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Degree Theory for VMO Maps on Metric Spaces
and Applications to Hörmander Operators

FRANCESCO UGUZZONI – ERMANNO LANCONELLI

Abstract. We construct a degree theory for Vanishing Mean Oscillation functions
in metric spaces, following some ideas of Brezis & Nirenberg. The underlying
sets of our metric spaces are bounded open subsets of RN and their boundaries.
Then, we apply our results in order to analyze the surjectivity properties of the
L-harmonic extensions of VMO vector-valued functions. The operators L we are
dealing with are second order linear differential operators sum of squares of vector
fields satisfying the hypoellipticity condition of Hörmander.

Mathematics Subject Classification (2000): 35H20 (primary), 47H11, 43A85
(secondary).

1. – Introduction

Given a smooth bounded domain � ⊆ RN , any continuous function ϕ :
∂� → SN−1 has a continuous extension � : �̄ → RN such that �� = 0 in
�. Moreover, if deg(ϕ, ∂�, SN−1) �= 0 then �(�) ⊇ D(0, 1) (� is the Laplace
operator and D(0, r) = {x ∈ RN | |x | < r}). The first assertion follows from
classical results of potential theory while the second one is a consequence of
the properties of topological degree for continuous maps (see e.g. [40]).

Motivated by some problems arising in nonlinear PDE and calculus of
variations, Brezis and Nirenberg extended the previous result to functions ϕ ∈
VMO(∂�, SN−1), i.e. to functions with vanishing mean oscillation with respect
to the surface measure and to the Euclidean balls centered on ∂�. In doing that
they were led to construct a degree theory for VMO functions generalizing the
classical topological one. Brezis and Nirenberg extension of the above result
can be stated as follows [9].
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(BN) Let � be a bounded open subset of RN with smooth boundary and denote by
P(x, y), x ∈ �, y ∈ ∂�, its Poisson kernel. Then

(i) for any ϕ ∈ VMO(∂�, SN−1),

�(x) =
∫

∂�

P(x, y)ϕ(y)dσ(y), x ∈ �,

is well defined and harmonic in � (here dσ denotes the surface measure).

(ii) � ∈ VMOϕ , i.e. � ∈ VMO(�̄, RN ) and its “trace” on ∂� is the func-
tion ϕ.

(iii) If deg(ϕ, ∂�, SN−1) �= 0 then �(�) ⊇ D(0, 1).

We refer to [9] for the precise meaning of VMOϕ; we also refer to Section
3.3 of this paper, where the notion of VMOϕ is extended to more general
settings. The first assertion of this theorem is a mere consequence of the
VMO(∂�, SN−1)-function summability with respect to the harmonic measures
P(x, y)dσ(y), x ∈ �. (ii) follows from the properties of VMOϕ and P .
Assertion (iii) is the strongest one: its proof requires the degree theory for
VMO functions developed in [8]-[9].

The aim of this note is to extend Theorem (BN) to the more general
setting of the linear differential operators that are sums of squares of vector
fields satisfying the Hörmander hypoellipticity condition. These operators appear
in many theoretical fields besides being used in the mathematical modeling of
non-isotropic and highly non-homogeneous materials (see e.g. [37], [13] and
the bibliography therein). Hörmander operators have been widely studied in
the past twenty years and there is plenty of references in literature. For our
purposes, however, we may only quote the papers by Nagel-Stein-Wainger [38]
and by Jerison-Sanchez Calle [31].

An operator

L =
p∑

j=1

X2
j

satisfies the Hörmander condition in RN if the X j are C∞ vector fields such
that

(1) rank Lie(X1, . . . , X p)(x) = N ∀x ∈ RN .

We have denoted by Lie(X1, . . . , X p) the Lie algebra generated by X1, . . . , X p.
If (1) is satisfied, then L is hypoelliptic and one of its main features is the
structure of its fundamental solution �. Indeed, the following local estimates
have been proved in [38] and [41]

�(x, y) ∼= d(x, y)2

|Bd(x, d(x, y))| ,

where d denotes the control distance related to X1, . . . , X p and |·| the Lebesgue
measure on RN .
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In extending Theorem (BN) to the Hörmander operators L , our main task
is the construction of a degree theory for functions in VMO spaces modeled
on control metrics.

In fact, our construction relies on distances d on RN that satisfy very
general and mild conditions. At this stage we shall work in abstract setting in
order to emphasize the metric nature of our results.

We also stress that our degree theory seems to be applicable to settings
other than Hörmander operators. It could be used for extending Theorem (BN)
to X -elliptic operators, i.e. to linear second order partial differential operators
with nonnegative characteristic form that are “elliptic” with respect to suitable
control distances (see [32]). Moreover, our degree could be applied for studying
lifting problems in Sobolev spaces related to general families of vector fields (for
such Sobolev spaces we refer to [26], [24], [36], [29] and to the bibliography
therein).

In recent years various extensions of the classical topological degree have
been proposed by several authors (see [18], [7], [21], [3], [27], [28]). In our
generalization we follow the lines of [8]-[9] since they appear the most easily
adaptable to a general metric setting. The starting point in the construction
consists in approximating a VMO function u by means of its integral averages
ūε over d-balls of radius ε. However, in doing so, one encounters a difficulty:
the function (x, ε) �→ ūε(x) need not be continuous even though the d-topology
is the Euclidean one. We evade this obstacle by taking suitable weighted means
ûε instead of ūε. We then prove that the resulting degree is independent of the
weight if the measure of the d-balls satisfies a doubling condition (see Section
2 for the details).

In generalizing the theory in [8]-[9] a major difficulty arises when dealing
with the trace problem for VMO functions. For general control distances this
problem is much more difficult than that related to the Euclidean metric (see
[23], [15]-[17], [2], [34], [1]). The approach we propose is the most original
contribution of this work: in the remaining of this introduction we shall give
a brief description of the steps we have taken to address the problem. The
process is split in two basic parts: (1) the development of a trace theory for
VMO functions from a purely metric and measure theoretical point of view;
(2) the analysis of the link between our definition of trace and the L-harmonic
extensions of VMO functions. The first step is accomplished in the following
way: we assume the existence of a doubling Borel measure σ on (∂�, d) and
we give a definition of trace modeled on the structure of the integral averages
in the doubling space (∂�, d, σ ). We would like to quote the papers [14], [29]
where the main properties of the doubling spaces are studied. We stress that
our definition of the class VMOϕ differs from the one given in [9] which does
not seem to work in the general setting of control distances. Nevertheless our
definition allows to establish the same relation proved in [9] between the degree
of a map u ∈ VMOϕ(�) and the degree of its trace ϕ ∈ VMO(∂�) (see Theorem
39). Moreover our definition of trace seems to be somehow comparable with
that given by Danielli-Garofalo-Nhieu [15]-[17] and by Monti-Morbidelli [34]
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for Sobolev functions (see Remark 54). Then, the abstract theory developed in
this first step seems to be satisfactory. As far as the second step goes, the main
difficulties are due to: (2-i) the possible presence of characteristic points on
∂�, which makes harder to find a suitable doubling measure σ ; (2-ii) the need
of finding suitable estimates of the L-harmonic measures on ∂� in terms of σ .
These two problems are quite delicate and intimately related to each other. In
the special but significant case when L is a sub-Laplacian on a Carnot group
G, we are able to find the required estimates of the L-harmonic measures µx

(see Theorem 50) for some particular regular domains of G, with the same
arguments used in our previous paper [42]. The natural choice of the measure
σ which is suggested by our estimates of µx is the following:

(2) dσ = 〈Aν, ν〉 1
2 dHN−1,

where 〈Aν, ν〉 is the characteristic form of the operator L applied to the outer
unit normal ν to ∂�, and HN−1 denotes the (N − 1)-dimensional Hausdorff
measure. We would like to remark that this measure plays a crucial role
in the trace problem for generalized Sobolev functions, as first pointed out
by Danielli-Garofalo-Nhieu [15]-[17] (see also [35] where σ is studied in a
geometric measure theory context). In such papers (see also [11]) the authors
also prove that the above measure σ turns out to be doubling on (∂�, d) in
some significant cases. As a consequence we finally get our generalization of
Theorem (BN) to the sub-Laplacians on these domains (see Theorem 52 and
Remark 53). In the case of general Hörmander operators, we give an abstract
theorem (Theorem 49) which simply summarizes the hypotheses we need in
order to apply our degree theory for obtaining Theorem (BN). We plan to look
for more explicit conditions in a forthcoming paper.

We next give a rather detailed plan of the paper and also list the hypotheses
we shall make during the construction of our degree. In Section 2.1, after
introducing the main notation, we shall define the degree for maps on a bounded
domain � of RN which are VMO with respect to d, and we shall establish
its basic properties. We shall also prove an extension to VMO maps of the
Brouwer fixed point theorem by using the BMO-homotopy invariance of the
degree. Throughout this Section 2.1 d will be any distance on RN only satisfying
the following hypothesis:

(H1) the topology on RN induced by d is the Euclidean one.

In Section 2.2, together with (H1) we shall assume that

(H2) d satisfies the doubling condition

and that

(H3) the d-balls enjoy a chain-connectivity property.

We directly refer to Section 2.2 for the exact meaning of (H2) and (H3). We
explicitly remark that (H3) is satisfied by any control distance while (H1) and
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(H2) hold for control distances related to vector fields satisfying the Hörmander
condition. With (H2) and (H3) in hand we shall be able to prove that our
definitions of VMO and degree do not depend on the choice of the weight used
in defining the averages ûε.

Sections 3.1 and 3.2 are devoted to an analogous construction of the degree
for maps defined on the boundary of �, with values in a compact manifold
Y , which are VMO in the metric space (∂�, d) := (∂�, d|∂�) endowed with a
Borel measure σ satisfying

(H4) 0 < σ(B) < +∞ for every metric ball B of (∂�, d)

and the crucial assumption:

(H6) (∂�, d, σ ) is a doubling space.

In this construction we also assume that

(H5) ∂� is smooth,

so that the classical degree for continuous maps from ∂� to Y is defined.
Section 3.3 contains the core of the paper, i.e. the definition of VMOϕ(�)

that we have already discussed above. The domain � will be supposed to also
satisfy the following boundary regularity condition with respect to the d-balls:

(H7) there exist c > 0 and ε0 > 0 such that |Bd(y, ε) ∩ �c| ≥ c|Bd(y, ε)| for
every y ∈ �c and 0 < ε < ε0.

