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Quasiconformal Mappings with Sobolev
Boundary Values

KARI ASTALA – MARIO BONK – JUHA HEINONEN

Abstract. We consider quasiconformal mappings in the upper half space Rn+1
+

of Rn+1, n ≥ 2, whose almost everywhere defined trace in Rn has distributional
differential in Ln(Rn). We give both geometric and analytic characterizations for
this possibility, resembling the situation in the classical Hardy space H1. More
generally, we consider certain positive functions defined on Rn+1

+ , called confor-
mal densities. These densities mimic the averaged derivatives of quasiconformal
mappings, and we prove analogous trace theorems for them. The abstract approach
of general conformal densities sheds new light to the mapping case as well.

Mathematics Subject Classification (2000): 30C65 (primary), 46E35 (secondary).

1. – Introduction

A quasiconformal mapping that is defined in the upper half space Rn+1
+ of

Rn+1 has an almost everywhere defined trace on Rn via its radial (angular) limits.
In this paper, we study what happens when this trace possesses some degree
of regularity. More specifically, we consider the case when the distributional
differential of the trace is in Ln(Rn) for n ≥ 2. It turns out that this case admits
interesting characterizations. For example, we shall show that the averaged
derivative of a quasiconformal mapping satisfies a Hardy type n-summability
condition if and only if its radial maximal function is n-summable in Rn . The
crucial observation here is that both of these conditions are equivalent to the
n-summability of the differential of the trace. This result closely resembles the
situation in the holomorphic Hardy space H 1.

As an application, we prove a compactness theorem for quasiconformal
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mappings of Rn+1
+ . This result can be applied in particular for a family of

maps for which the Hausdorff n-measure of the boundary of the image domain
has a fixed upper bound.

The characterizations that we present in this paper are not true for quasi-
conformal mappings in the plane. It is crucial for all the aforementioned results
that the dimension of the boundary Rn = ∂Rn+1

+ is at least two. Ultimately, this
dimensional restriction is due to the existence of singular boundary values for
quasiconformal mappings of the upper half plane R2

+. Analytically, the failure
is seen through the mapping properties of various maximal functions on L1.

Basically our results are not really about quasiconformal mappings. In a
recent paper [BKR], the authors developed a theory of “conformal densities”
as a generalization of the theory of (quasi-)conformal mappings of the unit ball
(alternatively, the upper half space) in Euclidean space. It turns out that our main
result for quasiconformal mappings, Theorem 1.1, has a general formulation in
terms of conformal densities. We present this generalization in Theorem 4.1,
which should be regarded as the main result of this paper.

There are two reasons for doing such a generalization. First, the theory
of conformal densities appears to be a natural tool in proving results also
about quasiconformal mappings. This principle is demonstrated in the proof of
Theorem 5.1 below, where trace results are established (compare Corollary 5.2).
Second, we believe that the use of general densities, and its accompanying theory
of Banach space-valued Sobolev functions as in [HKST], is of independent
interest, and useful in other contexts as well.

The work here was partly motivated by our quest to try to solve the
longstanding open problem of “inverse absolute continuity” for quasiconformal
mappings on lower dimensional surfaces [G1], [G2], [G3], [V2], [BM]. This
problem asks whether the restriction of a quasiconformal mapping to a smooth
(hyper)surface transforms sets of positive surface measure to sets of positive
surface measure in case the image of the hypersurface has locally finite Haus-
dorff measure of the correct dimension. A related question asks for a similar
measure preservation property for quasisymmetric mappings from Rn , n ≥ 2,
onto an arbitrary metric space of locally finite Hausdorff n-measure [HS, Ques-
tion 15]. We hope that the techniques in the present paper will be useful in
further attempts to conquer these open problems.

Before stating our results, we require some notation and terminology.

1.1. – Basic notation

We denote by Rn+1
+ the open upper half space in Rn+1 and the points in

Rn+1
+ by z = (x, t). Thus,

Rn+1
+ = {z = (x, t) : x ∈ Rn and t > 0}.

Although much of the preliminary discussion remains valid whenever n ≥ 1,
our main results demand that n ≥ 2. The dimensional assumptions will be
made precise as required.
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Lebesgue n-measure is denoted by mn . For α > 0, the Hausdorff α-
dimensional measure in a metric space is written as Hα , while H∞

α denotes
the Hausdorff α-content arising in the Carathéodory construction for Hausdorff
measures. See [Fe, p. 170].

Mean values of integrable functions are denoted by barred integral signs,
and the abbreviation

(1.1) uE =
∫
E

u

is used for integrable functions u and for measurable sets E of positive measure.
The measure in expressions like (1.1) is usually clear from the context.

Whenever Q ⊂ Rn is an n-cube, we denote its edge length by �(Q), and
then set

(1.2) Q̂ = Q × [�(Q), 2�(Q)] ⊂ Rn+1
+ ,

so that Q̂ is the upper half of the (n + 1)-dimensional box Q × [0, 2�(Q)]. For
definiteness, we assume that cubes are closed. We denote by zQ the center of
a cube, and by Qx,t the n-cube with sides parallel to the coordinate axes, with
center x ∈ Rn and edge length �(Qx,t ) = t . Thus,

(1.3) Q̂x,t = Qx,t × [t, 2t].

Note that the hyperbolic diameter of the cube Q̂ is a constant that is independent
of Q, where the hyperbolic metric in Rn+1

+ is determined by the length element
|dz|/t .

We denote by D(Rn) the countable collection of all dyadic cubes in Rn .
Thus, Q ∈ D(Rn) if and only if the corners of Q lie in 2k Zn and �(Q) = 2k

for some k ∈ Z. Similarly, if Q0 ⊂ Rn is a cube, we denote by D(Q0) the
dyadic subcubes of Q0. Finally, set

(1.4) W = {Q̂ : Q ∈ D(Rn)}.

The members of W will be referred to as (dyadic) Whitney cubes of Rn+1
+ .

We employ throughout the notation a ' b (respectively, a � b) meaning
that there is a positive constant C > 0, depending only on some obvious data
at hand, such that (1/C)a ≤ b ≤ Ca (respectively, a ≤ Cb). We also use the
phrase a ' b (resp. a � b) with constants depending only on α, β, . . . meaning
that C depends only on α, β, . . . . Alternatively, we write C = C(α, β, . . . ) in
this case.

There will also be some self-explanatory notation, such as “diam” and
“dist”.
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1.2. – Quasiconformal mappings and averaged derivatives

For the basic theory of quasiconformal mappings in Euclidean spaces we
refer to [V1]. We make the convention that all quasiconformal mappings are
sensepreserving. The notation F : Rn+1

+ → Rn+1 means that F is a mapping into
Rn+1. The image D = F(Rn+1

+ ) is explicitly mentioned only if it is relevant to
the discussion at hand. The maximal dilatation of a quasiconformal mapping F
is denoted by K (F) (see [V1], p. 42 for the definition).

If F : Rn+1
+ → Rn+1 is a quasiconformal mapping, then the limit

(1.5) lim
t→0

F(x, t) =: f (x)

exists for almost every x ∈ Rn with respect to Lebesgue n-measure. In fact, the
limit in (1.5) exists for x ∈ Rn outside an exceptional set of (n + 1)-capacity
zero, in particular outside a set of Hausdorff dimension zero. (See [Zo], [Vu,
Lemma 14.7 and Theorem 15.1], [BKR, Theorem 4.4 and Remark 4.5 (b)].) For
now, we understand that f is defined almost everywhere in Rn via expression
(1.5). We return to the issue of quasieverywhere defined boundary values later
in Section 5.

The averaged derivative aF of a quasiconformal mapping F : Rn+1
+ → Rn+1

is defined by

(1.6) aF (x, t) =
(∫

Q̂x,t

JF (z) dmn+1(z)
)1/(n+1)

,

where JF = det(DF) designates the Jacobian determinant of F , which exists
almost everywhere in Rn+1

+ . Recall that in this article quasiconformal mappings
are assumed to be sensepreserving, so that JF is nonnegative.

Definition (1.6) (in an equivalent form) was first used in [AG], and it has
turned out to be a natural quasiconformal analog for the absolute value of the
derivative of a conformal mapping. We recall that quasiconformal mappings do
not in general have pointwise defined derivatives.

The following three statements were proved in [AG]: For Q̂ ∈ W and
z ∈ Q̂ we have that

(1.7) aF (z) ' aF (zQ̂) =: aF (Q̂)

and that

(1.8) aF (Q̂) ' diam(F(Q̂))

diam(Q̂)
' dist

(
F(Q̂), ∂ D

)
diam(Q̂)

,

where D = F(Rn+1
+ ); moreover, if Q̂, Q̂′ ∈ W are adjacent, we have that

(1.9) aF (Q̂) ' aF (Q̂′),
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with constants of comparability in all three cases depending only on n and
K (F).

Properties (1.7) and (1.9) constitute a Harnack type inequality for aF . It
was observed in [BKR] that this Harnack inequality, together with another basic
property of aF called a volume growth property, can be abstracted and a rich
function theory emerges from a study of conformal densities satisfying these
two properties. We shall discuss this in Subsection 2.1 below.

1.3. – The space Oscn,∞

Following Rochberg and Semmes [RS1], [RS2], we next introduce a Besov
type space Oscn,∞. Later in the paper, we shall need this space for functions
with values in a Banach space and for this reason we take up the general
definition here. For our first main theorem, Theorem 1.1, one can take V = Rn+1

in what follows.
Let V = (V, | · |) be a Banach space. In the following, Q0 will either

be a cube in Rn or Q0 = Rn . We denote by L1(Q0; V ) the vector space of
integrable and by L1

loc(Q0; V ) the vector space of locally integrable measurable
functions f : Q0 → V . Throughout, the notions involving vector-valued inte-
gration refer to the classical Bochner integral [DU, Chapter II], [BL, Section
5.1]. In particular, by definition functions in L1

loc(Q0; V ) are assumed to be
essentially separably valued; that is, given f ∈ L1

loc(Q0; V ), there is a subset
Z of Q0 of measure zero such that f (Q0 \ Z) is a separable subset of V .

For a cube Q ⊂ Q0, the mean value

(1.10) fQ =
∫
Q

f dmn ∈ V

of a function f ∈ L1
loc(Q0; V ) has the property that

(1.11) 〈�, fQ〉 =
∫
Q

〈�, f 〉 dmn

for all elements � in the dual space V ∗. Throughout, we shall use the standard
pairing notation 〈�, v〉 = �(v) for v ∈ V and � ∈ V ∗.

We define the space Oscn,∞(Rn;V ) to consist of all functions f ∈ L1
loc(R

n;V )

for which the map

(1.12) Q �→ Af (Q) =
∫
Q

| f − fQ | dmn

belongs to the weak Lebesgue space weak-�n , uniformly over translated families
of dyadic cubes. More precisely, f ∈ L1

loc(R
n; V ) belongs to Oscn,∞(Rn; V ) if

and only if the “norm”

(1.13) ‖ f ‖Oscn,∞ = ‖ f ‖Oscn,∞(Rn ;V ) = sup
w∈Rn

sup
λ>0

λN ( f, w, λ)1/n
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is finite, where

(1.14) N ( f, w, λ) := #{Q ∈ D(Rn) : Af (Q − w) > λ}.

Here # denotes cardinality, and

Q − w = {y − w : y ∈ Q}.

The expression ‖ f ‖Oscn,∞ given in (1.13) can be defined alternatively as

(1.15) sup
w∈Rn

sup
λ>0

λ
(
#{Q ∈ D(Rn) : Aτw( f )(Q) > λ})1/n

,

where τw is the translation operator

(1.16) τw( f )(x) = f (x − w).

We also write

(1.17) τw(Q̂) = Q̂ − w.

1.4. – The Riesz class

We now present our first main theorem. In addition to the preceding
discussion, recall notation from (1.6), (1.2), and (1.4).

Theorem 1.1. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal mapping

with the radial boundary values f (x) = limt→0 F(x, t) for a.e. x ∈ Rn. Then the
following five conditions are equivalent:

(i) a∗
F (·) := sup

t>0
aF (·, t) ∈ Ln(Rn),

(ii) ‖aF‖Q Hn :=
(

sup
t>0

∫
Rn

aF (x, t)n dmn(x)

)1/n

< ∞,

(iii) sup
λ>0

λ
(

#
{

Q ∈ D(Rn) : diam
(

F(Q̂)
)

> λ
})1/n

< ∞,

(iv) f ∈ Oscn,∞(Rn; Rn+1),

(v) f ∈ L1
loc(R

n; Rn+1) and the distributional differential D f belongs to Ln(Rn).

