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H* Functional Calculus
for an Elliptic Operator on a Half-Space
with General Boundary Conditions

GIOVANNI DORE - ALBERTO VENNI

Abstract. Let A be the L? realization (1 < p < o00) of a differential operator
P(Dy, D;) onR" x RT with general boundary conditions By (Dy, D,)u(x,0) =0
(1 <k < m). Here P is a homogeneous polynomial of order 2m in n + 1 complex
variables that satisfies a suitable ellipticity condition, and for 1 < k < m By
is a homogeneous polynomial of order m; < 2m; it is assumed that the usual
complementing condition is satisfied. We prove that A is a sectorial operator with
a bounded H functional calculus.
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(secondary).

1. — Introduction

When A is a sectorial operator in a complex Banach space X, with spectrum
contained in some closed sector S, of the complex plane, the H* functional
calculus for A is a function f +— f(A) from the algebra of the bounded holo-
morphic functions on some open sector S,4, to the set of the closed operators
acting in X, which has some reasonable algebraic properties; if f(A) is a
bounded operator for any bounded holomorphic function f on S,;. then we
say that on that sector the H* functional calculus is bounded. As it is well-
known, the boundedness (on some sector) of the H functional calculus for a
sectorial operator is a stronger property than the boundedness of its imaginary
powers; on its turn the boundedness of the imaginary powers of A has important
consequences concerning the domain of A” with r €]0, 1] (see [30], Theorem
1.15.3) and the maximal LP”-regularity for the Cauchy problem

{u/—I—Au:f

(4. u(0) =0

(see [7], [16], [22]).
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In some cases it seems more convenient to study the H* functional calculus
instead of the imaginary powers, also because the technical difficulties that one
has to overcome to prove the weaker result are essentially the same that ensure
the stronger one: in the L?” setting for a differential operator one has to apply
in both cases some kind of Fourier multiplier theorem.

Several results on the boundedness of the imaginary powers and on the
boundedness of the H> functional calculus for elliptic operators in L” can be
found in the existing literature. Among the oldest papers on this subject there
are [24], [25], [26] that go back to the late *60s; in these papers the boundedness
of the imaginary powers is proved for elliptic systems with C* coefficients on
a compact manifold without boundary or on a bounded C* domain. In the
same framework the more recent paper [10] proves the boundedness of the H*
functional calculus.

A certain number of papers deals with the case of second order operators
with boundary conditions of various types. Without aiming at completeness,
we quote [4], [11], [12], [13], [21], [23], [27]. For the case of operators (or
systems of operators) of arbitrary order on the whole space we quote the papers
[3], [14], in which the boundedness of the H® functional calculus is proved
with minimal assumptions on the regularity of the coefficients.

The aim of this paper is to prove that if we call A the realization in L?
(1 < p < o0) of an elliptic operator P(D,, D,;) of order 2m on a half-space
(x € R", t € RY), with constant coefficients and top order terms only, under
general boundary conditions of the type Bi(D,, D;)u = 0, then A is a sectorial
operator and has a bounded H* functional calculus. The ellipticity requirement
on P is the following: if (0,0) # (x,t) € R"*!, then P(ix,it) ¢ R~ U {0},
and the boundary operators are expressed by m homogeneous polynomials of
degree < 2m that satisfy the usual complementing condition with respect to P.