In Section 3.4 we shall examine the link between the degree of a map u ∈
VMOϕ(�) and the degree of its trace ϕ ∈ VMO(∂�). In Section 3.5 we shall
take up the study of a class of extension integral operators. In particular we shall
show that the “L-harmonic extension” of a function ϕ ∈ VMO(∂�) belongs to
VMOϕ(�) and takes the value ϕ at the boundary, nontangentially pointwise
σ -a.e., if the “L-Poisson kernel” K related to dσ can be estimated as follows

|K (x, ξ)| ≤ c
d(x, ∂�)

d(x, ξ)σ (Bd(ξ, d(x, ξ)))
, x ∈ �, ξ ∈ ∂�

(see Theorem 42, Theorem 45 and Proposition 46). This condition also assures
the surjectivity result (BN)-(iii) (see Remark 43). Finally, in Section 4 we
apply the results of Section 3.5 to our Hörmander operators (Theorem 49). We
then specialize our analysis to Carnot groups G and prove Theorem (BN) for
the sub-Laplacians �G on some domains � satisfying a uniform exterior ball
condition (see Theorem 52 and Remark 53).

Acknowledgements. The authors would like to thank Daniele Morbidelli
for useful discussions on trace theorems and Carnot groups.
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2. – Construction of the degree

2.1. Throughout the paper � will denote a bounded domain (non-empty con-
nected open subset) of RN and d a distance on RN satisfying the following
hypothesis:

(H1) the topology on RN induced by d is the Euclidean one.

We shall denote by Bd(x, r) the balls in the metric d while the notation D(x, r)

will be used for Euclidean balls. The distance d we have in mind is the Carnot-
Carathéodory control distance associated to some family of vector fields (in the
sequel we shall refer to such a distance simply as a control distance); however
we work in the abstract setting in order to emphasize the metric nature of the
results.

We want to extend the classical degree for continuous maps to the larger
class of the functions VMO with respect to d. Following [9], we will perform
such extension by approximating a VMO function u(x) with its means ūε(x)

over d-balls of radius ε. In doing so the first difficulty that one encounters is
that ū need not be continuous as a function of (x, ε). We evade this obstacle
by taking suitable weighted means ûε(x) instead of the ūε(x). The drawback is
that we have to modify our definition of VMO taking into account the weight;
of course the resulting definition of degree shall depend on the choice of the
weight too. As far as this construction of the degree, (H1) is the only hypothesis
we need; further assumptions (among which the doubling condition for the d-
balls Bd(x, r)) will be required later. In particular we shall see (Theorem 17
and Remark 18) that for a doubling control distance our definitions of the class
VMO and of the degree actually do not depend on the weight.

As weight function we choose the following � : R → R, �(t) = 1 for
t ≤ 1

2 , �(t) = 0 for t ≥ 1 and defined to be the linear join between 1 and 0
for 1

2 < t < 1. Then we set

�x,r = �

(
d(x, ·)

r

)
for every x ∈ RN , r > 0. We remark that �x,r is continuous (by (H1)). We
now set

B = {Bd(x, r)|0 < r < d(x, �c)}, C =
{

Bd(x, r)|0 < r ≤ 1

2
d(x, �c)

}
(where �c denotes the complementary set RN � � and d(x, A) = inf

y∈A
d(x, y)

for any A non-empty subset of RN ). We remark that d(x, �c) may be different
from d(x, ∂�) (however when d is a control distance they are actually the
same). For u ∈ L1

loc(�) and Bd(x, r) ∈ B, we define the weighted mean

(3) û(x, r) = ûr (x) = ˆ∫
Bd (x,r)

u = 1∫
RN �x,r (y)dy

∫
RN

u(y)�x,r (y)dy
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and the weighted mean oscillation

MO x̂,r (u) = ˆ∫
Bd (x,r)

|u(y) − ûr (x)|dy.

We remark that 0 <
∫

�x,r < +∞ for every Bd(x, r) ∈ B, since

(4) χ
Bd (x, r

2 )
≤ �x,r ≤ χBd (x,r)

≤ χ
�

and |B| > 0 for any B ∈ B (χA denotes the characteristic function of the set
A and | · | the Lebesgue measure on RN ). We also notice that, by (H1),

(5) inf
x∈K

|Bd(x, r)| > 0

for every K ⊂ ⊂ RN and r > 0. We can now define the weighted BMO space
BMOˆ(�) = {u ∈ L1

loc(�)
∣∣ ‖u‖BMOˆ(�) < +∞}, where

(6) ‖u‖BMOˆ(�) = sup
Bd (x,r)∈C

MO x̂,r (u).

Taking B instead of C in (6) one obtains a different definition of BMO. Under
further assumptions on the metric d (in particular when d is a doubling control
distance) these definitions turn out to be equivalent (see e.g. [10]).

For u ∈ L1
loc(�) and ε > 0 we set

η̂ε(u) = sup
Bd (x,r)∈C,r≤ε

MO x̂,r (u),

η̂0(u) = inf
ε>0

η̂ε(u) = lim
ε→0+ η̂ε(u)

and we finally define VMOˆ(�) = {u ∈ BMOˆ(�)|η̂0(u) = 0}. We also set

MOˆ ∗
x,r (u) = ˆ∫

Bd (x,r)

ˆ∫
Bd (x,r)

|u(y) − u(z)|dydz.

and define η̂∗
ε , η̂∗

0, ‖ · ‖∗
BMOˆ accordingly. Then MO x̂,r , MOˆ ∗

x,r , η̂ε, η̂∗
ε , η̂0, η̂∗

0,
‖ · ‖BMOˆ, ‖ · ‖∗

BMOˆ are all seminorms on BMOˆ(�); moreover

(7) MO x̂,r (u) ≤ MOˆ ∗
x,r (u) ≤ 2MO x̂,r (u)

and analogous estimates hold for η̂∗
ε , η̂∗

0, ‖ · ‖∗
BMOˆ. In particular ‖ · ‖BMOˆ and

‖·‖∗
BMOˆ are equivalent norms on BMOˆ(�) modulo constants, which is a Banach

space under these norms. It is easy to verify that VMOˆ(�) is a closed subspace
of BMOˆ(�); when d is doubling, VMOˆ(�) turns out to be the closure of
C(�̄) in BMOˆ(�) (see Theorem 19). An example of function u ∈ BMOˆ(�)

is given by u(x) = log d(x, �c) (this is used in the proof of Theorem 19);
examples of functions u ∈ VMOˆ(�) are given by u(x) = log(log M

d(x,�c)
) and

u(x) = | log d(x, �c)|α , for 0 < α < 1 and M > 0 suitable large.
All the above definitions depend on our choice of the weight �. Taking

χ]− ∞,1[ instead of � we obtain the usual definitions of the BMO and VMO
spaces with respect to d. We shall refer to this case by dropping the symbol
ˆ in the above notation (

∫
instead of

∫̂
, MOx,r instead of MO x̂,r , BMO(�)

instead of BMOˆ(�), and so on). For our purpose, the main feature of the
weight � is continuity, which allows us to prove the following lemma.
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Lemma 1. For every u ∈ L1
loc(�), the function û defined in (3) is continuous

on its set of definition A = {(x, r) ∈ �×]0, +∞[ | Bd(x, r) ∈ B}.
Proof. Let (xn, rn) → (x0, r0) ∈ A. Setting K0 = {x ∈ � | d(x, �c) ≥

1
2 (d(x0, �

c) − r0)} we have Bd(xn, rn) ∪ Bd(x0, r0) ⊆ K0 ⊂ ⊂ �, for large n
(we remark that d(·, �c) is continuous by (H1)). Hence∣∣∣ ∫ u�xn ,rn −

∫
u�x0,r0

∣∣∣ ≤
∫

K0

∣∣∣�(
d(xn, y)

rn

)
− �

(
d(x0, y)

r0

) ∣∣∣|u(y)|dy

which vanishes as n → +∞ by dominated convergence, being � and d continu-
ous, u ∈ L1(K0) and |�| ≤ 1. In the same way we see that

∫
�xn ,rn → ∫

�x0,r0 .
Thus û(xn, rn) → û(x0, r0).

From the previous lemma it follows in particular that ûε ∈ C(�2ε) for every
ε > 0, where we have set

�ε = {x ∈ � | d(x, �c) > ε}.

Definition 2. Let u ∈ VMOˆ(�, RN ) and let p ∈ RN . We will say that u
does not take the value p at the boundary of � in the VMOˆ sense iff there
exist δ0 > 0 and ε0 > 0 such that

(8) inf
0<r= 1

2 d(x,�c)<ε0

ˆ∫
Bd (x,r)

|u − p| ≥ δ0.

We denote by M̂ = M̂(�) the set of couples (u, p) with this property.

Proposition 3. Let (u, p) ∈ M̂ (satisfying (8)). Then there exists ε1 > 0 such
that

(i) |ûε(x) − p| ≥ δ0
2 whenever 0 < d(x, �c) = 2ε < 2ε1;

(ii) the classical degree deg(ûε, �2ε, p) is defined for every ε < ε1;

(iii) deg(ûε, �2ε, p) = deg(ûε′, �2ε′, p) for every ε, ε′ ∈]0, ε1[.

Definition 4. We can then define degˆ : M̂ → Z, (u, p) �→ degˆ(u,�,p)=
deg(ûε,�2ε,p) for small ε > 0.

Proof of Proposition 3. (i) is an easy consequence of (8) and of our
definition of u ∈ VMOˆ. (ii) follows from (i), since ûε ∈ C(�2ε) by means of
Lemma 1. (iii) is of course of crucial importance. However we will not give a
detailed proof since it follows the lines of the one in [9]. We only say that the
proof relies on the homotopy and excision properties of the classical degree for
continuous functions, making use of (i) and of Lemma 1. We also would like
to emphasize that (H1) is used throughout. In particular we notice that ∂�2ε ⊆
{x ∈ � | d(x, �c) = 2ε} and max

d(y,�c)=2t
d(y, {x ∈ � | d(x, �c) = 2ε}) → 0, as

t → ε.
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Remark 5. degˆ is an extension of the usual degree for continuous maps.
Indeed C(�̄) ⊆ VMOˆ(�) (this follows from (H1), the Heine-Cantor theorem
in the compact metric space (�̄, d) and (7); we also remark that C(�̄) ⊆
L∞(�) ↪→ BMOˆ(�)); moreover, if u ∈ C(�̄, RN ) and p ∈ RN then the
condition (u, p) ∈ M̂ is equivalent to p �∈ u(∂�) and (when this condition
holds) degˆ(u, �, p) = deg(u, �, p). This follows again from the homotopy
and excision properties of deg, observing that for u ∈ C(�̄), beside Lemma 1
one also has

(9) sup
�ε

|ûε − u| → 0, as ε → 0+.

We now establish some properties of the degree just defined. We first recall
the definition of the essential range of a measurable map f : A → Rm (here A
is a measurable subset of RN ):

(10) ess f (A) = {
p ∈ Rm

∣∣ ∀δ > 0 |{x ∈ A
∣∣ | f (x) − p| < δ}| > 0

}
.