Moreover, the various Lebesgue type norms appearing in conditions (i)-(v) are
equivalent with multiplicative constants only depending on the dimension n and the
dilatation K (F).
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In Section 3, we introduce a Dirichlet-Sobolev space of functions with
values in an arbitrary Banach space. We then formulate a more general version
of Theorem 1.1 in terms of conformal densities in Section 4. See Theorem 4.1.

Observe that if F is a conformal mapping in the upper half space R2
+,

then aF (z) ' |F ′(z)|. Thus, for n = 1 and F conformal, the equivalence that
is analogous to the equivalence of (i) and (ii) in Theorem 1.1 is implied by the
classical fact that the radial maximal function of a function in the Hardy space
H 1(R) belongs to L1(R) with bounds [Ga, p. 57]. We find it interesting that
such an analytic fact about holomorphic functions related to the Hardy space
theory has an analog in the nonlinear theory of quasiconformal mappings. Our
proofs are necessarily different from the classical arguments.

First results about Hardy type conditions and quasiconformal mappings were
proved in [J], [JW], [Zin], [As]. These papers mostly dealt with Hardy type
conditions for the mapping itself rather than its derivative. The question about
the equivalence of (i) and (ii) in Theorem 1.1 for n ≥ 2 has been around for
some time, although we have not seen it in print. The equivalence is false for
quasiconformal mappings when n = 1, as shown by Hanson [Ha, Theorem E].
For recent studies on Hardy type classes, quasiconformal mappings and their
derivatives, see [AK], [BK].

To facilitate the future language, we introduce the following definition.

Definition 1.2. A quasiconformal mapping F : Rn+1
+ → Rn+1, n ≥ 2, is

said to belong to the Riesz class if F satisfies any of the equivalent conditions
(i)-(v) in Theorem 1.1.

In 1916, F. and M. Riesz [Ri] proved that the derivative of a conformal
mapping F , defined in the upper half plane R2

+, belongs to the Hardy space H 1

if and only if the boundary of the image domain has finite length. Moreover, as
a function in H 1, the boundary values of F ′ cannot vanish in a set of positive
length, and F preserves boundary sets of zero length.

For quasiconformal mappings, we have the following interesting open prob-
lem:

Problem 1.3. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal mapping

in the Riesz class. Is it then true that

(1.18) mn
({x ∈ Rn : D f (x) = 0}) = 0 ?

In fact, if F is in the Riesz class, then one can show that the sets

(1.19) {x ∈ Rn : D f (x) = 0} and {x ∈ Rn : lim sup
t→0

aF (x, t) = 0}

agree up to a set of measure zero (cf. Corollary 5.2). Moreover, if (1.18) were
true, one could infer from this and from [BK, Lemma 6.2] that Hn(E) > 0
implies Hn

(
f (E)

)
> 0 for each Borel set E ⊂ Rn , if F is in the Riesz class.

On the other hand, if the Hausdorff n-measure of the boundary of the image
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F(Rn+1
+ ) = D is finite, i.e., if Hn(∂ D) < ∞, then F belongs to the Riesz class

by [BK, Definition 7.5, Theorems 7.6 and 7.8]. Thus an affirmative answer to
Problem 1.3 would solve the problem of inverse absolute continuity, mentioned
earlier in the introduction.

In search of a full higher dimensional analog of the F. and M. Riesz
theorem, one faces some geometric measure theoretic problems that do not
arise in the plane. We review next what is known about mappings in the Riesz
class.

As we mentioned, F belongs to the Riesz class, if Hn(∂ D) < ∞, where
D = F(Rn+1

+ ). On the other hand, F can be in the Riesz class even when
D is bounded with Hn(∂ D) = ∞. The precise statement here is that F is in
the Riesz class if and only if the Hausdorff n-measure of a porous part of the
boundary is finite; the degree of porosity is dependent on n and the dilatation
of F . This fact is a recent result of Koskela and the second author; see [BK,
Definition 7.5, Theorems 7.6 and 7.8, and Example 7.9].

Earlier, the following important special case was proved by Hanson [Ha,
Theorem B]: if F : Rn+1

+ → Rn+1 is the restriction of a global quasiconformal
self mapping of Rn+1, then F is in the Riesz class if and only if Hn(∂ D) < ∞.
Even in this case, it is not known whether (1.18) and its consequence, the inverse
absolute continuity, hold.

In the case of a global mapping as above, one has absolute continuity in
the sense that sets of n-measure zero on the boundary get mapped to sets of
Hausdorff n-measure zero, as proved by Gehring [G1], [G2], [G3] long ago.
On the other hand, the third author has shown [H2, Theorem 1.3] that it is not
true that Hn(E) = 0 implies Hn

(
f (E)

) = 0 for every F in the Riesz class,
even when F is bounded and has homeomorphic extension to Rn ∪ {∞} with
Hn(∂ D) < ∞.

The fact that examples as in [BK] and [H2] exist is accounted for not so
much by the difference between the quasiconformal and conformal mappings,
but rather by the fact that having finite Hausdorff n-measure generally means
less when n ≥ 2. For more precise statements about the implication “Hn(E) = 0
⇒ Hn

(
f (E)

) = 0”, and its history, see the works [H2], [H3], [Se], [V3].
Finally, we recall that quasiconformal mappings of the upper half plane

R2
+ onto itself need not be absolutely continuous on the boundary [BA], so that

for n = 1 there are no results along the above lines.
Next we say a few words about the proofs of Theorem 1.1. Although

the theorem will be derived from the more general Theorem 4.1, where no
quasiconformal mappings are explicitly present, the ensuing remarks are still
valid.

We have two proofs for the passage from (ii) to (i) in Theorem 1.1. The
first one goes through the geometric condition (iii) and its analytic counterparts
(iv) and (v). In fact, we shall prove

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i)

for the implications in Theorem 1.1. Only the first implication here is trivial.
For the second implication, we use the recent work [BK], where submartingale
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type estimates were proved for the averaged derivative of a quasiconformal
mapping, and the ideas around the so called wall theorem [BK], [Ha], [H2],
[V3]. The implication (iii) ⇒ (iv) requires some harmonic analysis together
with properties of quasiconformal mappings, and the ideas here are similar to
those in [RS2]. The implication (iv) ⇒ (v) is a general fact that has nothing to
do with quasiconformal mappings; it is due to Stephen Semmes in collaboration
with Connes, Sullivan, and Teleman [CST]. We shall present a Banach space-
valued analog of this implication in Section 4. Finally, we prove the implication
(v) ⇒ (i) again by using some basic quasiconformal and harmonic analysis.

Our second proof for the implication (ii) ⇒ (i) in Theorem 1.1 is more
direct and avoids the Besov space Oscn,∞. It relies, on the other hand, on the
theory of Banach valued Sobolev functions. See Section 5 for this approach.

As an application of Theorems 1.1 and 4.1, we present a compactness
result for quasiconformal mappings and conformal densities in the Riesz class
in Section 6.

It is in the proof of Theorem 4.1 in Section 4 that we use the abstract
theories of conformal densities and Banach space-valued Sobolev mappings.
Although a direct proof could be given, we feel that avoiding the language of
conformal densities in this context would amount to hiding a definite source
of ideas. Moreover, with some amount of the basic theory from [BKR] and
[HKST], reviewed in Sections 2 and 3, the implication (ii) ⇒ (i) in Theorem 4.1
becomes rather transparent. (Compare Remark 5.3.)

We have chosen to formulate the results of this paper for quasiconformal
mappings defined in the upper half space Rn+1

+ . This practice deviates from
related earlier works where mappings of the open unit ball Bn+1 were considered.
This choice is mostly technical; it is more pleasant to work with Rn as the
boundary rather than the sphere ∂Bn+1. Consequently, many results remain true
for mappings Bn+1 → Rn+1, n ≥ 2, with obvious modifications in statements
and in proofs.

2. – Conformal densities

In this section, we collect some auxiliary results on conformal densities as
defined in [BKR].

2.1. – Basic properties

Consider a positive continuous function ! defined in Rn+1
+ . (One can take

n ≥ 1 here although later our concern will be in the case n ≥ 2.) Each such
! determines a metric measure space

(2.1) (Rn+1
+ , d!, µ!)
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which is a conformal deformation of Rn+1
+ . Thus,

(2.2) d!(a, b) = inf
∫

γ

! ds, a, b ∈ Rn+1
+ ,

where the infimum is taken over all rectifiable paths γ joining a and b in Rn+1
+ ,

and

(2.3) µ!(A) =
∫

A
!n+1(z) dmn+1(z)

for a Borel set A ⊂ Rn+1
+ .

We call ! a conformal density if there exist positive constants C1 and
C2 such that the following two conditions, a Harnack inequality and a volume
growth condition, hold:

(2.4)
1

C1
!(a) ≤ !(b) ≤ C1 !(a)

whenever Q ⊂ Rn is a cube and a, b ∈ Q̂, and

(2.5) µ!

(
B!(x, R)

) ≤ C2 Rn+1

whenever B!(x, R) is an open metric ball in (Rn+1
+ , d!, µ!). The constants C1,

C2, and the dimension n together form the data of !.
If F : Rn+1

+ → Rn+1 is a quasiconformal mapping, then ! = aF satisfies
(2.4) and (2.5) with constants C1, C2 depending only on n and K (F) [BKR,
2.4]. On the other hand, at least in dimensions n + 1 ≥ 3 there are conformal
densities that are not comparable to the averaged derivative of any quasiconfor-
mal mapping [BHR, Theorem 1.8].

In the aforementioned sources, conformal densities are studied in the unit
ball rather than the upper half space. However, the results that are cited here
remain true in Rn+1

+ as well, with only routine changes in the arguments.
Given a conformal density ! in Rn+1

+ and a Whitney cube Q̂ ∈ W , we set

(2.6) !(Q̂) := !(zQ̂)

analogously to (1.7); recall that zQ̂ denotes the center of Q̂ ∈ W . We employ
the notation

(2.7) r!(Q̂) := !(Q̂) diam(Q̂), Q̂ ∈ W.

Then it is easy to see that

(2.8) r!(Q̂) ' diam!(Q̂)
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and that

(2.9) r!(Q̂)n+1 ' µ!(Q̂)

whenever Q̂ ∈ W . Here diam! designates the diameter in the metric d! and
the constants of comparability depend only on the data of !. In light of (1.8),
r!(Q̂) should be thought of as an abstract version of diam(F(Q̂)). Indeed,
r!(Q̂) is comparable to the diameter of the image of Q̂ under the identity map

(2.10) I! := id : Rn+1
+ → (Rn+1

+ , d!).

We shall use the notation I! for the identity map in (2.10) for the sake of
clarity.

We next explain why it is advantageous to consider the metric space
(Rn+1

+ , d!) and the map I! in (2.10) even when ! = aF for a quasiconfor-
mal mapping F : Rn+1

+ → Rn+1. The Harnack inequality (2.4) guarantees that
the map I! in (2.10) has nice local properties. In particular, up to a scaling it
behaves like a bi-Lipschitz mapping on each Whitney cube with a bi-Lipschitz
constant depending only on the data of !. More precisely, for each conformal
density ! we have that

(2.11) C−1!(Q̂)|a − b| ≤ d!

(
I!(a), I!(b)

) ≤ C!(Q̂)|a − b|

whenever Q ⊂ Rn is a cube, and a, b ∈ Q̂. Here C ≥ 1 depends only on the
data of !. By using [BKR, Proposition 6.2] and an argument similar to that in
[GO, Theorem 3, pp. 62-63], it follows therefore that the map I! is bi-Lipschitz
in the quasihyperbolic metrics of Rn+1

+ and (Rn+1
+ , d!).