The techniques that we use to obtain our result consist in studying the ordi-
nary differential operators A, on R* that one gets by replacing (both in P and in
By) the operators Dy, ..., Dy, with complex parameters zy, ..., z, belonging
to a suitable conical neighbourhood of (i R)", that is, to a conical neighbour-
hood of the cartesian product of the spectra of the operators Dy, ..., Dy,.
The study is carried out by using standard tools that rely on integration on
circuits embracing zeros of polynomials like u — P(z, -). This part of the paper
requires some results on “elliptic” polynomials that we expose in detail, even
if they are essentially known (see, e.g., [1], [2], [28]), in order to have a ref-
erence fitting precisely our needs. By means of suitable estimates, we obtain
the boundedness in L(L?(R™)) of the H* functional calculus for the operators
A,. Here we have to estimate two integral operators, one of convolution type,
and the other containing boundary terms: we use a Mihlin type theorem for the
former and an estimate concerning the Hilbert kernel for the latter. However
we prove something more, i.e. that the function z + h(A;) is holomorphic
and R-bounded for any function 4 bounded and holomorphic on some sector
containing the spectrum of A,. That allows us to use a recent result of N.
Kalton and L. Weis [19] in order to replace z with Dy = (D, ..., Dy,) in
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h(A;), obtaining a bounded operator. Formally that should imply the bounded-
ness of h(A); however we first have to prove that A is sectorial and to give a
representation formula for the resolvents of A.

The paper is organized as follows. In Section 2 we fix some notations and
we state our main result. In Section 3 we collect several auxiliary propositions
concerning polynomials and ordinary differential equations. In Section 4 we give
some information about the notion of R-boundedness for a set of bounded linear
operators, and about H® functional calculus. In Section 5 we obtain a number
of preliminary results concerning elliptic polynomials and boundary operators.
In Section 6 we study the operators A,: we show that they are sectorial, and
we prove properties of analyticity and R-boundedness with respect to z of the
resolvent operators (i — A.)~!; we also prove that the operators A. have a
bounded H> functional calculus, which moreover is R-bounded with respect
to z. In Section 7 we prove that the derivative operators Dy, ..., Dy, have a
joint bounded H®° functional calculus. Finally in Section 8 we prove our main
result, showing that A is a sectorial operator with a bounded H* functional
calculus. From our results it follows easily that the usual a priori estimate holds
for the elliptic operator with vanishing boundary conditions.

2. — Notations. Statement of the main result

We establish some notational conventions, that we keep for the whole paper.

(I) The symbol of a norm, ||-||, may have different meanings: when convenient,
we shall use suitable indices to distinguish between them. In particular, if
z=(z1,.--,2r) € C", |z|| will always denote the euclidean norm of z,

1/2 _
ie. (22=1 Izk|2> . In every Banach space, B(x,r) and B(x,r) denote,
respectively, the open and closed ball centred at x, with radius r.

(I) When X and Y are Banach spaces, £(X, Y) denotes the Banach space of
the bounded linear operators on X to Y, and £(X) := L(X, X). Ix denotes
the identity operator on X.

(IIT) When T is a linear operator, its domain and range are denoted by D(T)
and R(T), respectively. When X is a complex Banach space and T is a
linear operator acting in X (i.e. when D(T) and R(T) are vector subspaces
of X), o(T) and p(T) denote, as usual, the spectrum and the resolvent set
of T, respectively.

(IV) The function “principal argument” denoted by ‘“arg” is meant to have
C\]— 00, 0] as domain and ] — &, [ as range.

(V) When y is a circuit (that is a finite family of piecewise C'! oriented closed
curves) in C, and a € C\ y, the winding number of y with respect to a is
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defined by

1 1
w(y,a) := — / dz.
y

2mi z—a
VO €10, [ we set
So={peipeR ac]—0,0[}={zeC\]—o00,0] |argz| < 6}
and VB €]0, 5[ we set

Ty = Sprz N (=Spaz) = (i Sp) U (=i Sp)
={pe"“;peR\{0},ae ]%—ﬂ,%JrﬂH-

Thus Sy is the (open) sector around R, with opening angle equal to 20,
and Xg is the (open) “double-sector” around i R with opening angle equal
to 28. When Sy is mentioned (as it happens e.g. in Definition 5.1) it is
understood that it equals R™ U {0}.

Derivatives are always meant in the distribution sense. We use the symbol D
for the derivative of a function of one variable. In most cases, however, we
are dealing with functions of n+ 1 variables, and we denote these variables
by means of (x, ), with x € R" and ¢ € R; in this case Dy, ..., D, denote
the derivative operators with respect to xj, ..., Xx,, and D, the derivative
operator with respect to ¢. In Section 7 and 8 we also use the notation
D, for (Dy,...,D,).