As pointed out in [8], ess f (A) can be characterized as the smallest closed set

 in Rm such that f (x) ∈ 
 a.e. Moreover, given u ∈ L1

loc(�), if we denote
by Lu the set of its Lebesgue points Lu = {x ∈ � | fD(x,r)|u − c| → 0, as
r →0+, for some constant c (=: u∗(x))}, then we have

(11) ess u(�) = u∗(Lu)

(note that both Lu and u∗ depend only on the class of the functions equal to
u a.e.; moreover u∗ defines a somehow privileged element of such class).

Proposition 6. Let (u, p) ∈ M̂. If degˆ(u, �, p) �= 0 then p ∈ ess u(�).

Proof. It is a consequence of the analogous property of the degree of con-
tinuous functions. Indeed, for small ε > 0, deg(ûε, �2ε, p) = degˆ(u, �, p) �= 0
and then there exists xε ∈ �2ε such that ûε(xε) = p. Now, if we assume by
contradiction that p �∈ ess u(�), then |u − p| ≥ δ a.e. for some δ > 0 and then

δ ≤ ˆ∫
Bd (xε,ε)

|u − p| = ˆ∫
Bd (xε,ε)

|u − ûε(xε)| ≤ η̂ε(u),

contradicting u ∈ VMOˆ(�).

Remark 7. Let u ∈VMOˆ(�, RN ). Then the set M̂u ={p∈RN |(u, p)∈M̂}
is open in RN ; moreover degˆ(u, �, ·) is constant on the connected components
of M̂u . In particular, in the hypotheses of Proposition 6 we have D(p, δ) ⊆
ess u(�) for some δ > 0.

Remark 8. (u, p) ∈ M̂ iff (u − p, 0) ∈ M̂ and in this case we have
degˆ(u, �, p) = degˆ(u − p, �, 0). This is immediate from the definitions of
M̂ and degˆ and from the analogous property of the classical deg.
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Proposition 9. Let u ∈ VMOˆ(�, RN ), let p ∈ RN and let un be a sequence
in VMOˆ(�, RN ) such that

(i) un → u in BMOˆ(�) and in L1
loc(�);

(ii) there exist δ0 > 0 and ε0 > 0 such that (un, p) verifies (8) for every n ∈ N

(uniformly).

Then (u, p) ∈ M̂ and degˆ(u, �, p) = degˆ(un, �, p) for large n.

Proof. This result can be achieved arguing exactly as in [9]. We only say
that the L1

loc convergence of the un implies the uniform convergence of the
weighted means ûn ε → ûε in �2ε, as n → +∞, thanks to (4) and (5).

Corollary 10 (homotopy invariance). Let p ∈ RN and let [0, 1] � t �→ Ft ∈
VMOˆ(�, RN ) be a continuous map in the BMOˆ-topology and in the L1

loc-topology.
If there exist δ0 > 0 and ε0 > 0 such that (Ft , p) verifies (8) for every t ∈ [0, 1]
(uniformly), then the map [0, 1] � t �→ degˆ(Ft , �, p) ∈ Z is constant.

Corollary 11 (Rouché-type theorem). Let u, v ∈ VMOˆ(�, RN ), p ∈ RN .
If there exist δ0 > 0 and ε0 > 0 such that (u, p) verifies (8) and

sup
0<r= 1

2 d(x,�c)<ε0

ˆ∫
Bd (x,r)

|u − v| < δ0,

then (v, p) ∈ M̂ and degˆ(v, �, p) = degˆ(u, �, p).

Proposition 12 (Brouwer fixed point-type theorem). Let u ∈ VMOˆ(D(0, 1),

D(0, 1)). Then 0 ∈ ess (id − u)(D(0,1)) where id denotes the identity function.

Proof. It follows from Proposition 6 and Corollary 10, using the homotopy
t �→ Ft = id − tu. In order to see that (Ft , 0) verifies (8) uniformly, one
assumes by contradiction that 0 �∈ ess (id − u)(D(0, 1)) and uses the fact that
|id − u| ≥ δ a.e. for some δ > 0, to prove that |Ft (x)| ≥ δ

4 if 1 − δ
2 ≤ |x | < 1,

for every t ∈ [0, 1]. This allows to apply Corollary 10.

2.2. From now on we shall assume that d satisfies the following hypothesis
(doubling condition):

(H2) for every K ⊂ ⊂ RN and for every r0 > 0 there exists A > 0 such that
|Bd(x, r)| ≤ A|Bd(x, r

2 )| for every x ∈ K and 0 < r ≤ r0.

Actually we only need that (H2) holds near �, for example when K is a fixed
compact set containing a neighborhood of �̄ and r0 = max

x,y∈K
d(x, y). Moreover

we shall always deal with balls contained in such compact set K and thus with
finite measure. In the sequel A shall denote the (smallest) constant in (H2)
related to this choice of K and r0. Moreover we set Q = log2 A. It is standard
to derive the following

(12) |Bd(x, tr)| ≤ At Q |Bd(x, r)| whenever x ∈ K , t ≥ 1, and tr ≤ r0.
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Another important consequence of the doubling condition is that it allows us
to compare the weighted means with the usual ones. Indeed, for u ∈ L1

loc(�)

and Bd(x, r) ∈ B, from (4) and (H2) we get

(13)
1

A

∫
Bd (x, r

2 )

|u| ≤ ˆ∫
Bd (x,r)

|u| ≤ A
∫

Bd (x,r)

|u|

and then

(14)
1

A2
MO∗

x, r
2
(u) ≤ MOˆ ∗

x,r (u) ≤ A2MO∗
x,r (u).

Moreover (13) also yields

(15)
|ûr (x) − ūr (x)| ≤ ˆ∫

Bd (x,r)

|u(y) − ūr (x)|dy

≤ A
∫

Bd (x,r)

|u(y) − ūr (x)|dy = A MOx,r (u)

(we have used the notation ūr (x) = ∫
Bd (x,r) u). From (14) it follows that

BMO(�) ⊆ BMOˆ(�) and VMO(�) ⊆ VMOˆ(�) but not the reverse inclu-
sions. Indeed we can only say that BMOˆ(�) ⊆ BMO(�, C 1

4
) and VMOˆ(�) ⊆

VMO(�, C 1
4
), where the spaces BMO(�, Cµ) and VMO(�, Cµ), for 0 < µ < 1,

are obtained replacing C = C 1
2

with

Cµ = {Bd(x, r) | 0 < r ≤ µd(x, �c)}

in the relevant definitions. On the other hand (see Proposition 16 below) these
spaces turn out to be not depending on the parameter µ ∈]0, 1[ if the metric d
satisfies, for example, the further assumption

(H3) there exists c > 0 such that, if y, z ∈ Bd(x, r) ∈ B and n ∈ N, then there
exists a chain of points x0, . . . , xn ∈ Bd(x, r) such that x0 = y, xn = z
and d(xi−1, xi ) ≤ c r

n for i = 1, . . . , n.

Remark 13. The condition (H3) holds true for any control distance d. This
is easily seen by arguing with admissible paths connecting y with x and x with
z and taking the xi along these paths.

From now on, we then assume also (H3) (beside (H1) and (H2)). Indeed we
use (H3) only in the proof of Lemma 15 below.
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Lemma 14. Let u ∈ L1
loc(�) and let Bi = Bd(xi , ri ) ∈ B for i = 1, 2, 3. If

B3 ⊆ B1 ∩ B2, then

(16) |ūr1(x1) − ūr2(x2)| ≤ |B1|
|B3|MOx1,r1(u) + |B2|

|B3|MOx2,r2(u).

If moreover r2 ≤ r1 ≤ r0
2 , then

(17) |ūr1(x1) − ūr2(x2)| ≤ A
(

2r1

r3

)Q (
MOx1,r1(u) + MOx2,r2(u)

)
.

Proof. To prove (16), we observe that

|ūr1(x1)−ūr2(x2)| ≤
2∑

i=1

∫
B3

|u(y)−ūri (xi )|dy ≤
2∑

i=1

1

|B3|
∫

Bi

|u(y)−ūri (xi )|dy.

(16) and (12) immediately give (17), since B1 ∪ B2 ⊆ Bd(x3, 2r1).

Lemma 15. There exists c > 0 such that, if y, z ∈ Bd(x, r), 0 < µ < 1,
0 < ! ≤ min{ r0

2 , µ(d(x, �c) − r)}, then

|ū!(y) − ū!(z)| ≤ c
(

1 + r

!

)
η!(u, Cµ)

for every u ∈ L1
loc(�).

Proof. By (H3), if we choose n to be the smallest integer greater than 2cr
!

(where c is the constant in (H3)), we can find a chain of points x0, . . . , xn ∈
Bd(x, r) such that x0 = y, xn = z and Bd(xi ,

!

2 ) ⊆ Bd(xi−1, !) ∩ Bd(xi , !), for
i = 1, . . . , n. Since moreover Bd(xi , !) ∈ Cµ, from (17) we get

|ū!(y) − ū!(z)| ≤
n∑

i=1

|ū!(yi ) − ū!(yi−1)| ≤ n A4Q2η!(u, Cµ).

Recalling the choice of n, this proves the lemma.

Proposition 16. For every µ ∈ ]0, 1[ BMO(�) = BMO(�, Cµ) and
VMO(�) = VMO(�,Cµ). Moreover the relevant norms are equivalent.

Proof. The result follows from the lemmas above, by means of the same
covering argument used in Lemma A1.1 of [9].

Theorem 17. We have

(18) BMOˆ(�) = BMO(�), VMOˆ(�) = VMO(�)

and the relevant norms are equivalent. Moreover

(19) M̂(�) = M(�)

where M(�) is defined replacing the weighted means
∫̂

by the usual means
∫

in
Definition 2.
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Remark 18. The definition of the degree degˆ does not depend on our
choice of the weight �. Indeed that choice was rather arbitrary. We might have
made the same construction of the degree as above choosing any nonnegative
continuous weight �̃ such that �̃(0) > 0 and �̃(t) = 0 for t ≥ 1. The resulting
degree would have been the same. This follows from Theorem 17, (15) and
the Rouché theorem (for the classical degree of continuous maps) applied to
the weighted means ûε and ˜̂uε on �2ε. In light of these considerations (and of
Remark 5) in the sequel we shall always denote degˆ simply by deg.

Proof of Theorem 17. (18) is an easy consequence of Proposition 16
and (14). (19) follows, observing that for u ∈ VMO(�, RN ), p ∈ RN and
0 < r = 1

2 d(x, �c) < ε, by (15) and (7) we have

∣∣∣ ˆ∫
Bd (x,r)

|u− p|−
∫

Bd (x,r)

|u − p|
∣∣∣≤ A MOx,r (|u − p|)

≤ A MO∗
x,r (|u − p|) ≤ A MO∗

x,r (u − p)

= A MO∗
x,r (u)≤ A η∗

ε (u)→0, as ε→0+.