Remark 2.1. Recall that the quasihyperbolic metric in a proper subdomain
D of Rn+1 is obtained by changing the Euclidean metric by the conformal factor
dist(x, ∂ D)−1 [GO], [Vu]. A similar definition can be used in any noncomplete
locally compact and rectifiably connected metric space such as (Rn+1

+ , d!) (see
[BHK] for the definition of quasihyperbolic metric in abstract situations). Qua-
siconformal mappings between Euclidean domains are uniformly continuous in
the quasihyperbolic metrics, and bi-Lipschitz for large quasihyperbolic distances
[GO, Theorem 3], [Vu, Corollary 12.19]. On the other hand, locally in a given
Whitney cube quasiconformal mappings need not be Lipschitz. The map I! in
(2.10) can be thought of as a local smoothening of F if ! = aF for a quasi-
conformal mapping. The large scale geometry of the metric space (Rn+1

+ , d!) is
similar to that of D = F(Rn+1

+ ) equipped with its inner metric, and the study
of the boundary behavior of F can often be transferred to the study of the
boundary behavior of I!. In other words, using I! with some caution, we may
assume that F has a nice local behavior in Rn+1

+ . The price we have to pay
for this supposition is that the target space is something more abstract than a
Euclidean domain with is Euclidean (inner) boundary. The usefulness of this
point of view will become clear later in the paper.
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We can think of the transition from the mapping F to the locally nice
density ! as a simple analytic substitute for the deep results of Sullivan, Tukia
and Väisälä [Su], [TV] which (in dimensions n+1 �= 4) allow for local Lipschitz
smoothening of quasiconformal mappings while keeping the boundary values
fixed.

If ! is a conformal density in Rn+1
+ , then the identity map I! in (2.10) has

an almost everywhere defined trace on Rn , which we denote by i!. The trace can
be defined because the d!-length of the open line segment from (x, 1) ∈ Rn+1

+
to x ∈ Rn is finite for mn-almost every point x ∈ Rn; in fact, it is finite for
(n + 1)-capacity almost every x ∈ Rn [BKR, Theorem 4.4]. By using this fact
about trace, in Section 4 we formulate a general !-version of Theorem 1.1. In
that version, the separable metric space (Rn+1

+ , d!) is isometrically embedded
in the Banach space �∞. The values of i! on Rn lie in the completion of the
metric space (Rn+1

+ , d!), hence in �∞ when the embedding is understood.

2.2. – The Gehring-Hayman theorem

One of the most important and clarifying tools in the theory of general
conformal densities has turned out to be a general form of a theorem of Gehring
and Hayman [GH]. The following result was proved in [BKR, Theorem 3.1].

Proposition 2.2. Let ! be a conformal density on Rn+1
+ , n ≥ 1. Let γh be a

hyperbolic geodesic in Rn+1
+ and let γ in Rn+1

+ be any curve with same end points
as γh, where the end points are allowed to lie in Rn = ∂Rn+1

+ . Then

(2.12)
∫

γh

! ds �
∫

γ

! ds.

In particular, if the end points of γh lie in Rn, then

(2.13) r!(Q̂0) �
∫

γ

! ds,

where Q̂0 ∈ W denotes a Whitney cube of largest diameter that meets γh. The
constants in (2.12) and (2.13) depend only on the data of !.

The classical Gehring-Hayman theorem corresponds to the case in Propo-
sition 2.2, where n = 1 and ! = | f ′| for a conformal map f : R2

+ → R2.

2.3. – Submartingale properties

We turn into some more technical facts about conformal densities. Recall
that the conformal modulus of a family � of paths in RN is the number

(2.14) modN (�) = inf
∫

RN
σ N dm N ,
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where the infimum is taken over all Borel functions σ : RN → [0, ∞] such that

(2.15)
∫

γ

σ ds ≥ 1

for all locally rectifiable paths γ ∈ �. A function σ as above is called an
admissible density for the curve family �. See [V1, Chapter1] for the basic
theory of conformal modulus. We shall use conformal modulus in this paper
both on Rn+1

+ and on its boundary Rn , for n ≥ 2.
We state an important sub-mean value property of conformal densities,

which follows from [BK, Proposition 5.5]:

Proposition 2.3. Let ! be a conformal density in Rn+1
+ , n ≥ 2. Then

(2.16) r!(Q̂0)
n modn(�) �

∑
Q∈S

r!(Q̂)n

whenever Q0 ⊂ Rn is a cube, � is a family of paths in Q0 joining two opposite faces
of Q0, and S is a finite collection of cubes contained in Q0 whose union covers the
paths in �. The constant in (2.16) depends only on the data of !.

Inequality (2.16) implies in particular that the power r!(Q̂0)
n of the “di-

ameter function” r! defined in (2.7) is controlled by any sum of the values
r!(Q̂)n , provided the union of the “shadows” Q of the cubes Q̂ is equal to the
shadow Q0 of Q̂0.

One should think of (2.16) as a nonlinear analog of the sub-mean value
property of the subharmonic function |F ′(z)| for F conformal. Inequality (2.16)
means that Q �→ !(Q̂)n defines a submartingale on dyadic cubes in Rn , up to
a multiplicative constant. The following lemma shows that the appearance of
this constant is inconsequential.

Lemma 2.4. Let λ : D(Q0) → (0, ∞) be a positive function defined on dyadic
subcubes of a cube Q0 ⊂ Rn and suppose there exists a positive constant C ≥ 1
such that

(2.17) λ(Q) ≤ C
∑
R∈S

λ(R)

whenever Q ∈ D(Q0) and S ⊂ D(Q0) is a finite collection satisfying

(2.18)
⋃
R∈S

R = Q.

Then there exists a positive function λ′ : D(Q0) → (0, ∞) such that

(2.19) λ′(Q) ≤ λ(Q) ≤ C λ′(Q)

for each Q ∈ D(Q0) and that

(2.20) λ′(Q) ≤
∑
R∈S

λ′(R)

whenever Q ∈ D(Q0) and S ⊂ D(Q0) is a collection satisfying (2.18).



700 KARI ASTALA – MARIO BONK – JUHA HEINONEN

Proof. Define, for Q ∈ D(Q0),

λ′(Q) := inf
∑
R∈S

λ(R),

where the infimum is taken over all collections S ⊂ D(Q0) satisfying (2.18).
Then λ′ satisfies (2.19) by definition and by assumption (2.17). To prove (2.20),
fix Q ∈ D(Q0) and a collection S ⊂ D(Q0) as in (2.18). Then fix ε > 0 and
choose for each R ∈ S a collection S(R) such that∑

P∈S(R)

λ(P) ≤ λ′(R) + ε.

Then
λ′(Q) ≤

∑
R∈S

∑
P∈S(R)

λ(P) ≤
∑
R∈S

λ′(R) + ε(#S),

and the claim follows by letting ε → 0. The lemma is proved.

Proposition 2.5. Let ! be a conformal density in Rn+1
+ , n ≥ 2, such that

(2.21) sup
t>0

∫
Rn

!(x, t)n dmn(x) < ∞.

Then there exists a constant C ≥ 1 depending only on the data of ! such that

(2.22) lim sup
t→0

!(x, t) ≤ C lim inf
t→0

!(x, t) < ∞

for almost every x ∈ Rn. In particular, the two sets

(2.23)
{

x ∈ Rn : lim inf
t→0

!(x, t) = 0
}

and
{

x ∈ Rn : lim sup
t→0

!(x, t) = 0
}

are equal up to a set of Lebesgue n-measure zero.

Proof. By the Harnack inequality (2.4), and by (2.16) and Lemma 2.4, we
find that there is a submartingale Q �→ !′(Q̂)n defined on dyadic cubes Q of Rn

such that !(Q̂) ' !′(Q̂). Assumption (2.21) implies that this submartingale is
L1-bounded. Assertion (2.22) then follows from the submartingale convergence
theorem [D, p. 450].

It is an interesting open problem to determine whether, for a conformal
density !, the sets appearing in (2.23) indeed have n-measure zero, provided
(2.21) holds. If that were the case, one could show by a standard “sawtooth
domain” argument that the set appearing on the right in (2.23) has n-measure
zero for each conformal density, independently whether (2.21) holds or not.
Such a result could be seen as a nonlinear analog of the classical theorem of
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Lusin-Privalov [Pr, p. 210 and 212], [Po, p. 126]. See Problem 4.2 below for
a precise statement of this problem.

Finally, we invite the reader to compare the above discussion with that in
[Ma], where the relationship between conformal maps and martingale theory is
discussed.

Remark 2.6. Although L1-bounded submartingales have limits almost ev-
erywhere, one cannot expect the same to be true for a given conformal density
satisfying (2.21). On the other hand, if ! is as in Proposition 2.5, then one can
always replace ! by a comparable (in general discontinuous) conformal density
!′ for which

(2.24) lim
t→0

!′(x, t) =: !̄′(x)

exists for almost every x ∈ Q0. For example, one can define !′ on the cubes
in W according to Lemma 2.4. For many problems in practice, the switch
between two comparable densities is of no consequence.

The fact that such a function !′ is only piecewise continuous makes no
difference for the theory developed in [BKR] and elsewhere; the crucial proper-
ties, the Harnack inequality (2.4) and the volume growth condition (2.5) remain
intact, and this suffices. We shall not use (2.24) in this paper however.

3. – Banach space-valued Sobolev functions

In this section, the basic theory of abstract Sobolev spaces is reviewed.
We follow the approach based on upper gradients as in [HKST]. An alternative,
and an essentially equivalent way would be to use duality as in [Am], [Re], or
“energy densities” as in [KS]. We prefer the upper gradient approach mainly
because it fits well to the theory of conformal densities; the latter are upper
gradients in a natural way.

The upper gradient approach also provides more information about point-
wise behavior of Sobolev functions: they are automatically quasicontinuous and
quasieverywhere defined. On the other hand, we have to pay a price for these
advantages; the fact that Sobolev functions are automatically quasieverywhere
defined means that we cannot freely move within the Lebesgue equivalence
class of a function. This inflexibility causes some subtle technical problems.
Therefore, in the discussion to follow, we assume initially that all the functions
are pointwise defined. Later the equivalence classes based on capacity will be
discussed.

For simplicity, we shall only consider functions whose domain of definition
Q0 is either a cube in Rn , or all of Rn . We assume also that n ≥ 2. For the
target, we let V = (V, | · |) be an arbitrary Banach space.
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Given an arbitrary function f : Q0 → V , a Borel function σ : Q0 → [0, ∞]
is said to be an upper gradient of f if

(3.1) | f (a) − f (b)| ≤
∫

γ

σ ds

whenever a and b are two points in Q0 and γ is a rectifiable path in Q0 joining
a and b.

We define the Dirichlet-Sobolev space L1,n(Q0; V ) to consist of all mea-
surable and locally integrable functions f : Q0 → V such that there exists an
upper gradient of f in Ln(Q0). There is a natural seminorm in L1,n(Q0; V )

given by

(3.2) ‖ f ‖L1,n = ‖ f ‖L1,n(Q0;V ) := inf ‖σ‖Ln(Q0),

where the infimum is taken over all upper gradients σ of f .
We say that f ∈ L1,n(Q0; V ) is separably valued if f (Q0) is a separable

subset of V . Recall from the introduction that locally integrable functions
are assumed to be essentially separably valued in any case. The following
proposition follows from [HKST, Corollary 6.8]. (Note that in [HKST], one
generally assumes n-summability both for the function and for its upper gradient,
but this assumption has no bearing on the results used and quoted here.)

Proposition 3.1. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a Banach
space, and let f ∈ L1,n(Q0; V ). Then f is n-quasicontinuous and upon changing
its values in a set of n-capacity zero f becomes separably valued.

A function f is said to be n-quasicontinuous if there are open sets of
arbitrarily small n-capacity with f continuous in the complement. The n-
capacity of a measurable set A ⊂ Rn is defined by

(3.3) capn(A) = inf ||u||n
W 1,n(Rn)

,

where the infimum is taken over all functions u in the standard Sobolev space
W 1,n(Rn) such that u ≥ 1 a.e. in a neighborhood of A. An event is said to
take place n-quasieverywhere if it takes place outside a set of n-capacity zero.
See [HKM, Chapter 4] or [MZ, Section 2.1] for the discussion of the above
concepts in the case V = R. The definitions and basic facts are similar in the
general case.