In many cases these derivative operators will be considered as unbounded
operators in some function Banach space, but we will not introduce any
special notation to emphasize this fact.

When € is an open subset of RY, r is a positive integer and g € [1, o],
we denote by W"9(2) the Banach space (with the natural norm) of the
functions u € L9(2) whose distributional derivatives up to the order r
belong to L9(£2).

The symbol F denotes the Fourier transformation, formally defined by

(FFE) = [gn e ™8 f(x)dx.

After fixing these notations, we can state in a more precise form the result that
we have obtained and the techniques that we used.

Let P be a homogeneous polynomial of degree 2m in n+1 variables, with

complex coefficients. We shall emphasize the last variable by writing the values
of P in the form P(z, 1), with z = (zy,...,2,) € C" and L € C. We assume
that the polynomial P satisfies the following ellipticity condition:

if x eR", t €R and (x,1) # (0,0), then P(ix,it) ¢]— o0, 0].
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As we shall see in Sec@n 5, this condition implies that there exists w €
[0, [ such that if u € (C\ S,) U {0}, x € R” and (x, n) # (0, 0), then VA € C

pw—P(ix,») =Pl ()P,

ix, L

where the polynomials Pif, u

have positive real part and all the roots of P, , have negative real part.

The boundary conditions for the elliptic operator will be given by means
of a family By, ..., B, of polynomials in n 4 1 variables. It is assumed that
each By is a homogeneous polynomial of degree m; < 2m, and moreover that
if x e R", u e (C\S,) U{0} and (x, ) # (0, 0), then the polynomials (in one
variable) Bi(ix, ), ..., By(ix,-) are linearly independent modulo P;, ,.

Finally, we fix p €]1,00[ and call A the realization in L”(R" x RT) of
the differential operator P(D,, D;), obtained by taking as domain of A the
space of the functions u € W?"™P(R" x R*) satisfying the boundary conditions

Bi(Dy, D)u|;—9 = 0. Our main result is

have degree m, and moreover all the roots of P,-J;’ M

THEOREM 2.1. A isasectorial operator with spectral angle w and has a bounded
H® functional calculus on the sector Sy, VO € |w, m|.

This means that: (i) A has dense domain and range, (ii) o(A) C S, (iii)
Ve €10,m — o[ A(A — A)~! is bounded outside of S, (iv) for any complex
valued bounded holomorphic function f on Sy one can define f(A) as a bounded
linear operator on L?(R" x R™) (see Subsection 4.2 for more details).

3. — Polynomials and ordinary differential equations

We denote by P the algebra of the polynomials in one argument, with
complex coefficients.

Let O, Q1,...,0, € P. We say that Q;,..., Q, are linearly dependent
modulo Q or linearly independent modulo Q according that the equivalence
classes of Q1,..., O, in the quotient algebra of P modulo the ideal generated
by Q are linearly dependent or independent; this means that there does or does
not exist a linear combination of Qy, ..., Q, with coefficients not all equal to
0 which belongs to the ideal generated by Q, i.e. to {QR; R € P}.

DEerINITION 3.1. VO € P\ {0} and for k € {0, 1} we denote by Ax(Q) the
set of the circuits y in C such that Q(a) =0 = (a ¢y, w(y,a) = k).

REmMARK 3.2. Let y be a circuit, and f a meromorphic function on C
such that for any singular point b of f we have b ¢ y and w(y,b) = 0. Let
O € P\ {0}. The following two statements are straightforward consequences of
the residue theorem and will be used in the sequel without any further reference.
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(a) If y € A1(Q), then 27“ fy L@ g7 is the sum of the residues of f/0O at

0(2)
the roots of Q, and therefore does not depend on y € A(Q).
(b) If y € Ag(Q), then [, 58 dz=0. m

LeEMMA 3.3. Let Py, P € P\ {0}, with deg P| = q, and let y € Ao(Py) N
A1(Py). Then ¥ Q € P the following statements are equivalent:

(a) VR e PwithdegR < q — 1, fy%=0

(b) VReP [, 55 =0

(c) Q belongs to the ideal of P generated by P.