We end this section stating the following density result (which we will
never use in this paper). We omit the proof, since it is an adaptation of the
proof of Theorem 1 of [9].

Theorem 19. VMOˆ(�) is the closure of C(�̄) in BMOˆ(�). Furthermore,
for every u ∈ VMOˆ(�) there exists a sequence uj ∈ C∞

0 (�) converging to u in
BMOˆ(�) and in L1

loc(�).

3. – The trace problem

3.1. Let σ be a (fixed) positive Borel measure on ∂� satisfying the following
condition:

(H4) σ(∂�) < +∞ and σ(Bd(x, r)) > 0 for every x ∈ ∂� and r > 0.

Here Bd(x, r) denotes the metric ball in ∂�, which is understood to be equipped
with the restriction of the distance d. In the sequel we shall always use the
same notation for the balls in (RN , d) and (∂�, d). We first want to introduce
the weighted BMO and VMO spaces on (∂�, d, σ ). Taking the same weight
� as in Section 2, we define the weighted means of a map u ∈ L1

σ (∂�) as

û(x, r) = ûr (x) = ˆ∫
Bd (x,r)

udσ = 1∫
∂� �x,r (y)dσ(y)

∫
∂�

u(y)�x,r (y)dσ(y)
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for every x ∈ ∂� and r > 0. Denoting MO x̂,r (u) = ˆ∫
Bd (x,r)

|u(y)−ûr (x)|dσ(y),

we then set
‖u‖BMOˆ(∂�) = sup

x∈∂�, r>0
MO x̂,r (u)

and BMOˆ(∂�) = {u ∈ L1
σ (∂�)

∣∣ ‖u‖BMOˆ(∂�) < +∞}. We then define η̂ε,
η̂0 and VMOˆ(∂�) accordingly, as in Section 2 (in the same way we also
introduce the seminorms MOˆ ∗

x,r , η̂∗
ε , ‖ · ‖∗

BMOˆ(∂�)
). Taking the usual means

ūr (x) = 1
σ(Bd (x,r))

∫
Bd (x,r) udσ instead of ûr (x) we define the spaces BMO(∂�)

and VMO(∂�) analogously (as in Section 2, we agree to use the same notation,
but dropping the symbol ˆ , for the relevant seminorms). Since � is continuous,
we can easily prove the following lemma.

Lemma 20. Let u ∈ L1
σ (∂�). Then û ∈ C(∂�×]0, +∞[). In particular

ûε ∈ C(∂�) for every ε > 0. If moreover u ∈ C(∂�) and we set û(x, 0) = u(x),
then û ∈ C(∂� × [0, +∞[) and ûr → u uniformly on ∂�, as r → 0+.

Let now Y be a connected compact smooth (N − 1)-dimensional oriented
manifold (without boundary) embedded in some Rm space. From now on we
also suppose that

(H5) ∂� is a smooth (N − 1)-dimensional oriented manifold,

so that deg(u, ∂�, Y ) is defined for continuous maps u : ∂� → Y . Fol-
lowing [8] we will extend this degree to the maps u ∈ VMOˆ(∂�, Y ) = {u ∈
VMOˆ(∂�, Rm)| u(x) ∈ Y σ -a.e.}. We first observe that, for u ∈ VMOˆ(∂�, Y ),
we have

(20) sup
x∈∂�

dist(ûε(x), Y ) ≤ sup
x∈∂�

MO x̂,ε(u) ≤ η̂ε(u) → 0, as ε → 0+

(we have denoted dist(z, Y ) = inf
y∈Y

|y − z|). Denoting by PY the projection

operator in Rm to the nearest point on Y (this is well defined and continuous in
a tubular neighborhood of Y ), we can then consider Pûε = PY ◦ ûε : ∂� → Y ,
for small ε > 0.

Proposition 21. Let u ∈ VMOˆ(∂�, Y ). Then there exists ε0 > 0 such that
for every ε, ε′ ∈]0, ε0[ we have

(i) Pûε ∈ C(∂�, Y ), so that deg(Pûε, ∂�, Y ) is defined,

(ii) deg(Pûε, ∂�, Y ) = deg(Pûε′, ∂�, Y ).

Proof. (i) follows from Lemma 20 and the continuity of PY ; (ii) follows
from the homotopy invariance of the degree, using the continuous (by Lemma
20) homotopy [0, 1] × ∂� � (t, x) �→ PY (û(x, tε + (1 − t)ε′)) ∈ Y .

Definition 22. We can then define degˆ : VMOˆ(∂�, Y ) → Z, u �→
degˆ(u, ∂�, Y ) = deg(Pûε, ∂�, Y ) for small ε > 0.
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Remark 23. It is easy to recognize that degˆ is an extension of the usual
degree for continuous maps. Indeed, if u ∈ C(∂�, Y ) ⊆ VMOˆ(∂�, Y ), then
(for small ε > 0) [0, 1] × ∂� � (t, x) �→ PY (û(x, tε)) ∈ Y is a continuous
homotopy by Lemma 20.

The degree just defined has the following properties, which can be proved using
arguments similar to those in [8].

Proposition 24. Let u ∈ VMOˆ(∂�, Y ).

(i) If degˆ(u, ∂�, Y ) �= 0, then ess u(∂�) = Y . Here ess u(∂�) is the essential
range of u with respect to the measure σ .

(ii) There exists δ > 0 (depending on u) such that degˆ(u, ∂�, Y )=degˆ(v, ∂�, Y )

for every v ∈ VMOˆ(∂�, Y ) such that ‖u − v‖BMOˆ(∂�) < δ. Hence degˆ is
constant on the connected components of VMOˆ(∂�, Y ).

(iii) (homotopy invariance) Let [0, 1] � t �→ Ft ∈ VMOˆ(∂�, Y ) be a continuous
map (in the BMOˆ(∂�)-topology). Then [0, 1] � t �→ degˆ(Ft , ∂�, Y ) ∈ Z is
constant.

3.2. We now assume that the measure σ is doubling on (∂�, d):

(H6) sup
x∈∂�, r>0

σ(Bd(x, 2r))

σ (Bd(x, r))
< +∞.

Of our hypotheses, this is the strongest one. We would like to remark that, in the
setting of control distances d related to Hörmander operators, (H6) is satisfied
by the measure σ defined in (2) if the boundary of � has no characteristic
points (see e.g. [34]); less restrictive sufficient conditions for having (H6) are
given in [11] and [17] in the setting of Carnot groups.

We denote by α the sup in (H6) and we set q = log2 α. From (H6) it
follows in a standard way that

(21) σ(Bd(x, tr)) ≤ αtqσ(Bd(x, r)) ∀t ≥ 1, x ∈ ∂�, r > 0.

Moreover, for every u ∈ L1
σ (∂�), x ∈ ∂� and r > 0, from (4) and (H6) we

easily obtain

1

α

∫
Bd (x, r

2 )

|u|dσ ≤ ˆ∫
Bd (x,r)

|u|dσ ≤ α

∫
Bd (x,r)

|u|dσ,(22)

1

α2
MO∗

x, r
2
(u) ≤ MOˆ ∗

x,r (u) ≤ α2MO∗
x,r (u),(23)

∣∣∣ ˆ∫
Bd (x,r)

udσ −
∫

Bd (x,r)

udσ
∣∣∣ ≤ αMOx,r (u).(24)

Theorem 25. We have BMOˆ(∂�) = BMO(∂�), VMOˆ(∂�) = VMO(∂�)

and the relevant norms are equivalent. Moreover VMO(∂�) is the closure of C(∂�)
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in BMO(∂�). Furthermore degˆ(·, ∂�, Y ) (defined in Section 3.1) turns out to be
the unique possible extension to VMO(∂�, Y ) of the classical degree deg(·, ∂�, Y )

for continuous maps, satisfying the BMO-homotopy invariance property in Propo-
sition 24-(iii).

In light of the above theorem, in the sequel we shall always denote degˆ simply
by deg. The following lemmas will be used in the proof of Theorem 25.

Lemma 26. Fixed any M > 0 there exists cM > 0 such that, if x1, x2 ∈ ∂�,
d(x1, x2) ≤ Mε and r1, r2 ∈ [ε, Mε] for some ε > 0, then

|ûr1(x1) − ûr2(x2)| ≤ cM η̂cM ε(u)

for every u ∈ L1
σ (∂�).

Lemma 27. Let u ∈ VMOˆ(∂�). Then ûε → u in BMOˆ(∂�), as ε → 0+. If
moreover u ∈ VMOˆ(∂�, Y ), then also Pûε → u in BMOˆ(∂�), as ε → 0+.

Proof of Lemma 26. Choosing R = max{r1, 2d(x1, x2)+r2} we get �xi ,ri ≤
�x1,R (for i = 1, 2) so that

|ûri (xi ) − û R(x1)| ≤ 1∫
�xi ,ri dσ

∫
�xi ,ri |u − û R(x1)|dσ

≤ 1

σ(Bd(xi ,
ri
2 ))

∫
�x1,R|u − û R(x1)|dσ

≤ α
σ(Bd(x1, R))

σ (Bd(xi , ri ))
MO x̂1,R(u),

by (4) and (H6). Moreover by (21) we have σ(Bd (x1,R))

σ (Bd (x1,r1))
≤ α( R

r1
)q ≤ cM and

σ(Bd (x1,R))

σ (Bd (x2,r2))
≤ σ(Bd (x2,R+d(x1,x2)))

σ (Bd (x2,r2))
≤ α(

R+d(x1,x2)

r2
)q ≤ cM . Therefore

|ûr1(x1)− ûr2(x2)| ≤ |ûr1(x1)− û R(x1)| + |û R(x1)− ûr2(x2)| ≤ cη̂R(u) ≤ cη̂cε(u)

with c depending on M .

Proof of Lemma 27. The proof of the first statement is an easy adaptation
of the proof of (A.6) of [8], by means of the doubling condition (H6) (see also
(22)-(23)) and of Lemma 26. The second statement follows from the first one
and from (20).

Proof of Theorem 25. The first assertion follows immediately from (23).
The second assertion follows from Lemma 27 and Lemma 20. The last as-
sertion of the theorem follows from the second statement of Lemma 27, by
considering (once fixed u ∈ VMO(∂�, Y )) the homotopy Ft = Pûtε for
0 < t ≤ 1, F0 = u.
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3.3. Following [9] we denote by VMO0(�) the set of functions u ∈ VMO(�)

which, extended as identically zero outside �, belong to VMO(�̃) for some
bounded domain �̃ containing �̄. Assuming the boundary regularity condition
below:

(H7) there exist c > 0 and ε0 > 0 such that |Bd(y, ε) ∩ �c| ≥ c|Bd(y, ε)| for
every y ∈ �c and 0 < ε < ε0,

and adapting the proof of [9] one can see that the following characterization
of VMO0(�) holds also in our case.