If V = Rm for some m ≥ 1, then the above definition leads to the standard
Dirichlet-Sobolev space L1,n(Q0; Rm) consisting of all locally integrable m-
tuples of n-quasicontinuous functions with n-summable distributional gradients
[Sh, Theorem 4.5]. We abbreviate L1,n(Q0; R) = L1,n(Q0). Recall that every
Lebesgue equivalence class of a function with n-summable distributional gradient
on a domain in Euclidean space has an n-quasicontinuous representative which
is unique up to a set of capacity zero. The approach via upper gradients
automatically picks up the good representative.
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For the applications in this paper, it is important to know how to handle
convergence and compactness for Banach space-valued Sobolev functions. It is
rather easy to see that there cannot be a compactness theorem of the Rellich-
Kondrachev type for Banach space-valued functions. The way to bypass this
difficulty is to consider the “components” of the functions. To this end, it is
necessary to have a weaker notion of upper gradient.

A Borel function σ : Q0 → [0, ∞] is said to be an n-weak upper gradient
of a function f : Q0 → V , if σ satisfies the upper gradient inequality (3.1) for
every curve outside a family � of curves of n-modulus zero. It is easy to see
that modn(�) = 0 if and only if there exists a Borel function τ : Q0 → [0, ∞],
τ ∈ Ln(Q0), such that

(3.4)
∫

γ

τ ds = ∞

for every locally rectifiable path γ ∈ �. It therefore follows that the existence
of an n-weak upper gradient suffices for the membership in L1,n(Q0; V ), and
moreover that

(3.5) ‖ f ‖L1,n(Q0;V ) = inf ‖σ‖Ln(Q0),

where the infimum is taken over all n-weak upper gradients of f .
By using the concept of a weak upper gradient, and [Sh, Lemma 3.6], we

find that if two functions f1, f2 ∈ L1,n(Q0; V ) agree outside a set of n-capacity
zero, then || f1 − f2||L1,n(Q0;V ) = 0. We shall, therefore, make the convention

that a function in L1,n(Q0; V ) is pointwise defined outside a set of n-capacity zero.
In particular, two functions in L1,n(Q0; V ) are identified if they agree outside
a set of n-capacity zero.

See [KM] or [Sh] for a detailed theory of upper gradients based on the
use of modulus. The Banach space-valued discussion can be found in [HKST].

Proposition 3.2. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a Banach
space, and let f : Q0 → V be a separably valued function. Then upon changing
the Lebesgue equivalence class of f the following three conditions are equivalent:

(i) f belongs to the Dirichlet-Sobolev space L1,n(Q0; V );
(ii) for each � ∈ V ∗ with |�| ≤ 1 the function 〈�, f 〉 belongs to the standard

Dirichlet-Sobolev space L1,n(Q0) and there exists a function σ ∈ Ln(Q0) that
is an n-weak upper gradient of 〈�, f 〉 for each such �;

(iii) for each � ∈ V ∗ with |�| ≤ 1 the function 〈�, f 〉 has a distributional gradient
in Ln(Q0) and there exists a function σ ∈ Ln(Q0) such that

(3.6) |∇〈�, f 〉(x)| ≤ σ(x)

for almost every x ∈ Q0, for each such �.

Moreover, in both cases (ii)-(iii) we have that

(3.7) ‖ f ‖L1,n = inf ‖σ‖Ln(Q0),

where the infimum is taken over all such common σ .
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Proposition 3.2 follows from [HKST, Theorem 3.17 and Proposition 5.4].
Notice the distinction between (ii) and (iii): according to our definitions, the
former requires that 〈�, f 〉 is quasicontinuous for all �, while the latter only
implies that 〈�, f 〉 has a quasicontinuous Lebesgue representative, a priori
dependent on �. Also notice that the requirement that f be separably valued
is automatically satisfied for f ∈ L1,n(Q0; V ) by Proposition 3.1.

Proposition 3.3. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a Banach
space, and let ( fν) be a sequence of mappings in L1,n(Q0; V ) with corresponding
upper gradient sequence (σν). Assume that

(3.8) sup
ν

||σν ||Ln(Q0) < ∞

and that the functions fν converge pointwise almost everywhere in Q0 to a mapping
f ∈ L1

loc(Q0; V ) with separable image. Then upon changing the Lebesgue equiv-
alence class of f we have that f ∈ L1,n(Q0; V ). If fν → f n-quasieverywhere,
then automatically f ∈ L1,n(Q0; V ).

Finally, if σ ∈ Ln(Q0) is any weak limit in Ln(Q0) of a subsequence of (σν),
then σ is an n-weak upper gradient of f . In particular,

(3.9) ‖ f ‖L1,n ≤ lim inf
ν→∞ ‖ fν‖L1,n .

Proof. The proposition is essentially contained in the arguments in [Sh],
[HKST], but in the lack of a precise reference, we provide the details. We use
Proposition 3.2.

Thus, fix � ∈ V ∗ with |�| ≤ 1. By Proposition 3.2, the functions 〈�, fν〉
belong to the standard Dirichlet-Sobolev space L1,n(Q0) with uniformly bounded
norms. Therefore, because 〈�, fν〉 → 〈�, f 〉 pointwise almost everywhere in
Q0, we have by standard reasoning that 〈�, f 〉 has a distributional gradient in
Ln(Q0). To be more precise, we may clearly assume that Q0 is a finite cube.
Then by the Sobolev embedding theorem [GT, Chapter 7] (compare (6.6) below)
we have that (〈�, fν〉) is a bounded sequence in the standard Sobolev space
W 1,n(Q0). By the reflexivity of W 1,n(Q0), the sequence (〈�, fν〉) subconverges
weakly to a function u in W 1,n(Q0). But because 〈�, fν〉 → 〈�, f 〉 pointwise
almost everywhere, we must have that u = 〈�, f 〉. This latter conclusion is
a standard consequence either of Mazur’s lemma [Y, Section V. 1], or of the
compactness of the embedding of W 1,n(Q0) in Ln(Q0) [GT, Chapter 7].

Next we show that

(3.10) |∇〈�, f 〉(x)| ≤ σ(x)

for almost every x ∈ Q0, whenever σ ∈ Ln(Q0) is any weak limit of a
subsequence of (σν). Indeed, it then follows from Proposition 3.2 that there
is a Lebesgue representative of f in L1,n(Q0; V ). The proof of (3.10) is
an application of Mazur’s lemma: by passing to subsequences and convex
combinations, both for the functions σν and for the corresponding functions
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fν , we may assume that ∇〈�, fν〉 → ∇〈�, f 〉 and σν → σ in Ln(Q0) and
pointwise almost everywhere; notice here that the upper gradient inequality (3.1)
is insensitive for passing to convex combinations. This understood, we also have
that σν is an upper gradient of 〈�, fν〉, and a standard Lebesgue point argument
using (3.1) (compare [Sh, Proof of Theorem 4.5]) gives that

(3.11) |∇〈�, fν〉(x)| ≤ σν(x)

for almost every x ∈ Q0. Thus (3.10) follows by passing to a limit in (3.11)
as ν → ∞.

The fact that σ is an n-weak upper gradient of f follows from [HKST,
Proof of (3′) ⇒ (1) in Theorem 3.17], while inequality (3.9) is, with all the
proven facts, obvious.

Finally, if fν → f n-quasieverywhere, then also 〈�, fν〉 → 〈�, f 〉 n-
quasieverywhere for each given � ∈ V ∗, and by strengthening the above
argument by the nice trick of Fuglede [Fu, Theorem 3 (f)], we have that
〈�, f 〉 ∈ L1,n(Q0) automatically. More precisely, after passing to convex com-
binations, we can extract from the sequence (σν) a subsequence such that the
line integral of σν converges to the line integral of σ outside a family of curves
of n-modulus zero. By using the n-quasieverywhere convergence, and the fact
that the n-modulus of all curves that pass through a fixed set of n-capacity zero
has n-modulus zero, we hence have that the upper gradient inequality holds for
the pair 〈�, f 〉 and σ for curves outside a family of n-modulus zero. It follows
that σ is an n-weak upper gradient of 〈�, f 〉. (See [Sh, Section 3] or [KSh,
Lemma 3.1] for more details here.) The second claim in the proposition now
follows from [HKST, Theorem 3.17].

The proposition is proved.

4. – Statement and proof of the main result

The goal of this section is to state and prove Theorem 4.1, which is a
generalization of Theorem 1.1 for general conformal densities.

Statements (i)-(iii) in Theorem 1.1 have obvious counterparts for general
conformal densities. Condition (iv) can be formulated by the aid of the general
definition for Oscn,∞(Rn; V ) given in (1.13), and condition (v) uses the Sobolev-
Dirichlet space described in Section 3.

We make one more remark and convention before formulating Theorem 4.1.
Given a conformal density ! in Rn+1

+ , the metric space (Rn+1
+ , d!) is separable

and hence can be embedded isometrically in the Banach space �∞. An explicit
embedding is given by

(4.1) z �→ (
d!(z, z1) − d!(en+1, z1), d!(z, z2) − d!(en+1, z2), . . .

)
,
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where en+1 = (0, 1) ∈ Rn+1
+ and {zν : ν ∈ N} is a fixed dense subset of Rn+1

+ .
Embedding (4.1) entails some choices, but we tacitly assume from now on that
the choices have been made independently of the conformal density !. Thus, in
particular, we can always think of (Rn+1

+ , d!), as well as its metric completion,
as being a subset of �∞.

As explained in Section 2, it was proved in [BKR, Theorem 4.4] that the
identity map I!, defined in (2.10), has an (n + 1)-capacity almost everywhere
defined (radial) extension to Rn ,

(4.2) i! : Rn → �∞, i!(x) = lim
t→0

I!(x, t).

The mapping i! is measurable and essentially separably valued because it is
almost everywhere a pointwise limit of continuous mappings

(4.3) I!(·, t) : Rn → �∞, x �→ I!(x, t), t > 0,

whose images are separable.

Theorem 4.1. Let ! be a conformal density in Rn+1
+ , n ≥ 2. Then the following

five conditions are equivalent:

(i) !∗(·) := sup
t>0

!(·, t) ∈ Ln(Rn),

(ii) ‖!‖Q Hn(Rn) :=
(

sup
t>0

∫
Rn

!(x, t)n dmn(x)
)1/n

< ∞,

(iii) sup
λ>0

λ
(

#{Q ∈ D(Rn) : r!(Q̂) > λ}
)1/n

< ∞,

(iv) i! ∈ Oscn,∞(Rn; �∞),
(v) i! ∈ L1,n(Rn; �∞).

Moreover, the various Lebesgue type norms appearing in conditions (i)-(v) are
equivalent with multiplicative constants only depending on the data of !.

Note that (v) has equivalent formulations given in Proposition 3.2. At this
point, (v) should be understood so that the almost everywhere defined function
i! has an n-quasicontinuous representative in L1,n(Rn; �∞). We shall later show
(in Section 5) that the (n + 1)-capacity everywhere defined trace in (4.2) is this
representative.

Problem 4.2. Let ! be a conformal density in Rn+1
+ , n ≥ 2, satisfying any

of the equivalent conditions (i)-(v) in Theorem 4.1. Is it then true that

(4.4) mn
({x ∈ Rn : lim inf

t→0
!(x, t) = 0}) = 0 ?

As explained earlier, an affirmative answer to Problem 4.2 yields an affir-
mative answer to Problem 1.3.

Remark 4.3. In view of the discussion in Section 2, the equivalence of (i)-
(iii) in Theorem 1.1 follows immediately from Theorem 4.1. Strictly speaking,
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this is not the case for the assertions (iv) and (v), for the target space for
the functions in Theorem 4.1 is �∞ rather than Rn+1. Moreover, the isometric
embedding in �∞ uses the inner metric in the image domain rather than the
Euclidean metric.

To handle this discrepancy, one should simply follow the ensuing proof
of Theorem 4.1 and observe that the arguments go over wholesale in the case
of a quasiconformal mapping with boundary values in Rn+1. The details even
simplify here because the classical Sobolev space theory applies. One can also
derive the implication “(v) in Theorem 4.1 ⇒ (v) in Theorem 1.1” more formally
as follows: Let ! = aF for a quasiconformal mapping F as in Theorem 1.1,
and assume that (Rn+1

+ , d!) has been isometrically embedded in �∞ as described
in the beginning of this section. Then define a map

(4.5) π : i!(R
n) → Rn+1

by
y �→ π(y) := f (x) ,

if x ∈ Rn is a point such that y = i!(x). The map π in (4.5) is indeed
well defined, for if x and x ′ are two distinct points on Rn , then the distance
between i!(x) and i!(x ′) in �∞ is positive by the Gehring-Hayman Theorem
2.2 — see (2.13). Moreover, the map π is easily seen to be Lipschitz, with
constant depending only on the data of the problem. Consequently,

f = π ◦ i!

is a function in the Dirichlet-Sobolev space L1,n(Rn; Rn+1), as follows directly
from the definitions. Finally note that (iv) and (v) are equivalent by Proposition
4.7, irrespectively of the situation at hand.