Proor. If ¢ = 0, then P; is constant, so that (a) and (b) hold trivially;
moreover in this case the ideal of P generated by P; is P, so that also (c)
holds. Hence we assume g > 1.

(@) = (b) Let ReP. Then R=SP,+ T, with S, T € P and degT <g¢q — 1.

(b) = (c¢) Let a be a root of Py, with multlphclty r. If h e{l,...,r}, then
Pi(A) = (A —a)" R()\) for a suitable polynomial R. Hence

0" V(a),

R Py QO o) 2711' w(y, a)
0=
/V P()Pl /(A—a)h (h—l)'

so that Q=Y (a) = 0. Therefore a is also a root of Q, with multiplicity > r.
This proves the existence of a polynomial S such that Q = S P;.
(c) = (a) We have Q = S P;, with § € P; hence VR € P with degR <¢g — 1
R R
WegetnyIQ,lzfyp—gzo. O
LemMA 3.4. Let Py, Py € P\ {0}, y € Aog(Py) N Ay (Py), Oy,...,0, € P.
We call ¥ the r x r matrix whose entries are

- L/ Mo
o= 2mi ), Po) PV

Then a sufficient condition for Q1, ... , Q, to be linearly independent modulo P, is
that det ¥ # 0. If moreover deg P| < r, then this condition is also necessary.

Proor. Let cq,...,c¢, € C such that 22=1 cxQr = RP, for some R € P.
Then Vj

r r A.‘]71 )\‘ 1 )\‘]71 R )\'
chakazc_k./&d)\:_'/i()d)»:
o Gy Py P 27i J, Po(h)

and this proves the first part of the lemma.
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Suppose that det ¥ = 0. Then there exists a non-zero r-tuple (¢, ..., ¢) €
C” such that, with Q := 3", _, cx Ok, we have Vj e {1,...,r}

4 1 Ao
0= = [ == a0,
;C"Uk” 27 /y Po(3) PL(M)

whence fy % =0 VR € P with deg R < r — 1. If in particular » > deg P, =:

q, then this equality holds VR € P with degR < g — 1, and so Q satisfies
condition (a) of Lemma 3.3. Therefore Q belongs to the ideal of P generated
by Py, so that Qy,..., Q, are linearly dependent modulo Pj. O

In the sequel, we will be concerned with polynomials (in one variable)
with no roots on the imaginary axis. As we shall see in Theorem 3.7 the roots
with negative real part will be interesting, and those with positive real part will
not.

As usual, Q — Q(D) denotes the natural isomorphism between the algebra
P of the polynomials in one variable and the algebra of the linear differential
operators on R (or on some open interval of R) with constant coefficients.

THEOREM 3.5. Let Py, P; € P\ {0}, deg P, =m, y € Ao(Po) N A1(Py). The
following statements hold:

. At . . . .
(@) YO € P, the function R > t — | Y % d\ is a solution of the differential
equation Py(D)u = 0;

. j—1 At . .
(b) ifwesetu;(t) = 21? v % d, then{uy, ... ,uy}isabasisof ker Pi(D);

(¢) if Oy,..., Q are polynomials linearly independent modulo P, and (by,...,b,,) €
C™, then there is a unique u € ker P{(D) such that (Qx(D)u)(0) = by for

1<k <m.
PROOF. y
_ Q(}\)e . . . .
(a) Let Q € P and u(t) = fy PG PLY dA. Since it is obvious that we can

differentiate with respect to ¢ within the integral, we get (P;(D)u)(t) =

oM 40
fy 009 dr=0.

(b) Since the dimension of ker P;(D) equals m, we have only to show that
ui, ..Uy are linearly independent. Let (cy, ...,c,) €C™, with Y ;" crux =0.
We set Q(A) = > L, 5% %=1 Then VR € P

21i

0= <R<D) Zcm) 0) = cx (R(D)uy)(0)

k=1 k=1

"k ML RM) / OR
=y = | = " gr= )
Z 27i /V Py(1) Pi(X) , Po Py

k=1
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It follows from Lemma 3.3 that Q belongs to the ideal generated by P,
which is possible only if Q = 0 (that is ¢y = 0 Vk), since degQ < m =
deg Pj.