Proposition 28. Let u ∈ VMO(�). Then u ∈ VMO0(�) iff

(25) sup
0<ε= 1

2 d(x,�c)

∫
Bd (x,ε)

|u| → 0, as ε → 0+

(or equivalently replacing
∫

with
∫̂

in (25)).

We now want to introduce the class VMOϕ(�) of the VMO functions which
have trace ϕ ∈ VMO(∂�) in a suitable sense. Since the definition of [9] does
not work in the general setting, we shall make a different construction (which
however, in the Euclidean case, turns out to give the same class VMOϕ). We
start with defining a projection on ∂�. Since ∂� is compact and d is continuous
we can find a map π : � → ∂� such that

d(x, π(x)) = d(x, ∂�)

for every x ∈ �. We claim that we can choose π to be measurable. Indeed,
�(x) = {y ∈ ∂� | d(y, x) = d(x, ∂�)} defines a measurable multifunction from
� to nonempty compact subsets of ∂�. Thus � admits a measurable selection
π (see e.g. [12], Theorem III.6). Of course the choice of our measurable
projection π is not unique. However we shall see that this choice will not
affect the resulting definition of VMOϕ(�). We now want to define an extension
operator E from VMO(∂�) to VMO(�). Let ϕ ∈ L1

σ (∂�). We set

Fϕ(x) = ˆ∫
Bd (π(x),d(x,∂�))∩∂�

ϕ dσ
(

= ϕ̂(π(x), d(x, ∂�))
)
, x ∈ �.

Since π is measurable, Fϕ ∈ L∞
loc(�) (notice that inf

y∈∂�
σ (Bd(y, r)) > 0 for

every r > 0, by (H4)). If π were continuous then for every ϕ ∈ C(∂�) we
would have Fϕ ∈ C(�̄), (Fϕ)|∂�

= ϕ, by means of Lemma 20. Since π

may fail to be continuous (even in a small neighborhood of ∂�) F is not a
good extension operator for our purpose. So we introduce E instead, by taking
further means:

Eϕ(x) = ˆ∫
Bd (x, 1

2 d(x,�c))

Fϕ, x ∈ �.

We remark that in the construction of the extension operator E no regularity
assumption on � is needed. By Lemma 1, E is a linear operator from L1

σ (∂�)

to C(�). Moreover E has the following properties.
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Proposition 29.
(i) E ∈ L(BMO(∂�), BMO(�));

(ii) E ∈ L(C(∂�), C(�̄)), (Eϕ)|∂�
= ϕ for every ϕ ∈ C(∂�);

(iii) E(VMO(∂�)) ⊆ VMO(�).

We have denoted by L(X, Y ) the set of the linear continuous functionals from X
to Y .

We first prove the following lemma.

Lemma 30. There exists c > 0 such that for every ϕ ∈ L1
σ (∂�) we have

|Eϕ(x) − Fϕ(x)| ≤ cη̂cd(x,∂�)(ϕ) for every x ∈ �;(26)

|Fϕ(y) − Fϕ(z)| ≤ cη̂cd(x,∂�)(ϕ) if y, z ∈ Bd(x, r) ∈ C;(27)

|Eϕ(y) − Eϕ(z)| ≤ cη̂cd(x,∂�)(ϕ) if y, z ∈ Bd(x, r) ∈ C.(28)

Proof. Let us prove (27) first. Since Bd(x, r)∈ C, we have r ≤ 1
2 d(x, �c)≤

1
2 d(x, ∂�) and thus, setting ε = 1

2 d(x, ∂�), ry = d(y, ∂�), rz = d(z, ∂�), we
have ε ≤ d(x, ∂�) − r ≤ d(x, ∂�) − d(y, x) ≤ ry ≤ d(y, x) + d(x, ∂�) ≤
r + d(x, ∂�) ≤ 3ε and analogously ε ≤ rz ≤ 3ε. Moreover d(π(y), π(z)) ≤
d(π(y), y)+d(y, z)+d(z, π(z)) ≤ ry +2r +rz ≤ 8ε. We can then apply Lemma
26 and obtain

|ϕ̂ry (π(y)) − ϕ̂rz (π(z))| ≤ cη̂cε(ϕ).

This proves (27). We now turn to the proof of (26). For every x ∈ � we have

|Eϕ(x) − Fϕ(x)| ≤ ˆ∫
Bd (x, 1

2 d(x,�c))

|Fϕ(y) − Fϕ(x)|dy ≤ cη̂cd(x,∂�)(ϕ)

by (27), since Bd(x, 1
2 d(x, �c)) ∈ C. Finally, (28) follows from (27) and (26),

recalling that d(y, ∂�) ≤ 3
2 d(x, ∂�) for every y ∈ Bd(x, r) ∈ C.

Proof of Proposition 29. From (28) it follows that MOˆ ∗
x,r (Eϕ) ≤

cη̂cd(x,∂�)(ϕ)≤c‖ϕ‖BMO(∂�) for every Bd(x, r) ∈ C. This yields

‖Eϕ‖BMO(�) ≤ c‖ϕ‖BMO(∂�)

and proves (i). (In the same way, using (27), one can also see that F ∈
L(BMO(∂�), BMO(�))). To prove (ii), we only need to show that, for every
ϕ ∈ C(∂�) and ξ ∈ ∂�, we have Eϕ(x) → ϕ(ξ), as x → ξ , x ∈ �. Fix ε > 0.
By the Heine-Cantor theorem on the compact metric space (∂�, d), there exists
δ > 0 such that |ϕ(y) − ϕ(ξ)| ≤ ε whenever d(y, ξ) ≤ 3δ. Thus, if d(x, ξ) ≤ δ

we get

|Fϕ(x) − ϕ(ξ)| ≤ ˆ∫
Bd (π(x),d(x,∂�))

|ϕ(y) − ϕ(ξ)|dσ(y) ≤ ε,
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since d(y, ξ) ≤ d(y, π(x)) + d(π(x), x) + d(x, ξ) ≤ 3d(x, ξ) for every y ∈
Bd(π(x),d(x, ∂�)). On the other hand, (26) gives |Eϕ(x)−Fϕ(x)|≤cη̂cd(x,ξ)(ϕ)

which vanishes as x goes to ξ , since ϕ ∈ C(∂�) ⊆ VMO(∂�). By the triangle
inequality |Eϕ(x)−ϕ(ξ)|≤|Eϕ(x)−Fϕ(x)|+|Fϕ(x)−ϕ(ξ)|, the proof of (ii) is
complete. Finally (iii) follows from (i) and (ii) by a standard density argument
(since VMO(∂�) is the closure of C(∂�) in BMO(∂�) (see Theorem 25)).

We are now in position to define the class VMOϕ(�). Given ϕ ∈ VMO(∂�),
we set

(29) VMOϕ(�) = {u ∈ VMO(�) | u − Eϕ ∈ VMO0(�)}.
Clearly this class is not empty, since Eϕ ∈ VMOϕ(�).

Remark 31. If � ∈ C(�̄) and we set ϕ = �|∂�
, then � ∈ VMOϕ(�). This

follows immediately from Proposition 29-(ii) and the definition of VMO0(�).

Remark 32. The definition of VMOϕ(�) does not depend on the choice of
π . Indeed, if π ′ is an other measurable projection and E ′ denotes the associated
extension operator, then we have Eϕ − E ′ϕ ∈ VMO0(�). To show this fact we
use Proposition 28. By (26), we only need to prove that

(30)
ˆ∫
Bd (x, 1

2 d(x,�c))

|Fϕ − F ′ϕ| ≤ cη̂cd(x,∂�)(ϕ)

(with c independent of x ∈ �) and observe that

(31) d(x, ∂�) → 0, as d(x, �c) → 0, uniformly in x ∈ �.

On the other hand (30) follows from Lemma 26, since

|Fϕ(y) − F ′ϕ(y)| = |ϕ̂d(y,∂�)(π(y)) − ϕ̂d(y,∂�)(π
′(y))|,

with d(π(y), π ′(y)) ≤ d(π(y), y) + d(y, π ′(y)) = 2d(y, ∂�) and d(y, ∂�) ≤
3
2 d(x, ∂�) for y ∈ Bd(x, 1

2 d(x, �c)).

Remark 33. If there exists a continuous projection π , defined even only
in a neighborhood of ∂� in �, then one might define VMOϕ(�) by taking
Fϕ (extended to all of � by a suitable cut-off function) instead of Eϕ in (29).
Such definition would be equivalent to ours.

Remark 34. Assume that � satisfies the following regularity condition:
for σ -a.e. x ∈ ∂� there exists a sequence xk in � converging to x such that

(32) sup
k∈N

d(xk, x)

d(xk, ∂�)
< +∞.

If ϕ ∈ VMO(∂�) is such that Eϕ ∈ VMO0(�), then ϕ = 0 σ -a.e. (In particular
E : VMO(∂�) → VMO(�) is injective.) As a consequence, if (32) holds and
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ϕ �= ψ (∈ VMO(∂�)) then the corresponding classes VMOϕ(�) and VMOψ(�)

are disjoint. In other words the same VMO function cannot have two different
traces.

Proof. We first recall that, since σ is regular and doubling (see (H6)), for
every ϕ ∈ L1

σ (∂�) and σ -a.e. x ∈ ∂� (the Lebesgue points of ϕ) we have

(33)
∫

Bd (x,ε)

|ϕ(y) − ϕ(x)|dσ(y) → 0, as ε → 0+.

From (33) and (22) we obtain also

(34)
ˆ∫
Bd (x,ε)

|ϕ(y) − ϕ(x)|dσ(y) → 0, as ε → 0+, for σ -a.e. x ∈ ∂�.

Let now ϕ ∈ VMO(∂�) be such that Eϕ ∈ VMO0(�) and let us fix x (and a
sequence (xk)) verifying both (32) and (34). We have

|ϕ(x)| ≤ |ϕ(x) − ϕ̂d(xk ,∂�)(x)| + |ϕ̂d(xk ,∂�)(x) − ϕ̂d(xk ,∂�)(π(xk))|

+ |Fϕ(xk)−Eϕ(xk)| + ˆ∫
Bd (xk , 1

2 d(xk ,�c))

|Fϕ−Eϕ| + ˆ∫
Bd (xk , 1

2 d(xk ,�c))

|Eϕ|.