We now turn to the proof of Theorem 4.1.
The implication (i) ⇒ (iii) in Theorem 4.1 is of course trivial with the

estimate
‖!‖Q Hn(Rn) ≤ ‖!∗‖Ln(Rn).

Next, consider the implication (ii) ⇒ (iii). In the proof, all constants in
the relations � and ' depend only on the data of !. To begin with, it follows
from the Harnack inequality (2.4) that

(4.6) !(x, t) �
‖!‖Q Hn(Rn)

t

whenever t > 0. If we define r! as in (2.7), then (4.6) implies

(4.7) sup
Q∈D(Rn)

r!(Q̂) � ‖!‖Q Hn(Rn).
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To ease notation, we perform a scaling and assume that the supremum on the
left hand side of (4.7) is bounded by one. We then claim that the following
growth estimate for the number of Whitney cubes,

(4.8) #k := #
{

Q ∈ D(Rn) : r!(Q̂) ∈ (2−k, 2−k+1]
}

� 2kn

for k ∈ N, is enough to prove (iii). Indeed, it follows from (4.8) that

(4.9) #
{

Q ∈ D(Rn) : r!(Q̂) > λ
} ≤

m∑
k=1

#k � 2mn ' 1

λn
,

where m is such that λ ∈ (2−m, 2−m+1]. It therefore suffices to prove (4.8)
under the normalization ‖!‖Q Hn ' 1.

To this end, fix k ≥ 1, and let Q̂1, . . . , Q̂N be Whitney cubes such that

r!(Q̂i ) ∈ (2−k, 2−k+1], i = 1, . . . , N .

Then fix a positive number t with

t , min
i=1,...,N

{diam(Q̂i )},

and set, for each i = 1, . . . , N ,

St (Q̂i ) = {
(x, t) ∈ Rn+1

+ : (x, s) ∈ Q̂i for some s > t
}
.

Thus St (Q̂i ) is the shadow of the cube Q̂i on Rn × {t}.
For the following lemma, fix a cube Q̂ ∈ {Q̂1, . . . , Q̂N }.
Lemma 4.4. For each ε > 0 there exists λ ≥ 1, depending on the data of !,

and a set Tt (Q̂) ⊂ St (Q̂) such that

(4.10) H∞
n−1

(
St (Q̂) \ Tt (Q̂)

)
< ε(diam(Q̂))n−1

and that

(4.11) Tt (Q̂) ⊂ {
y ∈ Rn+1

+ : dist!(y, Q̂) ≤ λ diam!(Q̂)
} =: N!(Q̂, λ).

Recall that H∞
α denotes the Hausdorff α-content, α > 0. In order to

prove Lemma 4.4, we require the following standard modulus estimate [KR,
Proposition 4.3], [BK, Proposition 5.1]:

Lemma 4.5. Let Q̂ ∈ W be a cube, let 0 ≤ t
√

n + 1 < diam(Q̂), and let St (Q̂)

be the shadow of Q̂ on Rn × {t}. If E ⊂ St (Q̂) and if � is the family of all curves
joining Q̂ and E in Rn+1

+ , then

(4.12)
H∞

α (E)

(diam(Q̂))α
≤ C modn+1(�),

where C = C(n, α) ≥ 1.
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Proof of Lemma 4.4. The proof is a standard application of estimate (4.12)
with α = n − 1. Analogous results appear in several places in the literature, for
example in [KR, Proposition 4.3] and in [BK, Section 5]. For convenience, we
repeat the argument here.

For λ > 1 denote by Eλ the set of all points in St (Q̂) that lie outside the
neighborhood N!(Q̂, λ) of Q̂ with respect to metric d! as defined in (4.11).
If � = �(Q̂, t; λ) is the family of all rectifiable curves γ joining Q̂ to Eλ in
Rn+1

+ , then every curve γ ∈ � leaves N!(Q̂, λ). Then by the basic modulus
estimate [BKR, Lemma 3.2], we have that

(4.13) modn+1(�) ≤ C(log λ)−n

for λ ≥ 4. On the other hand, (4.12) shows that

(4.14)
H∞

n−1(Eλ)

(diam(Q̂))n−1
≤ C modn+1(�).

The lemma follows from estimates (4.13) and (4.14).

Next, choose ε = 1
2 in Lemma 4.4. Then the n-modulus in St (Q̂) of the

family �(Q̂, t) of all curves inside Tt (Q̂) joining two opposite faces of the
cube St (Q̂) satisfies

(4.15) modn(�(Q̂, t)) ≥ 1

2
> 0.

This is simply because at least half of the straight line segments joining the faces
necessarily miss St (Q̂) \ Tt (Q̂), as follows from (4.10) and from the fact that
Hausdorff content decreases in projections. The assumption n ≥ 2 is important
here.

By observing (4.15), Proposition 2.3 implies that

(4.16) r!(Q̂)n �
∑

R∈Tt (Q)

r!(R̂)n,

whenever Tt (Q) is any finite collection of cubes R ⊂ Q in Rn whose union
covers the projection of Tt (Q̂) in Rn; that is, we require in (4.16) that

(4.17)
{

x ∈ Rn : (x, t) ∈ Tt (Q̂)
} ⊂

⋃
R∈Tt (Q)

R,

where the union is assumed finite. Recalling that r!(Q̂) ∈ (2−k, 2−k+1], we now
obtain from (4.16) that

(4.18) 2−kn ' r!(Q̂)n �
∑

R∈Tt (Q)

r!(R̂)n.
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Next we note that there is only a fixed amount of overlap among the neigh-
borhoods N!(Q̂1, λ), . . . , N!(Q̂N , λ), where the notation is as in Lemma 4.4
and λ ≥ 1 corresponds to the value ε = 1

2 . Indeed, because

diam!(Q̂i ) ' r!(Q̂i ) ' 2−k

for each i = 1, . . . , N , no point in Rn+1
+ can belong to more than C of the

sets N!(Q̂i , λ) by a simple packing argument based on (2.4) and (2.5), where
C > 0 only depends on the data. From this and from the way the sets Tt (Q̂i )

were constructed in the proof of Lemma 4.4, we see that no point z = (x, t)
can belong to more than C of the sets Tt (Q̂i ), where again C > 0 only depends
on the data. Because the sets Tt (Q̂i ) can be chosen to be closed, and because
there are only finitely many of them, there exists δ > 0 such that no set of
diameter less than δ can meet more than C of the sets Tt (Q̂i ). Now choose
a finite covering Tt (Qi ) of the projection to Rn of the set Tt (Q̂i ) by cubes of
a fixed diameter t ′ < min{t, δ}. Then no point x ∈ Rn belongs to more than
a fixed number of cubes from all the coverings Tt (Qi ), i = 1, . . . , N . Clearly,
this fixed number depends only on the data of !. It therefore follows from
(4.18) that

N 2−kn �
N∑

i=1

∑
R∈Tt (Qi )

r!(R̂)n �
∫

Rn
!(x, t ′)n dmn(x) � 1,

where our normalization ‖!‖Q Hn ' 1 was also used.
This proves the growth estimate (4.8), and thereby the implication (ii) ⇒

(iii) in Theorem 1.1. The proof shows that the quantity in (iii) is bounded by
a constant (depending only on the data of !) times the quantity in (ii).

Next we prove the implication (iii) ⇒ (iv) in Theorem 1.1. First notice
that (iii) gives

sup
w∈Rn

sup
λ>0

λ
(

#{Q ∈ D(Rn) : r!(Q̂ − w) > λ}
)1/n

< ∞,

as is easily seen by using the Harnack inequality (2.4). We shall show that the
norm ‖i!‖Oscn,∞ is bounded by a constant C(n, K ) times this quantity. Here
we follow the ideas from [RS1], [RS2].

It suffices to consider a fixed translation of the dyadic cubes, and without
loss of generality we may consider the dyadic cubes in D(Rn) themselves.
Thus, fix a cube Q ∈ D(Rn) and let zQ = (xQ, tQ) be the center of the cube



QUASICONFORMAL MAPPINGS WITH SOBOLEV BOUNDARY VALUES 711

Q̂ ∈ Rn+1
+ . Then

(4.19)

∫
Q

|i!(x) − (i!)Q | dmn(x) �
∫
Q

|i!(x) − I!(zQ)| dmn(x)

≤
∫
Q

|i!(x) − I!(x, tQ)| dmn(x) +
∫
Q

|I!(x, tQ) − I!(zQ)| dmn(x)

�
∫
Q

∫ tQ

0
!(x, s) ds dmn(x) + r!(Q̂).

In order to estimate the last integral in the preceding expression we in-
troduce a “potential” M(φ) : D(Rn) → R+ of a function φ : D(Rn) → R+ as
follows

(4.20) M(φ)(Q) := 1

mn(Q)

∑
R⊂Q

R∈D(Rn)

φ(R) mn(R).

It then follows from (4.19) that the mean oscillation function Q �→ Ai!(Q) is
bounded from above by a constant C(n, K ) times the potential of the function
Q �→ r!(Q̂):

Ai!(Q) � M(r!)(Q) for Q ∈ D(Rn).

Note that instead of M(r!( ·̂ )) we here write M(r!) for simplicity.
It follows from Lemma 4.6 below that M is a bounded operator weak-�n →

weak-�n . Hence the mapping Q �→ A!(Q) belongs to weak-�n with norm
bounded by a constant times that of r!.

This completes the proof of the implication (iii) ⇒ (iv) in Theorem 1.1.
The following lemma was needed in the above proof.

Lemma 4.6. The operator

M : weak-�n → weak-�n

defined in (4.20) is bounded with norm depending only on n.

Proof. The lemma is a generalized Schur lemma, and appears in [RS2, p.
269], for example. For the convenience of the reader, we indicate the proof.
The following lemma appears in [W, p. 87]:

Let (X, µ) be a measure space, let K : X × X → [0, ∞) be measurable, and
let 1 < p < ∞. Suppose that there exists a measurable function g : X → (0, ∞)

together with a number M > 0 such that∫
X
K(x, y)g(y)p/(p−1) dµ(y) ≤ Mg(x)p/(p−1)
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for all x ∈ X and ∫
X
K(x, y)g(x)p dµ(x) ≤ Mg(y)p

for all y ∈ X . Then the operator

T f (x) =
∫

X
K(x, y) f (y) dµ(y)

is bounded T : L p(X, µ) → L p(X, µ) with ||T || ≤ M2.
By applying this lemma to the spaces �p, 1 < p < ∞, we find that

M : �p → �p is bounded. Indeed, let X = D(Rn) and let µ be the counting
measure on X . Define K(Q, Q′) = |Q′|/|Q| if Q′ ⊂ Q, and K(Q, Q′) = 0
otherwise, and choose g(Q) = |Q|α , where 0 < α < 1/p. The bounded-
ness M : weak-�n → weak-�n follows by interpolation [SW, V.3]. This proves
Lemma 4.6.

The implication (iv) ⇒ (v) follows from the left inequality in (4.21) in the
following proposition.

Proposition 4.7. Let V be a Banach space and let f : Rn → V be a function
in L1

loc(R
n; V ). Then

(4.21)
1

C
‖ f ‖L1,n(Rn ;V ) ≤ ‖ f ‖Oscn,∞(Rn ;V ) ≤ C ‖ f ‖L1,n(Rn ;V ),

where the constant C ≥ 1 depends only on n.