(c) Let u =377 cju;. Then for 1 <k <m

. - G M
(Qx(D)u)(0) = ;cﬂQk(D)“ﬂ(O —g 2 /yPom Py

m
Z €j Ok.j»

where oy ; is the same as in Lemma 3.4. By the same lemma we have
det ¥ # 0, so that the system Z;-”Zl ¢jox,j =br (1 <k <m) has a unique
solution. O

LEMMA 3.6. Let Ay, ... , A, be complex numbers such that A, 7% Ay for h #£ k
and Re A, > OVk. Let Qy, ..., Q, be polynomials, and suppose that the function
t > Y iy Qk(t) €™ belongs to LP(R™) for some p € [1, oo[. Then Qi = 0 Vk.

Proor. We perform the proof in three steps.

(D Let ¢y, ...,c, be complex numbers, let «p,...,a, be real numbers such
that ), # oy for h # k, and assume that t +— > _ cxt 'ei®’ belongs to
L'(1, 00). Then ¢, = 0 Vk. Indeed let us assume that, say, ¢, # 0, and let us set
f@) =e " S et el Then f € L'(1,00), so that [° e~ f(t)dt e

E—>

[° f(t)dt. However

00 r 00 00
/ ef”f(t)dt:E ck/ 1~ emEtti @ “’>’dt—cr/ e dt
1 1 1
k=1

—8+i((¥k—(){r)

1 *©_, .
t~ —et+i(oy —oy)t dt)
+Z (—l(ak—ar) —i(ak—ar)/l ¢

which does not converge as ¢ — 0.

dI) Let Qi,..., Q, be polynomials, and let «j,...,a, be as in step (I).
Assume that t — Y ;_, Qx(1)e'*" belongs to LP(R") for some p € [1, ool
Then Qr = 0 Vk. Indeed if this is not the case, setting s := max;<x<, deg Q.
since ¢ > t~*~! belongs to LP/(I, 00) (where p’ is the exponent conjugate to
p), the function ¢ > t=5=1 377 Ok(t)e!®" belongs to L'(1,00), and so we
obtain a contradiction with step (I).
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(ITI) In the situation of the statement, assume that some Qj is # 0. Then we
can suppose that Qp # 0 Vk. We set p = maxj<x<, ReA;. As the function
t > e~”! belongs to L*(R™), also the function

q
I = Z Qi (t) e =P = Z Oy (1) eH=P" 4 Z O (t) ekt

k=1 <R€Ak<p <Rekk:p
belongs to L”(R¥). Here 1 = Y pe; _, Ok(t) e*=P" belongs to LP(R*), and

so also the function 7 > Y pe; —, Ok(1) ™=, belongs to LP(RT). Remark
that in the last sum there is at least one summand, that all the polynomials that
appear in it are # 0 and that Ay — p = irg, with r, € R and r, # r, for h # k.
Hence we have contradicted step (II). O

THEOREM 3.7. Let Py, P_ € P\ {0}, and assume that all the roots of P
have non-negative real part and all the roots of P_ have negative real part. Then
ker(Py P_)(D) = ker P..(D) & ker P_(D), andVp € [1, oo we have

ker P_(D) C ﬂ WP (R, ker P, (D) N LP(RT) = {0}.
neN

Proor. It is well known that VQ € P\ {0} dimker Q(D) = deg Q. Since it
is obvious that ker Py (D) and ker P_(D) are linear subspaces of ker(P P_)(D),
in order to prove that ker(P; P_)(D) = ker P, (D) @ ker P_(D) it is sufficient
to show that ker P, (D) N ker P_(D) = {0}, and this follows from the two
formulas of the last line of the statement.