Letting k → +∞, the first and the last term in the right hand side go to zero
by (34) and by Proposition 28, respectively. We claim that all the other terms
are smaller than cη̂cd(xk ,∂�)(ϕ), for a positive constant c which may depend
on x . Thus they vanish as well, and ϕ(x) has to be zero. Let us prove the

claim. Since d(x,π(xk))≤d(π(xk),xk) + d(xk,x) ≤ d(xk,∂�)
(
1 + sup

j∈N

d(xj ,x)

d(xj ,∂�)

)
,

the desired estimate of |ϕ̂d(xk ,∂�)(x) − ϕ̂d(xk ,∂�)(π(xk))| can be derived from
Lemma 26. On the other hand, the estimate of the remaining terms follows
from (26).

3.4. In this section we want to compare the degree of a map u ∈ VMOϕ(�)

(defined in Section 2.1) with the degree of its trace ϕ (defined in Section 3.1).
Our aim is to show that our construction of the class VMOϕ allows to establish
the same relation proved in [9]. This is done in Theorem 39 below. Note that,
while the degree of u of course does not depend on the measure σ on ∂�,
both the definition of the degree of ϕ and the one of the class VMOϕ depend
on σ .

Lemma 35. There exists a positive constant c such that, given any ϕ ∈
VMO(∂�) with |ϕ| ≥ δ σ -a.e. for some δ > 0, we have

|Eϕ(x)| ≥ δ − cη̂cd(x,∂�)(ϕ)

for every x ∈ �.
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Proof. Recalling (26), we only need to prove that

|Fϕ(x)| ≥ δ − η̂d(x,∂�)(ϕ),

which is easily seen in the following way:

|Fϕ(x)| ≥ − ˆ∫
Bd (π(x),d(x,∂�))

|Fϕ(x) − ϕ(y)|dσ(y)

+ ˆ∫
Bd (π(x),d(x,∂�))

|ϕ(y)|dσ(y) ≥ −MO π̂(x),d(x,∂�)(ϕ) + δ.

Lemma 36. Let ϕ ∈ VMO(∂�, SN−1), where (Y =) SN−1 is the unit sphere of
RN . Then we have

(i) ϕ̂ε and Pϕ̂ε converge to ϕ in BMO(∂�) and σ -a.e., as ε → 0+.
(ii) F(Pϕ̂ε) → Fϕ pointwise, in L1(�) and in BMO(�).

(iii) E(Pϕ̂ε) → Eϕ pointwise, in L1(�) and in BMO(�).
(iv) (Eϕ, 0) ∈ M(�) and

(35) deg(Eϕ, �, 0) = deg(ϕ, ∂�, SN−1).

Proof. (i) follows from Lemma 27, (34) and (20). The pointwise and
L1 convergence in (ii) follow from (i) by dominated convergence. The BMO
convergence in (ii) follows from (i) since F ∈ L(BMO(∂�), BMO(�)) (see the
proof of Proposition 29). (iii) follows from (ii), (i) and Proposition 29-(i) in the
same way. We now prove (iv). Setting ϕk = Pϕ̂ 1

k
, we have VMO(∂�, SN−1) ⊇

C(∂�, SN−1) � ϕk → ϕ in BMO. Thus, it is not difficult to show that

sup
k∈N

η̂ε(ϕk) → 0, as ε → 0+.

We now apply Lemma 35 to ϕk . Recalling (31) we obtain that (Eϕk, 0) verify
(8) uniformly in k ∈ N. Since also (iii) holds, we can use Proposition 9 and
get that (Eϕ, 0) ∈ M and deg(Eϕ, �, 0) = deg(Eϕk, �, 0) (for large k). On
the other hand Eϕk ∈ C(�̄), (Eϕk)|∂�

= ϕk by Proposition 29-(ii) and then
deg(Eϕk, �, 0) = deg(ϕk, ∂�, SN−1) by the classical degree theory. Therefore
(35) follows, recalling Definition 22.

Lemma 37. Let u, v ∈ VMO(�, RN ) and suppose that u − v ∈ VMO0(�).
Then (u, 0) ∈ M(�) iff (v, 0) ∈ M(�) and in such case deg(u,�,0) =deg(v,�,0).

Proof. It is a straightforward consequence of Proposition 28 and Corol-
lary 11.

Remark 38. If ϕ ∈ VMO(∂�, RN ) and |ϕ| ≥ δ σ -a.e. for some positive
constant δ, then ϕ

|ϕ| ∈ VMO(∂�, SN−1). Indeed the composition of a VMO
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map with any Lipschitz map is VMO as well. This is immediately seen by
considering the mean oscillations MO∗

x,r .

Theorem 39. Let ϕ ∈ VMO(∂�, RN ) and let p ∈ RN . Suppose that |ϕ− p| ≥
δ σ -a.e. for some positive constant δ. Then for every u ∈ VMOϕ(�) we have
(u, p) ∈ M(�) and

deg(u, �, p) = deg
(

ϕ − p

|ϕ − p| , ∂�, SN−1
)

.

Proof. It is not restrictive to assume p = 0. Observing that

ˆ∫
Bd (x, 1

2 d(x,�c))

|u| ≥ ˆ∫
Bd (x, 1

2 d(x,�c))

|Eϕ| − ˆ∫
Bd (x, 1

2 d(x,�c))

|u − Eϕ|

and using Lemma 35, (31) and Proposition 28, we obtain that (u,0)∈M(�). We
now set ψ = ϕ

|ϕ| (∈ VMO(∂�, SN−1) by Remark 38). We have deg(Eψ, �, 0) =
deg(ψ,∂�,SN−1) by Lemma 36-(iv) and deg(Eϕ,�,0)= deg(u,�,0) by Lem-
ma 37. Thus, to complete the proof, we only need to show that deg(Eψ, �, 0) =
deg(Eϕ, �, 0). This follows from Corollary 10, by using the homotopy Ht =
t Eψ + (1 − t)Eϕ = E(tψ + (1 − t)ϕ), if we prove that (Ht , 0) verifies (8)
uniformly in t ∈ [0, 1]. We have |tψ + (1− t)ϕ| = t + (1− t)|ϕ| ≥ t + (1− t)δ ≥
min{1, δ} = δ′ > 0 σ -a.e. and then, by Lemma 35,

|Ht (x)| ≥ δ′ − cη̂cd(x,∂�)(tψ + (1 − t)ϕ)

≥ δ′ − c
(
t η̂cd(x,∂�)(ψ) + (1 − t)η̂cd(x,∂�)(ϕ)

)
≥ δ′ − c max

{
η̂cd(x,∂�)(ψ), η̂cd(x,∂�)(ϕ)

}
.

Recalling (31), this completes the proof.

Corollary 40. Let ϕ ∈ VMO(∂�, SN−1) and let p ∈ RN , |p| < 1. Then
deg(ϕ, ∂�, SN−1) = deg(

ϕ−p
|ϕ−p| , ∂�, SN−1).

Proof. It follows from Theorem 39 and Remark 7, taking u = Eϕ.

Corollary 41. Let ϕ ∈ VMO(∂�, SN−1). If deg(ϕ, ∂�, SN−1) �= 0 and
u ∈ VMOϕ(�), then D(0, 1) ⊆ ess u(�) (we recall that ess u(�) is the essential
range of u, defined in (10)).

Proof. It follows from Theorem 39, Corollary 40 and Proposition 6, re-
calling also that ess u(�) is closed.

3.5. In this section we introduce a class of integral operators and show that they
are extension operators from VMO(∂�) to VMO(�) in the sense that they map
a ϕ ∈ VMO(∂�) into VMOϕ(�). In other words these extensions of ϕ have
trace ϕ on ∂� in the VMO sense; moreover we shall see that such extensions
also take the value ϕ at the boundary, nontangentially pointwise σ -a.e. Along
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the lines of all the paper we give an abstract presentation, but the extensions we
have in mind are the L-harmonic extensions with respect to some differential
operator L , whose associated control distance is d. Thus, the kernels K below
have to be thought as generalized Poisson kernels.

Let K : � × ∂� → R be the kernel of a well-defined integral operator H ,

(36) Hϕ(x) =
∫

∂�

K (x, ξ)ϕ(ξ)dσ(ξ), x ∈ �,

which maps L1
σ (∂�) into the measurable functions on �. We assume that H

has the following properties:

H(C(∂�)) ⊆ C(�̄), (Hϕ)|∂�
= ϕ ∀ϕ ∈ C(∂�),(37)

H(1) ≡ 1.(38)

We also assume that K (x, ·) ∈ L∞
σ (∂�) for every x ∈ � and we set

Bx
j = Bd(π(x), 2 j d(x, ∂�)) ∩ ∂�,

a0(x) = ‖K (x, ·)‖L∞
σ (Bx

0 ), aj (x) = ‖K (x, ·)‖L∞
σ (Bx

j �Bx
j−1) ( j ∈ N).

Finally, we assume that the following condition holds:

(39) ess sup
x∈�

a0(x)σ (Bx
0 ) +

+∞∑
j=1

j aj (x)σ (Bx
j )

 < +∞.

Under these hypotheses we shall prove the following theorems.

Theorem 42.
(i) H ∈ L(BMO(∂�), BMO(�));

(ii) H ∈ L(C(∂�), C(�̄));
(iii) H(VMO(∂�)) ⊆ VMO(�);
(iv) Hϕ ∈ VMOϕ(�) for every ϕ ∈ VMO(∂�).

Remark 43. In particular collecting (iv) and Corollary 41 we obtain a
generalization of Theorem (BN) of the Introduction.

Definition 44. Let u : � → Rm , � ∈ Rm and y0 ∈ ∂�. We shall say that

u(x) → �, nontangentially as x → y0,

iff for every M > 0 we have

ess sup
x∈Bd (y0,ε)∩�, d(x,y0)≤Md(x,∂�)

|u(x) − �| → 0, as ε → 0+.

(We agree to let ess sup ∅ = 0.)

Theorem 45. Let ϕ ∈ VMO(∂�). Then for σ -a.e. y ∈ ∂� we have

Hϕ(x) → ϕ(y), nontangentially as x → y.

(The same holds true also for the “extensions” Fϕ(x) and Eϕ(x) defined in Section
3.3.)
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Before proving the above results, we point out the following sufficient condition
for having (39).

Proposition 46. If the kernel K can be estimated as

(40) |K (x, ξ)| ≤ c
d(x, ∂�)

d(x, ξ)σ (Bd(ξ, d(x, ξ)))
,

then (39) holds. We explicitly remark that the estimate (40) can be deduced in
particular from the estimates

(41) |K (x, ξ)| ≤ c
d(x, ∂�)

|Bd(ξ, d(x, ξ))| ,

and

(42) σ(Bd(ξ, r)) ≤ cR
|Bd(ξ, r)|

r
(ξ ∈ ∂�, 0 < r ≤ R).