One should interpret Proposition 4.7 to mean that if a function f belongs
to L1,n(Rn; V ), then it belongs to Oscn,∞(Rn; V ) with the norm inequality on
the right in (4.21), and if a function f ∈ L1

loc(R
n; V ) belongs to Oscn,∞(Rn; V ),

then it has a Lebesgue representative in L1,n(Rn; V ). Moreover, f is assumed to
be a priori separably valued, which is essentially automatic if f ∈ L1,n(Rn; V )

by Proposition 3.1.
The right inequality in (4.21) for scalar-valued functions was proved by

Rochberg and Semmes [RS1, p. 228]. Their proof extends to the general case
with some modifications, but as we do not need the right inequality here, we
omit the proof. It is the left inequality that is required in this paper. As
mentioned earlier, the left inequality for scalar-valued functions appears, in a
slightly different formulation, in [CST, Appendix]. Since the argument in [CST]
is somewhat sketchy, and since a few words need to be added in order to reach
the general Banach space-valued statement, for the convenience of the reader
we provide a detailed proof of the left inequality.

To that end, fix a nonnegative, radially symmetric bump-function η ∈
C∞

0 (Rn) with
∫

Rn η dmn = 1 whose support is contained in the unit ball of
Rn . For each function f ∈ L1

loc(R
n; V ) and ε > 0, the convolutions

(4.22) fε(x) = ( f & ηε)(x) =
∫

Rn
f (x − w) ηε(w) dm(w),

are smooth functions from Rn into V . Here ηε(w) = ε−n η(w/ε).
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lemma 4.8. For each f ∈ L1
loc(R

n; V ) and ε > 0, the convolution fε satisfies

(4.23) Afε (Q) ≤
∫

Rn
Af (Q − w) ηε(w) dmn(w)

for each cube Q ⊂ Rn.

Proof. Recall the definition for Af (Q) from (1.12). Estimate (4.23) follows
from a straightforward computation:

Afε (Q) =
∫
Q

| fε(x) − ( fε)Q | dmn(x)

=
∫
Q

∣∣∣∣∫
Q

(∫
Rn

(
f (x − w) − f (y − w)

)
ηε(w) dmn(w)

)
dmn(y)

∣∣∣∣ dmn(x)

≤
∫

Rn

∫
Q

∣∣∣∣ f (x − w) −
∫
Q

f (y − w) dmn(y)

∣∣∣∣ dmn(x) ηε(w) dmn(w)

=
∫

Rn
Af (Q − w) ηε(w) dmn(w),

whence the lemma follows.

We wish to reduce the left inequality in (4.21) to the case when f is
a smooth function. To this end, we shall invoke some general interpolation
theorems as in [SW, V.3]. For small ε > 0 consider the product measure #×νε

on D(Rn) × Rn , where
# = counting measure,

dνε = ηε dmn.

Then define an operator T from functions on D(Rn)×Rn to functions on D(Rn)

by

(4.24) T a(Q) =
∫

Rn
a(Q, w) dνε(w).

We claim that
T : L p(# × νε) → L p(#) = �p

is bounded for all 1 < p < ∞ with operator norm ‖T ‖ ≤ 1. Indeed, because
νε(R

n) = 1, we have that

‖T a‖�p =
( ∑

Q∈D(Rn)

|T a(Q)|p
)1/p

≤
( ∫

Rn

∑
Q∈D(Rn)

|a(Q, w)|p dνε(w)
)1/p = ‖a‖L p(#×νε).
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Consequently, by interpolation [SW, Theorem 3.15, p. 197], we conclude that

T : weak-L p(# × νε) → weak-�p

is bounded for each 1 < p < ∞. Indeed, we obtain the inequality

‖T a‖weak-�n ≤ B ‖a‖weak-Ln(#×νε),

where B = B(n) ≥ 1 is a constant depending only on n (see [SW, p. 200]).
We apply the last inequality for the function a defined by

a(Q, w) := Af (Q − w).

Then

‖a‖weak-Ln(#×νε) = sup
λ>0

λ
(
(# × νε)({(Q, w) : Af (Q − w) > λ}))1/n

≤ ‖ f ‖Oscn,∞ .

Since Afε (Q) ≤ T a(Q) by Lemma 4.8, and because translations commute with
convolutions, we obtain from the preceding discussion that

(4.25) ‖ fε‖Oscn,∞ ≤ B(n) ‖ f ‖Oscn,∞

whenever f ∈ L1
loc(R

n; V ) and ε > 0.

Lemma 4.9. There exists a constant C = C(n) ≥ 1 such that

(4.26) ‖ |Dg| ‖Ln(Rn) ≤ C ‖g‖Oscn,∞(Rn ;V )

whenever g : Rn → V is a smooth function.

The (operator) norm of the differential |Dg(x)| of a smooth function
g : Rn → V is a continuous upper gradient of g. All these are well known
facts for scalar-valued functions g, and for the general Banach space-valued
function, see [Fe, pp. 209, 211, 347]. (Note that Federer assumes separability
for the target Banach space, but all the claims here are valid in general, because
smooth functions are separably valued. The proofs in [Fe] apply in this case.)

Before we prove Lemma 4.9, we point out how the left inequality in
Proposition 4.7 follows. If f ∈ L1

loc(R
n; V ), then we have seen that (4.25) is

valid for ε > 0. Moreover, since fε is smooth, we can apply Lemma 4.9 and
conclude that

(4.27) ‖ |D fε| ‖Ln(Rn) ≤ C(n)‖ f ‖Oscn,∞(Rn ;V )

for ε > 0. Now |D fε| is an upper gradient for fε, ε > 0, and fε converges
pointwise almost everywhere to f if ε → 0. Therefore, by (4.27) we can apply



QUASICONFORMAL MAPPINGS WITH SOBOLEV BOUNDARY VALUES 715

Proposition 3.3 to the functions f and fε. This shows that f has an n-weak
upper gradient σ such that

(4.28) ‖σ‖Ln(Rn) ≤ C(n)‖ f ‖Oscn,∞(Rn ;V )

and so the left inequality in Proposition 4.7 follows.
Proof of Lemma 4.9. The proof here is essentially that given in [CST, pp.

679-680].
Fix a cube Q0 ∈ D(Rn). It suffices to show that

(4.29)
∫

Ms

|Dg|n dmn ≤ C(n) ‖g‖n
Oscn,∞(Rn ;V )

for each s > 0, where Ms := {x ∈ Q0 : |Dg(x)| > s}. Thus, fix s > 0, and let

Qs := {
Q ∈ D(Rn) : Q ⊂ Q0, �(Q) = 2m, and Q ∩ Ms �= ∅},

where m ∈ Z is chosen so small that

(4.30) |Dg(x) − Dg(y)| << s

whenever x, y ∈ Q and Q ∈ Qs . In particular we have

(4.31)
1

2
|Dg(x)| ≤ |Dg(y)| ≤ 2 |Dg(x)|

whenever x, y ∈ Q and Q ∈ Qs . Note that

Ms ⊂
⋃

Q∈Qs

Q ⊂ Q0.

If R ⊂ Q0 is a dyadic cube we write

|Dg(R)| = max
x∈R

|Dg(x)|.

Then a routine computation based on (4.30) shows that there is a constant
b = b(n) ≥ 1 such that

(4.32)
1

b
�(R) |Dg(R)| ≤ Ag(R) ≤ b �(R) |Dg(R)|

if R ⊂ Q ∈ Qs . Now fix 0 < λ < s such that

(4.33) λ < Ag(Q)

for all Q ∈ Qs . Then for Q ∈ Qs we have that

λ < b �(Q) |Dg(Q)|,
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and hence there is a unique integer kQ ≥ 1 such that

(4.34) b 2−kQ �(Q) |Dg(Q)| ≤ λ < b 2−kQ+1 �(Q) |Dg(Q)|.
Thus (4.31) and (4.34) give that∫

Ms

|Dg|n dmn ≤
∑

Q∈Qs

∑
R⊂Q

�(R)=2
−kQ �(Q)

∫
R

|Dg|n dmn

'
∑

Q∈Qs

∑
R⊂Q

�(R)=2
−kQ �(Q)

�(R)n |Dg(R)|n

'
∑

Q∈Qs

2kQn 2−kQn �(Q)n |Dg(Q)|n '
∑

Q∈Qs

2kQn λn.

In the above sums it is understood that R is a dyadic cube.
On the other hand, Ag(R) � λ for each cube R ⊂ Q with �(R) =

2−kQ �(Q), if Q ∈ Qs . It follows that the last sum above is bounded by a
dimensional constant times ‖g‖n

Oscn,∞ . Hence we obtain (4.29), and the proof
of the lemma is complete.

We have now completed the proof of the implication (iv) ⇒ (v) in Theo-
rem 4.1.

It remains to prove the implication (v) ⇒ (i). We first require a lemma.
The lemma is valid for arbitrary conformal densities !.

Lemma 4.10. Suppose ! : Rn+1
+ → (0, ∞) is a conformal density. For each

cube Q ⊂ Rn there exists a set E ⊂ Q such that mn(E) ≥ 1
2 mn(Q) and that

(4.35) |i!(x) − (i!)Q | ≥ δr!(Q̂)

for x ∈ E, where δ > 0 depends only on the data of !.

Recall that r! is defined in (2.7). Here and below | · | denotes the norm
in �∞.

Proof. Note that r!(Q̂) ' diam!(Q̂). Then fix ε > 0 and let Gε ⊂ Q
consist of those points x for which |i!(x) − (i!)Q | ≤ ε diam!(Q̂). Let �ε

denote the family of straight line segments between the points x and (x, �(Q))

for x ∈ Gε. Then

(4.36) modn+1(�ε) = mn(Gε)

mn(Q)

by [V1, 7.2]. On the other hand,

(4.37) modn+1(�ε) ≤ C1

(
log

(
dist!(Q̂, Gε)

ε diam!(Q̂)

))−n

≤ C1
(

log(C2/ε)
)−n

by the modulus estimate [BKR, Lemma 3.2] and by (2.4). Here the constants
C1, C2 > 0 depend only on the data of !. By combining (4.36) and (4.37),
choosing ε > 0 judiciously, and letting E = Q \ Gε, we obtain the required set.
The lemma follows.
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Note that the vector (i!)Q can be replaced by any other vector in �∞ in
the statement and proof of the preceding lemma.

To finish the proof of the implication (v) ⇒ (i), fix a cube Q ⊂ Rn , and
let E ⊂ Q be as in Lemma 4.10. By [HKST, Theorem 6.2], the following
Poincaré inequality holds for �∞-valued Sobolev functions:

(4.38)
∫
Q

|i!(x) − (i!)Q | dmn(x) ≤ C diam(Q)

∫
τ Q

σ(x) dmn(x)

for each upper gradient σ of i!, where C = C(n) ≥ 1 and τ = τ(n) ≥ 1, and
τ Q is the cube with same center as Q but �(τ Q) = τ�(Q). From this and
(4.35) we obtain

(4.39)

r!(Q̂) �
∫
E

|i!(x) − (i!)Q | dmn(x) �
∫
Q

|i!(x) − (i!)Q | dmn(x)

� diam(Q)

∫
τ Q

σ(x) dmn(x),

whence

(4.40) !(Q̂) �
∫
τ Q

σ(x) dmn(x).

This implies that
!∗(x) � (Mσ)(x), x ∈ Rn,

where M denotes the Hardy-Littlewood maximal operator [St, Chapter 1]. Be-
cause M maps Ln(Rn) boundedly to Ln(Rn) (recall that n > 1), the implication
(v) ⇒ (i) follows. Moreover, the implication is quantitative in that

‖!∗‖Ln(Rn) ≤ C(n) ‖σ‖Ln(Rn).

We have thereby completely proved Theorem 4.1.

5. – Quasieverywhere defined trace

As already mentioned in the introduction, a quasiconformal map F : Rn+1
+ →

Rn+1 has radially defined trace f as in (1.5) outside an exceptional set EF ⊂ Rn

of zero (n +1)-capacity in Rn+1. It turns out that a slightly better result is true
for mappings in the Riesz class (cf. discussion after Corollary 5.2).
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Theorem 5.1. Let ! be a conformal density in Rn+1
+ , n ≥ 2, such that

(5.1) sup
t>0

∫
Rn

!(x, t)n dmn(x) < ∞.

Then there is a Borel set E! ⊂ Rn of zero n-capacity in Rn such that

(5.2)
∫ 1

0
!(x, s) ds < ∞ for all x ∈ Rn\E!.