By Theorem 3.5 (b) any u € ker P_(D) is of the type

1 1) e
u = [ LW,
2i J, Py(L) P_(})

with Q € P, degQ < degP_ and y € Aj(P-) N Aog(P+). We can take y in
such a way that max;c, ReA = —M < 0; then for t > 0 and Vn e N

1 MO
|Lt(n)(t)| < 7/ &

2 )| PrGo P_(h)
and this proves that u™ € LP(R"). Therefore u € [,y W"P(RT).

. . . At
Likewise, any u € ker P, (D) is of the type u(t) = 5 J, %dk
with Q € P, degQ < deg Py and y € Aj(Py) N Ap(P-). Let ay,...,a, be
the roots of P, (with a; # a; for j # k), and let m; be the multiplicity of ay.

Then the residue theorem yields

&L AT 00y —a)™
u(t)_k;<mk—1>!dxmrl( PL Py ¢ )'*‘”k

d|r| e M,

h=0

oo " =1 @ 100) (e—ag)™ b
zzgégzn”:__l)! ZZ: ( h ) dymik—1-h ( P+(X)[L(A) > h:akt ek

= Qkt) ™

k=1
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for suitable polynomials Qi,..., Q,. Now, if u € L?(R"), from Lemma 3.6
it follows that u = 0. O

Summing up, we have

THEOREM 3.8. Let P_, Py be as in Theorem 3.7, and let m = deg P_, r =

deg P, + deg P_. Let Q1, ..., Qn be polynomials linearly independent modulo
P_. Let p € [1,00[ and (by, ... , by) € C". Then the problem
u e WHP(RY)

(P, P_)(D)u =0
(Qk(D)uw)0) =by 1<k=<m

has a unique solution.

ProoF. By Theorem 3.7 we have W7 (R™) N ker(P, P_)(D) = ker P_(D).
Then the result follows from Theorem 3.5 (c). O

4. — R-boundedness and functional calculus

4.1. — R-boundedness

Let X, Y be Banach spaces. A subset 7 of L£(X,Y) is said to be R-
bounded if 3C > 0 such that for any positive integer N and for arbitrary
choices of Ty,...,Ty € 7 and x;,...,xy € X one has

“4.1) stkaka <C Z HZEkka .

ee(—1,1}N k=1 ee{—1,1}V

We call Ri-bound of 7 the best constant C that can be put in the right-hand
side of (4.1).

Due to the Khintchine-Kahane inequality (see [6], 11.1), formula (4.1) can
be written in an equivalent form as

1/q 1/q

> [Sansl) sa( ¥ [Sas,

ee{—1,1}N ee(—1, 1}V k=

where g € R*. The best C, will be called the R,-bound of 7. By setting
N =1 in this inequality, one sees at once that if 7 is a R-bounded subset of

L(X,Y), with R;,-bound C, then 7 is bounded, and sup ||T|| < C. Moreover
TeT
a simple application of the triangle inequality proves the following lemma.
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LEmMaA 4.2. Let X, Y be Banach spaces, and let T', T" be R-bounded subsets
of L(X,Y). Then T'+T" is R-bounded, andV p € [1, oo[ the R,-bound of T' +T"
is not greater than the sum of the Ry,-bounds of T" and T".

The simplest example of R-bounded set is given in the following well-
known result (see [6], 12.2).

THEOREM 4.3 (Kahane’s contraction principle). Let X be a Banach space,
M € R*T. Then the set {Mx; A € C, |A| < M} is R-bounded, andVp € [1, oo| its
R,-bound is < 2M.

The following theorem (which can be found in [31]) provides a nontriv-
ial example of a R-bounded set of operators. Recall that F is the Fourier
transformation.

THEOREM 4.4. Let (r)ic1 be a family of elements of L' (R) and assume that
Vi € I Fy € W (R\{0}), while the function m\ (Fi;) (wherem (1) = t ¥t € R)
belongs to L*°(R). Assume moreover that

sup max {7 Yl llmy (FYi) o | =5 < +oo.