Proof. We first notice that for every x ∈ � and ξ ∈ ∂� we have

(43)
1

3
(d(ξ, π(x)) + d(x, ∂�)) ≤ d(x, ξ) ≤ d(ξ, π(x)) + d(x, ∂�).

Let us fix ξ ∈ Bx
0 = Bd(π(x), d(x, ∂�)). It is easy to recognize that

Bx
0 ⊆ Bd(ξ, 3d(x, ξ)). By the doubling condition (H6), we get σ(Bx

0 ) ≤
α2σ(Bd(ξ, d(x, ξ))). We now use (40) and obtain |K (x, ξ)| ≤ c

σ(Bx
0 )

. Therefore

we have proved that a0(x)σ (Bx
0 ) ≤ c with c not depending on x ∈ �. We

now fix ξ ∈ Bx
j � Bx

j−1 ( j ∈ N). One can show that Bx
j ⊆ Bd(ξ, 6d(x, ξ))

and then get σ(Bx
j ) ≤ α3σ(Bd(ξ, d(x, ξ))), by (H6). Using (40), this yields

|K (x, ξ)| ≤ c
2 j σ(Bx

j )
. Therefore we have proved that aj (x)σ (Bx

j ) ≤ c
2 j with c

not depending on x ∈ �. (39) follows straightforwardly.

We now take up the proof of Theorem 42.

Lemma 47. There exists a positive constant c such that ‖Hϕ − Fϕ‖L∞(�) ≤
c‖ϕ‖BMO(∂�) for every ϕ ∈ L1

σ (∂�).

Proof. Using (38) and recalling that Fϕ(x) = ϕ̂d(x,∂�)(π(x)), we have

|Hϕ(x) − Fϕ(x)| ≤
∫

∂�

|K (x, ξ)| |ϕ(ξ) − Fϕ(x)|dσ(ξ)

≤ a0(x)

∫
Bx

0

|ϕ(ξ) − ϕ̂d(x,∂�)(π(x))|dσ(ξ)

+
+∞∑
j=1

aj (x)

∫
Bx

j �Bx
j−1

(
|ϕ(ξ) − ϕ̂2 j d(x,∂�)(π(x))|

+
j∑

i=1

|ϕ̂2i d(x,∂�)(π(x)) − ϕ̂2i−1d(x,∂�)(π(x))|
)

dσ(ξ).
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Recalling (24), for every j ∈ N ∪ {0} we have∫
Bx

j

|ϕ(ξ) − ϕ̂2 j d(x,∂�)(π(x))|dσ(ξ) ≤ cσ(Bx
j )MOπ(x),2 j d(x,∂�)(ϕ)

≤ cσ(Bx
j )‖ϕ‖BMO(∂�).

On the other hand,

|ϕ̂2i d(x,∂�)(π(x)) − ϕ̂2i−1d(x,∂�)(π(x))| ≤ c‖ϕ‖BMO(∂�),

by means of Lemma 26. Therefore

|Hϕ(x) − Fϕ(x)| ≤ c‖ϕ‖BMO(∂�)

a0(x)σ (Bx
0 ) +

+∞∑
j=1

j aj (x)σ (Bx
j )


and from (39) we get the desired estimate.

Proof of Theorem 42. From Lemma 47 and (26), it follows that

(44) ‖Hϕ − Eϕ‖L∞(�) ≤ c‖ϕ‖BMO(∂�) ∀ϕ ∈ L1
σ (∂�)

and then (H − E) ∈ L(BMO(∂�), L∞(�)) ⊆ L(BMO(∂�), BMO(�)) (since
L∞(�) ↪→ BMO(�)). Recalling Proposition 29-(i), we get (i). Collecting (37),
Proposition 29-(ii) and (44) and observing that L∞

σ (∂�) ↪→ BMO(∂�), we
get also (ii). Moreover, (iii) follows from (i) and (37) by a standard density
argument (since VMO(∂�) is the closure of C(∂�) in BMO(∂�), by Theorem
25). We now prove (iv). Recalling Proposition 28, it is sufficient to show that

(45) ess sup
0<d(x,�c)<ε

|Hϕ(x) − Eϕ(x)| → 0, as ε → 0+.

In order to prove (45) we choose ψ ∈ C(∂�) close to ϕ in the BMO norm
(this can be done in light of Theorem 25); then we apply (44) to the function
ϕ − ψ and observe that (45) holds replacing ϕ with ψ , by means of (37) and
Proposition 29-(ii). In this way we prove (45) for ϕ.

Remark 48. Let ϕ ∈ VMO(∂�). Then

(46) ess sup
0<d(x,�c)<ε

dist(Hϕ(x), ess ϕ(∂�)) → 0, as ε → 0+

(we recall that ess ϕ(∂�) denotes the essential range of ϕ, with respect to the
measure σ , and dist(p, A) = inf

q∈A
|p−q|). Indeed, from (26) and (31), it follows

that

(47) sup
0<d(x,�c)<ε

|Eϕ(x) − Fϕ(x)| → 0, as ε → 0+.
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Moreover, arguing as in (20), it is not difficult to show that

(48) sup
0<d(x,�c)<ε

dist(Fϕ(x), ess ϕ(∂�)) → 0, as ε → 0+.

Thus (46) follows from (45), (47) and (48).

Proof of Theorem 45. Since (45) and (47) hold, we only need to prove
that Fϕ(x) → ϕ(y), nontangentially as x → y, for every Lebesgue point y of
ϕ (according to (33)-(34)). Let us fix such a Lebesgue point y0 ∈ ∂�. We also
fix M > 0 and take x ∈ � such that d(x, y0) ≤ Md(x, ∂�). We have

|ϕ(y0) − Fϕ(x)| ≤ |ϕ(y0) − ϕ̂d(x,∂�)(y0)| + |ϕ̂d(x,∂�)(y0) − ϕ̂d(x,∂�)(π(x))|,
where the first term in the right hand side vanishes as x → y0 by (34), and
the other term is less then cM η̂cM d(x,∂�)(ϕ) (and then it vanishes as x → y0,
as well) by means of Lemma 26, since d(y0, π(x)) ≤ d(y0, x) + d(x, ∂�) ≤
(M + 1)d(x, ∂�).

4. – Hörmander operators and sub-Laplacians

We now want to give some examples of applications to PDE of the results
established in the previous sections. We begin with the following Theorem 49
which summarizes the results of Section 3.5 in the framework of a Carnot-
Carathéodory space (RN , d), where d is the control distance associated to a
family X = (X1, . . . , X p) of C∞ vector fields satisfying Hörmander condition
(1) on RN . For the convenience of the reader we recall the definition of the
control distance d related to X . Given x, y ∈ RN one defines

d(x, y) = inf{T }
where {T } denotes the set of the real numbers T > 0 for which there exists
a X -subunit path γ : [0, T ] → RN connecting x and y. The path γ is called
X -subunit if it is absolutely continuous and

γ ′(t) =
p∑

j=1

λj (t)X j (γ (t))

with |λj (t)| ≤ 1 a.e. in [0, T ]. The Hörmander condition (1) assures both the
existence of a X -subunit path connecting any couple of points in RN , and the
hypoellipticity of the operator

L =
p∑

j=1

X2
j .
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We assume, together with (1), that there exist two C2-functions θ, θ∗ on a
connected open set 
 ⊆ RN such that θ, θ∗ > 0 and Lθ < 0, L∗θ∗ < 0 in

, where L∗ is the formal adjoint operator to L . These conditions assure the
solvability of the Dirichlet problem

(49)
{

Lu = 0 in �

u|∂� = ϕ, ϕ ∈ C(∂�)

for any open set � ⊂ ⊂ 
 satisfying the regularity assumption (H7) (see [6]
and [39]). If u is the (unique) solution of (49), then

u(x) =
∫

∂�

ϕ(ξ)dµx(ξ), x ∈ �,

where µx is the L-harmonic measure for � at x .

Theorem 49. Let � ⊂ ⊂ 
 be a smooth bounded domain of RN satisfying
(H7) and let σ be a positive Borel measure given on ∂�, satisfying (H4) and (H6).
Suppose moreover that the L-harmonic measures µx on ∂�, x ∈ �, are absolutely
continuous with respect to σ , with densities dµx (ξ)

dσ(ξ)
=: K (x, ξ) (x ∈ �, ξ ∈ ∂�)

satisfying the estimate (40). Finally let ϕ ∈ VMO(∂�) (= VMO(∂�, d, σ )) and
consider the L-harmonic extension Hϕ of ϕ, Hϕ(x) = ∫

∂� ϕdµx . Then we have:

(i) Hϕ ∈ VMOϕ(�) (i.e. Hϕ has trace ϕ in the VMO sense).
(ii) Hϕ(x) → ϕ(y), nontangentially as x → y, for σ -a.e. y ∈ ∂�.

(iii) If ϕ ∈ VMO(∂�, SN−1) and deg(ϕ, ∂�, SN−1) �= 0, then

D(0, 1) ⊆ Hϕ(�).

Proof. We first observe that the hypotheses of the abstract theory that we
have made along the paper, namely (H1)-(H7), are all verified. Indeed (H1)
follows from the Hölder continuity of the control distance d, see e.g. [22].
The doubling condition (H2) has been proved in the deep paper [38], while
(H3) is true for any control distance (see Remark 13); (H4)-(H7) are assumed
in the hypotheses of the theorem. Moreover K is a nonnegative kernel with the
properties required in Section 3.5. Indeed from the estimate (40) it follows that
the definition of H given in (36) is well posed and (39) holds (see Proposition
46). Moreover (38) is an immediate consequence of the properties of the
harmonic measures µx . Finally (37) follows from (H7), see [39]. We can also
get (37) directly as a consequence of (40): it is enough to observe that, fixed
ϕ ∈ C(∂�) and y ∈ ∂�, if x ∈ � and d(x, y) < δ

2 we have

|Hϕ(x) − ϕ(y)| ≤
∫

Bd (y,δ)

K (x, ξ)|ϕ(ξ) − ϕ(y)|dσ(ξ)

+ 2 max
∂�

|ϕ|
∫

∂��Bd (y,δ)

c
d(x, ∂�)

δ
2 inf

η∈∂�
σ (Bd(η, δ

2 ))
dσ(ξ)

≤ H(1) sup
d(ξ,y)<δ, ξ∈∂�

|ϕ(ξ) − ϕ(y)| + cδd(x, ∂�).
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We can then apply Theorem 42 and Theorem 45 and obtain (i)-(ii). In order
to obtain (iii), we use Corollary 41 and get

D(0, 1) ⊆ ess (Hϕ)(�) = Hϕ(�)

by (11), since Hϕ is L-harmonic and thus in particular continuous on �.
Moreover we observe that |Hϕ| ∈ C(�), |Hϕ||∂� ≡ 1 by means of Remark 48.
As a consequence we finally get D(0, 1) ⊆ Hϕ(�).