Moreover, if

(5.3) !̄(x) = lim sup
t→0

!(x, t)

for x ∈ Rn, then !̄ is an n-weak upper gradient of the boundary mapping i! : Rn →
�∞, and ‖!̄‖Ln(Rn) ' ‖i!‖Oscn,∞(Rn ;�∞) with constants only depending on the data
of !.

Recall that we assume that an isometric embedding (Rn+1
+ , d!) → �∞ has

been chosen; see (4.1).
Proof. Fix an arbitrary cube Q1 ⊂ Rn , and let

E0 :=
{

x ∈ Q1 :
∫ 1

0
!(x, s) ds = ∞

}
.

It is easy to see that E0 is a Borel set. We claim that capn(E0) = 0, where
capn denotes n-capacity in Rn as defined in (3.3). This will be enough to show
the first part of the theorem.

We may assume that Q1 is the unit cube in Rn . Fix k ∈ N. If capn(E0) > 0,
then there exists δ > 0, independent of k (see [HKM, Theorem 2.2 (v)]), such
that for some tk > 0 we have that capn(Ek) > δ, where

Ek :=
{

x ∈ Q1 :
∫ 1

tk

!(x, s) ds ≥ k
}

.

Fix a cube Q2 in Rn with �(Q2) = �(Q1) = 1 and dist(Q1, Q2) = 1, and
consider the family �k of curves in Rn connecting Ek ⊂ Q1 and Q2. Then
capn(Et ) > δ implies

(5.4) modn(�k) > δ′ > 0,

where δ′ is independent of k (see e.g. [Zie]).
On the other hand, consider an arbitrary locally rectifiable curve γ ∈ �k , and

suppose x1 ∈ Ek ⊂ Q1 and x2 ∈ Q2 are the end points of γ . By the Gehring-
Hayman theorem (cf. Proposition 2.2), up to a fixed constant depending only
on the data of !, the hyperbolic geodesic α joining (x1, tk) and (x2, tk) has the
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smallest !-length �!(α) among all curves in Rn+1
+ with the same end points.

By choice of Q1 and Q2, the hyperbolic geodesic α has bounded hyperbolic
distance to en+1. Therefore, by definition of Ek we have that �!(α) � k. It
follows that ∫

γ

!(γ (x), tk) |dx | ≥ Ck

with a constant C > 0 independent of γ and k. This shows that the density
σ(x) = 1

Ck !(x, tk) on Rn is admissible for the curve family �k . Hence

modn(�k) � (1/kn)

∫
Rn

!(x, tk)
n dmn(x) � 1/kn → 0 as k → ∞,

where we used the assumption (5.1). This contradicts (5.4).
To prove the second part of the theorem consider the continuous mappings

(5.5) It : Rn → �∞, x �→ It (x) = I!(x, t),

and the functions

(5.6) !t : Rn → (0, ∞), x �→ !t (x) = !(x, t),

for 0 < t < 1. Let γ : [0, �(γ )] → Rn be a rectifiable curve parametrized by
the arc length, with end points a and b. Then γt (s) = (

γ (s), t
)
, s ∈ [0, �(γ )],

is a curve in Rn × {t} ⊂ Rn+1
+ with end points (a, t) and (b, t). Moreover,

|It (a) − It (b)| = d!

(
(a, t), (b, t)

) ≤
∫ �(γ )

0
!
(
γ (s), t

)
ds

=
∫ �(γ )

0
!t
(
γ (s)

)
ds,

which implies that !t is an upper gradient of It . Inequality (5.2) implies that
the equality limt→0 It (·) = i!(·) is valid n-quasieverywhere on Rn , and by our
hypothesis (5.1) the Ln-norm of the functions !t is uniformly bounded indepen-
dent of !. So from Proposition 3.3 we obtain that i! ∈ L1,n(Rn; �∞) (without
change of the Lebesgue class of i!; see the remark following Theorem 4.1). In
addition, any weak limit σ : Rn → [0, ∞] of !t as t → 0 is an n-weak upper
gradient of i!. By Mazur’s lemma such a weak limit σ will be the pointwise
limit almost everywhere of convex combinations of the functions !t . This shows
that

σ(x) ≤ !̄(x)

for almost every x ∈ Rn . It is easy to see that this implies that
∫
γ σ ds ≤∫

γ !̄ ds for all curves γ in Rn outside a family � of curves of n-modulus zero
(cf. [HKST, Lemma 3.23]). Hence !̄ is an n-weak upper gradient of i!.

If we define
!(x) := lim inf

t→0
!(x, t)
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for x ∈ Rn , then the same argument shows that

!(x) ≤ σ(x)

for almost every x ∈ Rn , whenever σ is a n-weak upper gradient of i!. By
Proposition 2.3 there is a constant C > 0 depending only on the data of ! such
that !̄(x) ≤ C!(x) for almost every x ∈ Rn . Hence

‖i!‖L1,n(Rn ;�∞) ≤ ‖!̄‖Ln(Rn) � inf ‖σ‖Ln(Rn) = ‖i!‖L1,n(Rn ;�∞),

and the proof of the theorem is complete.

Corollary 5.2. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal mapping

in the Riesz class. Then there is a Borel set EF ⊂ Rn of zero n-capacity in Rn such
that the limit

(5.7) lim
t→0

F(x, t) = f (x)

exists for each x ∈ Rn\EF . The function f as defined radially in (5.7) for x ∈ Rn\E f

is an n-quasicontinuous representative of the trace f in the Dirichlet-Sobolev space
L1,n(Rn; Rn+1). Moreover, the sets

(5.8) {x ∈ Rn : D f (x) = 0} and {x ∈ Rn : lim sup
t→0

aF (x, t) = 0}

are equal up to a set of Lebesgue n-measure zero.

Note that the class of sets in Rn with vanishing n-capacity in Rn is contained
in the class of sets of vanishing (n+1)-capacity in Rn+1 (where Rn is considered
as an n-dimensional hyperplane in Rn+1), but the former class is strictly smaller
than the latter. See e.g. [Mz, Chapter 7.2.3]. If F : Rn+1

+ → Rn+1 is an arbitrary
quasiconformal map, then the limit in (5.7) exists only outside a set EF ⊂ Rn

which has (n + 1)-capacity zero in Rn+1. Therefore, according to Corollary 5.2
the exceptional sets EF for quasiconformal maps F in the Riesz class are
a priori smaller than for general quasiconformal maps. On the other hand,
it is not clear which exceptional sets can actually arise at all. In the plane
the situation is better understood according to a result by Kaplan [K]: Every
compact set E ⊂ R of vanishing logarithmic capacity (which is the same as
vanishing 2-capacity in R2) can arise as the exceptional set of a conformal map
F : R2

+ → R2 in the sense that the limit in (5.7) exists except for x ∈ E , where
it is infinite.

Proof of Corollary 5.2. We apply the previous theorem to the density
! = aF . Since

∫ 1
0 !(x, t) dt < ∞ implies the existence of the limit in (5.7)

(cf. [BK, Lemma 7.4]), a set EF as required exists.
Recall the Lipschitz map π from Remark 4.3. Then f = π ◦ i!, and it

follows that f as defined in (5.7) is an n-quasicontinuous representative of the
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boundary trace of F , since i! is such a representative for the boundary trace
of I!.

To see that the sets in (5.8) agree up to a set of measure zero, note that up
to a dimensional constant |D f | is a minimal weak upper gradient of f (cf. [Sh,
Proof of Theorem 4.5]). So if σ is any n-weak upper gradient of f , then

|D f (x)| ≤ C(n)σ (x)

for almost every x ∈ Rn . By Theorem 5.1 we know that

σ = āF := lim sup
t→0

aF (·, t)

is an n-weak upper gradient of f . Hence up to a set of measure zero, the set
on the right side of (5.8) is contained in the set on the left side.

For the other direction we use (4.40) from the proof of the implication (v)
⇒ (i) in Theorem 4.1. We apply this to ! = aF , the n-weak upper gradient
σ = |D f | of f , and let the cube Q shrink to a given point x . Then the
Lebesgue differentiation implies that

āF (x) ≤ |D f (x)|

for almost every x ∈ Rn . This shows that up to a set of measure zero, the set
on the left side of (5.8) is contained in the set on the right side. The corollary
follows.

Remark 5.3. If F : Rn+1
+ → Rn+1, n ≥ 2, is a quasiconformal mapping

satisfying (ii) in Theorem 1.1, it is tempting to try to adapt the argument in
Theorem 5.1 and prove that the boundary trace f belongs to the Dirichlet-
Sobolev space L1,n(Rn; Rn+1). This approach does not work, however, for
the simple reason that the maps ft (x) = f (x, t), t > 0, need not belong to
L1,n(Rn; Rn+1). Theorem 5.1 is another instance where the approach via general
densities and Sobolev spaces comes in handy.

6. – Two compactness results

In this section, as an application of the techniques introduced earlier in this
paper, we state and prove two compactness results.

Our second compactness result (Theorem 6.2) is about general conformal
densities, and it contains the first result (Theorem 6.1), which is about quasicon-
formal mappings, as a special case. We find it instructive to present and prove
the quasiconformal case first, and then indicate the changes that are required in
the general case.
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Theorem 6.1. Let (Fν) be a sequence of K -quasiconformal mappings from
Rn+1

+ into Rn+1, n ≥ 2. Suppose that

(6.1) H := sup
ν

‖aFν‖Q Hn(Rn) < ∞,

and that the sequence (Fν) converges uniformly on compacta to a nonconstant
mapping F : Rn+1

+ → Rn+1.
Then F is K -quasiconformal, and we have that

(6.2) ‖aF‖Q Hn(Rn) � H < ∞,

where the constant implicit in (6.2) depends only n and K .
Moreover, for every cube Q0 ⊂ Rn, the sequence of boundary mappings

( fν |Q0) converges to the boundary map f |Q0 weakly in the Sobolev space
W 1,n(Q0; Rn+1).

Recall the notational convention: fν and f denote the traces of the maps
Fν and F , respectively, as defined in (1.5). Note that the limiting map F is
K -quasiconformal [V1, Section 21]. The assumption that F is nonconstant can
be replaced by the normalization

aFν (0, 1) = 1

for the averaged derivative.
By using the properties of the averaged derivative, (1.8), we infer that

(6.2) follows from (6.1) and from the locally uniform convergence. We thus
have, by Theorem 1.1, that the traces fν and f belong to the Dirichlet-Sobolev
space L1,n(Rn; Rn+1) with uniformly bounded norm. We shall see that the
traces restricted to a fixed cube Q0 ⊂ Rn belong to the standard Sobolev space
W 1,n(Q0; Rn+1) with uniformly bounded norm. By the reflexivity of the Sobolev
space, the sequence ( fν |Q0) has weak limits, and Theorem 6.1 further asserts
that there is precisely one weak limit namely f |Q0. This, of course, is the
main point of Theorem 6.1.

Note that if (Fν) is a locally uniformly convergent sequence of conformal
maps in the upper half plane R2

+ with derivatives uniformly bounded in the
Hardy space H 1, then an analogous result to Theorem 6.1 can be proved by
using the fact that H 1 is a dual space (of VMO).

Finally, we remark that the hypothesis (6.1) is satisfied if

sup
ν

Hn(∂ Fν(R
n+1
+ )) < ∞

by [BK, Theorem 1.4].

Proof of Theorem 6.1. After the preceding discussion it remains to prove
the statement about the convergence of the boundary traces.
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Fix a cube Q0 ⊂ Rn . For simplicity, we denote the traces fν |Q0 and f |Q0
by fν and f , respectively. As already remarked above, these traces exist. We
first claim that ( fν) is a uniformly bounded sequence in the Sobolev space
W 1,n(Q0). Indeed, a uniform bound

(6.3) sup
ν

∫
Q0

|D fν |n dmn ≤ C < ∞

follows from the hypothesis (6.1) and from Theorem 1.1, and so it remains to
show that

(6.4)
∫

Q0

| fν |n ≤ C < ∞.

Here and in the rest of the proof C will denote various positive constants
independent of ν. The bound (6.4) can be obtained from (6.3) and from a
Poincaré type inequality as follows. First note that by Proposition 2.3 and by
(6.1) we have that

aFν (z0) ≤ C < ∞,

where z0 is the center of Q̂0. Now modulus estimates as, for example, in
Lemma 4.4 (see [HeK, Lemma 6.6]) and the locally uniform convergence Fν →
F imply that there exists, for each large enough ν ∈ N, a set Eν ⊂ Q0 such
that mn(Eν) ≥ 1

2 mn(Q0) and that

(6.5) sup
ν

sup
x∈Eν

dist
(

fν(x), F(z0)
) ≤ C < ∞.

