivalent to

3
V 2 X / /: .
fR/S| ¢l Ex, 10, x"Ydodx' =0

i=

Since X is arbitrary, we see the desired statement holds. O
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