From now on we shall work on Carnot groups and consider suitable regular
domains �; we plan to make a deeper study of the general case in a forthcoming
paper.

Let us give the definition of a Carnot group. Let ◦ be an assigned Lie
group law on RN . We suppose RN is endowed with a homogeneous structure
by a given family of Lie group automorphisms {δλ}λ>0 (called dilations) of the
form

δλ(x) = δλ(x (1), x (2), . . . , x (r)) = (λx (1), λ2x (2), . . . , λr x (r)).

Here x (i) ∈ RNi for i = 1, . . . , r and N1 + · · · + Nr = N . We denote by g

the Lie algebra of (RN , ◦) i.e. the Lie algebra of left-invariant vector fields on
RN . For i = 1, . . . , N1, let Xi be the (unique) vector field in g that agrees
at the origin with ∂/∂xi . We make the following assumption: the Lie algebra
generated by X1, . . . , X N1 is the whole g. With the above hypotheses, we call
G = (RN , ◦, δλ) a Carnot group. We also say that G is of step r and has
p := N1 generators. We denote by Q = ∑r

j=1 j Nj the homogeneous dimension
of G. The sub-Laplacian on G is the second order differential operator

�G = ∑p
i=1 X2

i .

We explicitly remark that �G is hypoelliptic since X1, . . . , X p Lie-generate g

and hence they satisfy Hörmander’s condition

rank
(
Lie{X1, . . . , X p}(x)

) = N , ∀ x ∈ RN .

The simplest example of Carnot group is (RN , +) (in this case the sub-Laplacian
is the classical Laplace operator). The most simple non-abelian example is the
Heisenberg group Hn (with the Kohn-Laplace operator). We refer (e.g.) to [5]-
[4] for other examples and for a more detailed presentation of Carnot groups.

We remark that in literature a Carnot group (or stratified group) H is usually
defined as a connected and simply connected Lie group whose Lie algebra h

admits a stratification h = V1 ⊕ · · · ⊕ Vr with [V1, Vi ] = Vi+1, [V1, Vr ] = {0}.
The two definitions are actually equivalent up to isomorphism (see [5]).

A noteworthy property of the operator �G is the structure of its fundamental
solution �. Indeed �(x, y) = [y−1 ◦ x]−Q+2, where [·] is a homogeneous norm
on G, i.e. a continuous function from RN to [0, ∞[, smooth away from the
origin, such that [δλ(x)] = λ [x], [x−1] = [x], and [x] = 0 iff x = 0. Then

(50) dG(x, y) = [y−1 ◦ x], x, y ∈ RN ,
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is a quasi-distance that endows RN with a metric structure which is the natural
one for �G. Denoting by d the Carnot-Carathéodory control distance associated
to the family of vector fields {X1, . . . , X p}, d and dG are equivalent in the sense
that

(51) c−1d(x, y) ≤ dG(x, y) ≤ cd(x, y), x, y ∈ G,

holds for some positive constant c.
Let � be a smooth bounded domain of G and let us endow ∂� with the

measure

(52) dσ = 〈Aν, ν〉 1
2 dHN−1,

where HN−1 denotes the (N − 1)-dimensional Hausdorff measure, ν is the
outer unit normal to ∂� and A is the matrix which allows to write �G in the
divergence form �G = div(A∇). Following [42] we shall say that � satisfies
the uniform exterior dG-ball condition iff there exists r0 > 0 such that for every
ξ ∈ ∂� and for every r ∈]0, r0] there exists x ∈ G such that BdG

(x, r)∩� = ∅

and ξ ∈ ∂ BdG
(x, r). The following result can be obtained using the same

arguments as in [42].

Theorem 50. Let G be a Carnot group. Let � be a smooth bounded domain
of G, satisfying the uniform exterior dG-ball condition. Then the �G-harmonic
measures µx on ∂�, x ∈ �, are absolutely continuous with respect to σ , with
densities dµx (ξ)

dσ(ξ)
=: K (x, ξ) (x ∈ �, ξ ∈ ∂�) satisfying the estimate

(53) 0 ≤ K (x, ξ) ≤ c
dG(x, ∂�)

dG(x, ξ)Q
, x ∈ �, ξ ∈ ∂�.

We emphasize that here K denotes the Poisson kernel of �G with respect to the
measure σ defined in (52).

Proof. We only give a sketch of the proof, which is essentially contained in
[42]. Actually in that paper we were concerned with the special case where G

is the Heisenberg group. However the arguments of [42] can be easily adapted
to general Carnot groups. Moreover, in [42] we proved an estimate weaker than
(53): precisely we showed that the �G-Poisson kernel P relative to HN−1 is
well defined and can be estimated as

(54) 0 ≤ P(x, ξ) ≤ c〈A(ξ)ν(ξ), ν(ξ)〉 1
2 dG(x, ξ)1−Q, x ∈ �, ξ ∈ ∂�.

(We would like to take this opportunity for observing that in [42] we made an
unnecessary assumption, namely we asked the set of the characteristic points
of ∂� to have surface measure zero. However this is always true for general
Hörmander type vector fields, see [19]-[20]). We now want to briefly show
how we can improve the estimate (54) and get

(55) 0 ≤ P(x, ξ) ≤ c〈A(ξ)ν(ξ), ν(ξ)〉 1
2

dG(x, ∂�)

dG(x, ξ)Q
, x ∈ �, ξ ∈ ∂�.
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We refer to the proof of Theorem 3.6 of [42], where we showed that

(56) 0 < G(x, y) ≤ cdG(y, ∂�)dG(x, y)1−Q, x, y ∈ �

(here G is the Green function of �). (56) was obtained using a comparison
argument based on the maximum principle for �G, starting from the estimate

(57) 0 < G(x, y) ≤ cdG(x, y)2−Q .

Now, observing that G(x, y) = G(y, x) and using the same comparison argu-
ment, but starting from (56) instead of (57), we can obtain

0 < G(x, y) ≤ cdG(x, ∂�)dG(y, ∂�)dG(x, y)−Q .

From this last estimate, (55) follows in the same way as (54) followed from
(56) in [42]. Recalling the definition (52) of σ this concludes the proof, since

P(x, ξ) = K (x, ξ)〈A(ξ)ν(ξ), ν(ξ)〉 1
2 .

Remark 51. An estimate of the �G-Poisson kernel K weaker then (53)
has been announced by Capogna-Garofalo-Nhieu in [11], in the case of groups
of Heisenberg type G.

We are finally able to prove our generalization of Theorem (BN) to Carnot
groups.

Theorem 52. Let G be a Carnot group. Let � be a smooth bounded domain
of G, satisfying the uniform exterior dG-ball condition and such that the doubling
condition (H6) holds for the measure σ on ∂�, defined in (52). Then, for every
ϕ ∈ VMO(∂�), the conclusions (i)-(ii)-(iii) of Theorem 49 hold.

Proof. From Theorem 50 and (51) it follows that K satisfies the estimate
(41) (we recall that |Bd(x, r)| = cr Q in a Carnot group). Moreover, (42) holds
also (see [11], Theorem 1.3; see also [16]). As a consequence we get (40) and
we can apply Theorem 49. We explicitly remark that also (H7) holds since �

satisfies the uniform exterior dG-ball condition.

Remark 53. The doubling condition (H6) for σ holds if ∂� has no char-
acteristic points. Less restrictive sufficient conditions for (H6) to hold are given
in the recent papers [11] and [17]. In [11] it is announced that (H6) holds if �,
beside satisfying the uniform exterior dG-ball condition, is an X-nontangentially
accessible domain. In [17] it is proved that (H6) holds, for any smooth �,
when G is a Carnot group of Step 2.

In order to better exemplify our result, we now want to write more explicitly
the sub-Laplacian �G when G is a Carnot group of step 2. We shall assume
that x−1 = −x for every x ∈ G (this is not restrictive, up to isomorphism).
Then the group law takes the form

x ◦ y =
(

x (1)
1 + y(1)

1 , . . . , x (1)
N1

+ y(1)
N1

, x (2)
1 + y(2)

1 + 〈B1x (1), y(1)〉, . . .
. . . , x (2)

N2
+ y(2)

N2
+ 〈BN2 x (1), y(1)〉

)
,
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where B1, . . . , BN2 are skew-symmetric N1 × N1 constant matrices. As a con-
sequence the vector fields Xi are

Xi = ∂
x(1)
i

+
N2∑

h=1

(Bh x (1))i∂x(2)
h

, i = 1, . . . , N1,

and the sub-Laplacian �G is given by

�Gu = �
x(1)

u + 2
N2∑

h=1

〈Bh x (1), ∇
x(1)

∂
x(2)

h
u〉 +

N2∑
h,k=1

〈Bh x (1), Bk x (1)〉∂2
x(2)

h ,x(2)
k

u.

In the special case when G = Hn is the Heisenberg group, we have N1 = 2n,

N2 = 1 and the matrix B takes the form B = 2
(

0 In
−In 0

)
.

Remark 54. We would like to end the paper by pointing out some connec-
tions between VMO and Sobolev spaces. In the setting of Hörmander operators
L , the Poincaré inequality proved by Jerison [30] (see also [33]) allows us to get
in a standard way the embedding W 1,Q

L (�) ↪→ VMO(�). Here Q denotes the
homogeneous dimension related to L and W 1,Q

L stands for the first order Sobolev
space related to the X = (X1, . . . , X p)-gradient. The comparison between the
notion of trace in VMO sense and the usual one for W 1,Q

L (�)-functions is more
delicate. However, if we assume the estimate

(58) σ(Bd(x, r)) �
|Bd(x, r)|

r
,

it is quite easy to show that the trace Besov space B Q

1− 1
Q

(∂�) introduced and

studied in [16], [34] is embedded in our VMO(∂�). We would like to refer to
the same papers [16], [34] for some comments on the condition (58).
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Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math.
49 (1996), 1081-1144.

[27] M. Giaquinta – G. Modica, – J. Soucek, Remarks on the degree theory, J. Funct. Anal.
125 (1994), 172-200.

[28] L. Greco – T. Iwaniec – C. Sbordone – B. Stroffolini, Degree formulas for maps with
nonintegrable Jacobian, Topol. Methods Nonlinear Anal. 6 (1995), 81-95.

[29] P. Hajlasz – P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no.
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Università di Bologna
Piazza di Porta S. Donato 5
40127 Bologna, Italia
uguzzoni@dm.unibo.it
lanconel@dm.unibo.it