Therefore ∫
Q0

| fν |n dmn �
∫

Q0

| fν − ( fν)Eν |n dmn + mn(Q0)|( fν)Eν |n

≤ C
∫

Q0

|D fν |n + C,

where the second inequality follows from the Poincaré inequality

(6.6)
∫

Q0

|u − uE |n dmn ≤ C(n)
mn(Q0)

2

mn(E)

∫
Q0

|Du|n dmn

valid for all functions u with n-summable distributional gradient in Ln(Q0) and
for all measurable sets E ⊂ Q0 [GT, Section 7.8]. Thus (6.4) follows.

Now let g be any weak limit of a subsequence of ( fν) in W 1,n(Q0; Rn+1).
We continue to denote the subsequence by ( fν), and our task is to show that
g = f .
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To this end, let Q ⊂ Q0 be a dyadic cube. As before, zQ = (xQ, tQ)

denotes the center of the cube Q̂ as in (1.2). We estimate

(6.7)

∫
Q

| f (x) − g(x)| dmn(x) ≤
∫
Q

| f (x) − F(zQ)| dmn(x)

+
∫
Q

|F(zQ) − Fν(zQ)| dmn(x)

+
∫
Q

|Fν(zQ) − fν(x)| dmn(x)

+
∫
Q

| fν(x) − g(x)| dmn(x).

Recall the definition for raF from (2.7), let r := raF and rν = raFν
for ν ∈ N,

and recall the operator M from (4.20). The first and the third term in the
preceding sum can be bounded from above by a constant C(n, K ) times the
potentials M(r)(Q) and M(rν)(Q), respectively. For this estimation, see the
proof of the implication (iii) ⇒ (iv) of Theorem 4.1 in Section 4.

Next, by the Rellich-Kondrachev compactness theorem [GT, Section 7.10],
we may pass to a subsequence, still denoted by ( fν), which converges to g in
L1(Q0). It follows that the Hardy-Littlewood maximal functions

M( fν − g)(x) = sup
x∈Q

∫
Q

| fν(x) − g(x)| dmn(x), Q ⊂ Q0,

converge to zero in measure as ν → ∞, and so by passing to yet another
subsequence, we may assume that M( fν − g)(x) → 0 for almost every x ∈ Q0
as ν → ∞.

Assume now that the set {x ∈ Q0 : f (x) �= g(x)} has positive measure.
Then there are x0 ∈ Q0 and δ > 0 such that

(6.8) δ < lim inf
Q↓x0

∫
Q

| f (x) − g(x)| dmn(x),

where the notation Q ↓ x0 means that Q runs through all dyadic cubes in Q0
that contain x0 and shrink down to x0. Moreover, by the preceding discussion,
we may assume that

(6.9) lim
ν→∞ M( fν − g)(x0) = 0.

The preceding understood, we conclude from (6.7) and (6.9) that there is
a positive integer N0 such that

(6.10) δ < M(r)(Q) + |F(zQ) − Fν(zQ)| + M(rν)(Q)
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for all dyadic cubes Q in Q0 that contain x0 and satisfy �(Q) ≤ 2−N0 �(Q0),
and for all large enough ν. If we recall that r(Q̂) ' diam(F(Q̂)), we obtain
from Theorem 4.1 (iii), and from (6.2), that the function Q �→ r(Q̂) is in weak-
�n (on the cubes D(Rn)). The same holds true for rν , and by the hypotheses
(6.1), the weak-�n norms are uniformly bounded (that is, independent of ν).

Next recall that M : weak-�n → weak-�n is bounded (see the discussion
after (4.20)). We can therefore pick an integer L > 0, independent of ν, such
that

(6.11)
#
{

Q : Q ⊂ Q0 dyadic and M(r)(Q) > δ/3
}

+ #
{

Q : Q ⊂ Q0 dyadic and M(rν)(Q) > δ/3
}

< L .

We may obviously assume that the integer N0, chosen above before (6.10), is
large enough so that M(r)(Q) ≤ δ/3 for all dyadic Q ⊂ Q0 with �(Q) ≤
2−N0 �(Q0). Inequality (6.10) then implies

(6.12)
2δ

3
< |F(z0) − Fν(z0)| + M(rν)(Q)

whenever �(Q) ≤ 2−N0 �(Q0). On the other hand, for each ν there exists, by
(6.11), a dyadic cube Q ⊂ Q0 that contains x0 and satisfies both

(6.13) 2−L−1 2−N0 �(Q0) ≤ �(Q) ≤ 2−N0 �(Q0)

and

(6.14)
δ

3
< |F(zQ) − Fν(zQ)|.

Now there are only finitely many cubes satisfying condition (6.13), and hence
by passing to a subsequence, we may assume that (6.14) holds for a fixed
cube Q and for all ν. But this is an obvious contradiction as Fν → F locally
uniformly in Rn+1

+ .
We have thus shown that fν converges weakly to f in W 1,n(Q0; Rn+1),

and the proof of Theorem 6.1 is thereby complete.

Next we formulate and prove an abstract version of Theorem 6.1.

Theorem 6.2. Let (!ν) be a sequence of conformal densities in Rn+1
+ , n ≥ 2,

with uniformly bounded data. Suppose that

(6.15) H := sup
ν

‖!ν‖Q Hn(Rn) < ∞,

and that the sequence (!ν) converges uniformly on compacta to a density !0 �≡ 0 on
Rn+1

+ . Then !0 is a conformal density with

(6.16) ‖!0‖Q Hn(Rn) ≤ H.

Moreover, for each cube Q0 ⊂ Rn and each � ∈ (�∞)∗, the functions 〈�, i!ν 〉|Q0

converge weakly in the Sobolev space W 1,n(Q0) to the function 〈�, i!0〉|Q0.
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Note that estimate (6.16) is a direct consequence of the locally uniform
convergence !ν → !0. It is also clear that !0 is a conformal density, that is, it
satisfies (2.4) and (2.5).

Next, consider the mappings

Iν = I!ν : Rn+1
+ → (Rn+1

+ , d!ν )

as in (2.10), and similarly for I0 = I!0 . We adopt the conventions made around
(4.1) and assume that the mappings Iν , I0 take values in the Banach space
�∞. The discussion now parallels to that after the statement of Theorem 6.1.
Conditions (6.15) and (6.16) imply by Theorem 4.1 that the traces

iν = i!ν : Rn → �∞

belong to the Dirichlet-Sobolev space L1,n(Rn; �∞) with uniform norm bound
for ν ∈ N. From the Banach space-valued Sobolev embedding theorem [HKST,
Theorem 6.2] we conclude that

sup
ν

∫
Q0

|iν(x) − (iν)Q0 |n dmn(x) ≤ C < ∞,

where (iν)Q0 stands for the mean value of iν over Q0 as defined in (1.10) and
(1.11). The modulus estimates alluded to in connection with (6.5) apply equally
well in the setting of conformal densities and we conclude that there exist sets
Eν ⊂ Q0 such that mn(Eν) ≥ 1

2 mn(Q0) and that

(6.17) sup
ν

sup
x∈Eν

dist
(
iν(x), I0(z0)

) ≤ C < ∞,

where z0 is the center of Q̂0 and the distance is taken in �∞. As in the proof
of Theorem 6.1, therefore, we obtain a uniform bound for the traces iν in
Ln(Q0; �∞), provided one can show a Poincaré inequality of the type (6.6) for
Banach space-valued Sobolev mappings. Such an inequality follows from the
results in [HaK], as is presented in Lemma 6.3 below.

The preceding discussion understood, we conclude that the sequence of
mappings iν : Q0 → �∞ is uniformly bounded in the Sobolev norm,

(6.18) ‖iν‖W 1,n(Q0;�∞) := ‖iν‖Ln(Q0;�∞) + inf ‖σν‖Ln(Q0) ≤ C < ∞,

where the infimum is taken over all upper gradients σν of iν , and where C is
independent of ν ∈ N. On the other hand, there is no Rellich’s theorem for
Banach space-valued Sobolev functions, so that we have to be satisfied with
the formulation of Theorem 6.2 via duality.

Before turning to the proof of Theorem 6.2, we require the following
lemma.
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Lemma 6.3. Let V be a Banach space and let u : Q0 → V be a function in
L1(Q0; V ) ∩ L1,n(Q0; V ), where Q0 ⊂ Rn is a cube and n ≥ 2. The inequality

(6.19)
∫

Q0

|u − uE |n dmn ≤ C(n)
mn(Q0)

2

mn(E)

∫
Q0

σ n dmn

holds for every upper gradient σ of u and for every measurable subset E ⊂ Q0.

Proof. It follows from [HaK, Proof of Theorem 5.2, p. 25, and Theorem
5.3] (see also [HKST, Section 6]) that for almost every x , y in Q0 the inequality

(6.20) |u(x) − u(y)| � Jσ(x) + Jσ(y)

is valid, where J is a generalized Riesz potential satisfying

‖Jσ‖Ln(Q0) � diam(Q0) ‖σ‖Ln(Q0).

Thus, by integrating (6.20) first over E and then over Q0, we obtain∫
Q0

∫
E

|u(x) − u(y)|n dmn(y) dmn(x)

� mn(E)

∫
Q0

Jσ(x)n dmn(x) + mn(Q0)

∫
E

Jσ(y)n dmn(y),

and therefore∫
Q0

|u(x) − uE |n dmn(x) �
mn(Q0)

mn(E)

∫
Q0

Jσ(x)n dmn(x)

�
mn(Q0)

2

mn(E)

∫
Q0

σ n(x) dmn(x),

as desired. Finally, the constants above only depend on n. The lemma follows.

Proof of Theorem 6.2. Let !ν , !0 be as in the hypotheses, and let
Q0 ⊂ Rn be a cube. As we already pointed out in the preceding discussion,
estimate (6.16) is an immediate consequence of the locally uniform convergence
!ν → !0. Then fix � ∈ (�∞)∗. Without loss of generality, we assume that
|�| ≤ 1. By (6.17) and by (6.19) we have that (6.18) holds, as explained above.
Because every upper gradient of iν is an upper gradient of 〈�, iν〉 (see [HKST,
Proof of Theorem 3.17]), and because the Sobolev space defined via upper
gradients agrees with the standard Sobolev space in Euclidean domains [Sh,
Theorem 4.5], we have from (6.18) that the sequence (〈�, iν〉) is bounded in
W 1,n(Q0). Let g be any weak limit of a subsequence of (〈�, iν〉) in W 1,n(Q0);
we continue to denote the subsequence by (〈�, iν〉). Analogously to the proof
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of Theorem 6.1, our task is to show that g = 〈�, i0〉. For this, we argue much
as in the proof of Theorem 6.1.

Thus, let Q ⊂ Q0 be a dyadic cube. We abbreviate rν := r!ν (see (2.7))
and estimate as in (6.7), and in the subsequent discussion,∫

Q

|〈�, i0(x)〉 − g(x)| dmn(x)

≤
∫
Q

|〈�, i0(x) − I0(zQ)〉| dmn(x) + |〈�, I0(zQ) − Iν(zQ)〉|

+
∫
Q

|〈�, Iν(zQ) − iν(x)〉| dmn(x)

+
∫
Q

|〈�, iν(x)〉 − g(x)| dmn(x)

� M(r0)(Q) + |I0(zQ) − Iν(zQ)| + M(rν)(Q)

+
∫
Q

|〈�, iν(x)〉 − g(x)| dmn(x).

Now the assertion g = 〈�, i0〉 follows precisely as in the proof of Theorem 6.1,
by using Theorem 4.1.

This completes the proof of Theorem 6.2.
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[Ri] F. Riesz – M. Riesz, Über die Randwerte einer analytischen Funktion, 4. Cong.
Scand. Math., Stockholm (1916), 27-44.

[RS1] R. Rochberg – S. Semmes, End point results for estimates of singular values of
singular integral operators, Contributions to operator theory and its applications (Mosa,
AZ, 1987), pp. 217-231, in Oper. Theory Adv. Appl. 35, Birkhäuser, Basel, 1988.
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