A4S

Let p €)1, 00[andlet T; : L? (R) — LP(R) be the bounded linear operator defined
by T, f =*f. Then{T; : i € I}isaR-bounded set of operators, and its R,-bound
is < C(p)n.

Another sufficient condition for R-boundedness is given in the following
result.

THEOREM 4.5. Let M € R" and let Ky be the set of the measurable functions
on RT x RY to C such that

esssup (t +s) |K(t,5)] < M.
t,seRT

Let p €]1,00[ and let X be a Banach space. YK € Ky let Tx be the operator
formally defined on L? (R, X) by

Ty f (1) = /O K(t,5) f(5)ds.

ThenVK € Ky Tk is a bounded linear operator on L? (R™, X) to itself, and the set

{Tx; K € Ku} is R-bounded, its R,-bound being < Siﬁg;’p).

Proor. The statement that Tx € £L(L?(R*, X)) and the inequality

M

T, X = Gn/m)
I Tk Ml £zr @+ x)) < sin(rr/ p)
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are well-known: a proof can be found in ([17], Theorem 319). In order to prove
the R-boundedness, we choose f; € LP(RT, X) and K; e Ky (1 <j < N).
Then

1/p
celLN sz;g’ Ki f’HLP(nw X)
1/p
/ 2 H/ Ze,l((z S)fJ(S)dSH dt
ee{—1,1}N

The last term can be mterpreted in the following way. In the space
Hae{—l,l}N X, where each X, is a copy of X, we consider the norm ||x||, :=

( S flxell ) (where x_(xg)se{ " 1}N) If we set x.(¢,5) = Z eiKi(t,s) fi(s)
ee{—1,1}N j=1
and x(z,5) = (xs(7,5)) (1)~ then

H/ ZSJK(t s)fj(s)dsH = H/ x(t, s)dsH

ee{—1,1V
1 p
o] p 00 N P /v
< </ ||x<t,s>||,,ds> - / > IXake s ] ds
0 0 ee(—1, 1}V j=I
Therefore
1/p
HZ €i Kf"LP(WX)
ce{— ll}
1/p p 1/p
o o0 N p
< e K;(t.5) f;65)| ds | di
_/0 /0 > [axeonofl)
ee{—1, 1}V Jj=1
(by the contraction principle, as K; € Ky)
v 1/p 4 1/p
o0 ©2M P
< / / > [ Xeno)| ds | di
0 o t+s etV =l X
Y N 1/p
T p
< Sne/m 250 )|
sin(r/p) H Z N H; i Ji () b% LP(R)
o 1/p
T
-2 (S IS u
sin(rr/p) LP(RT,X)

ce{—1,1}V  j=1
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REMARK 4.6. Let X, Y be Banach spaces, and for k = 1, 2 let (2%, ux) be
a o-finite measure space. We call (€2, ) the product measure space. Assume
that 7 € L(L?(uz, X), L?(2,Y)). Then we can define an operator 7 on
LP(u, X) to LP(u,Y) by the formula

(7 ) = (T, ) @)

and we have ||Tf||Lp(M ¥ = < |IT| ||f||Lp(,L x). Since the linearity of T obv10usly
implies the linearity of T we have that T € L(L”(,u, X), LP(u,Y)), with ||T|| <

IT||. Remark that the transformation 7 +> T from L(L?(u», X), LP(12,Y))
to L(LP(u, X), LP(u,Y)), is linear and continuous. O

Lemma 4.7. With the notations of Remark 4.6, assume that T is a R-bounded
subset of L(LP(uy, X), LP(u2,Y)). We set T = {T;T € T}. Then T is R-
bounded, and the R,,-bound of T is not greater than the R,,-bound of T .

Proor. If M is the R,-bound of 7, then

stk kkaLpW)/ Z !Zska(fk(n,»HLp( dpui (1)

se{—1, )N k=1 LN o k=1

p
SMP/ H &k fk(th')H dp(t)
Qr, Zl N ; LPuz.X)

= O
H Z &k kaLP(M xX)

ee{—1,1}V

In Section 8, we shall apply Remark 4.6 and Lemma 4.7 to the case of
Q) =R" and Q, = R* (with the Lebesgue measure, in both cases).

4.2. — Joint functional calculus for sectorial operators

What follows is a short review of some part of the theory of H* functional
calculus for n-tuples of sectorial and bisectorial operators. Proofs and details
can be found in [8]. We also refer the reader to the papers [5] and [20].

DEerFINITION 4.8. Let T be a linear operator in the complex Banach space
X, and let B € [0, w[. We say that T is sectorial with spectral angle B if:

(i) D(T) and R(T) are dense in X;
(ii) o(T) C Sp:
(iii) Ve €10, 7 — B[ 3C, € R such that [A(A—T)7'| < C, VA € C\ Spte-

From condition 4.8(iii) it follows that ker T N R(T) = {0}; therefore from
condition 4.8(i) one obtains that any sectorial operator is injective.
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Conversely, if X is reflexive, then conditions (ii) and (iii) of Definition 4.8
imply that D(T) is dense in X, and that X = ker7T @ R(T), so that T has
dense range if and only if it is injective (see [5], Theorem 3.8).

DEFINITION 4.9. Let X be a complex Banach space, Q2 = H,N: 1 Sp;» With
Bj €10, [ Vj. We call -

H (2, X) the vector space of the X-valued holomorphic functions on €2;
H*> (2, X) the Banach space of the X-valued bounded holomorphic func-
tions on €2, with the norm | fllc := sup || f(2)]lx;

7€
H§° (2, X) the set of the holomorphic functions f : 2 — X satisfying the
following condition: 3C > 0, s > 0 such that Vz = (z1,...,2y) € Q

N
lfDlx <C Hmil’l{|Zj|S, |Zj|_s}.
j=1

In the notations H (2, X) etc., the mention of X will be omitted when
X = C. Remark, however, that when X = L(Y) (for some Banach space Y),
then the scalar valued functions can be identified with the X-valued functions
in a natural way, by replacing f with f(-) Iy.

It is obvious that Hj°(£2, X) is a vector subspace of H>° (€2, X); moreover,
if X is a Banach algebra, then also H*(2, X) is a Banach algebra, and
H§°(2, X) is a two-sided ideal of H*°(R2, X).

Let Ty,...,Ty be sectorial operators in the complex Banach space X
(with spectral angles «y, ... ,ay). We assume that the resolvent operators of
Ty, ..., Ty commute, and call B the set all bounded linear operators on X

that commute with these resolvent operators. Then B is a closed subalgebra of
L(X). Let us set @ = [[}\, Sp;, with a; < B < 7. If f € H{*(Q,B), then
the operator f(T1,...,Ty) € B is defined as follows.

Let y; €]a;, B;[. We set I' = Hszl I';, where I'; is the curve parametrized
by t — |t]e”% %€ for t € R\ {0}, and oriented according to the increasing
values of 7 (i.e. according to the decreasing imaginary parts). If f € HJ° (L2, B),
then the function z — f(2) Hjl-vzl(zj — Tj)_l is summable on I', and its integral
(which belongs to B) does not depend on the choice of the angular values
vj €laj, Bi[. Therefore we set

N
f(r, ... ,TN)=(2ni)_N/Ff(z) [ -1)"4dz
j=1

and we obtain that the map f +— f(T1,..., Ty) is an algebra homomorphism
of H5° (2, B) to B.

Among the (scalar valued) functions that belong to Hy°(2) there are the
very useful functions introduced in the following definition.
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DerINITION 4.10.  For any positive integer k, we define the function
Wi n : (C\ {—k, —=k~'HV — C by

N

Ven@ =[]

j=1

kZZj
(k+zj)) (1 +kzj)

We usually will not mention the dimensional parameter N, and we set
N

Zj
Y(z) =V¥i(z) = —_—
(@) = W) .1_1<1+z,»)2
J_
One has
LEmMA 4.11.
N
U(T,.... Ty =][T0+T)2
j=1
Moreover V(Ty, ..., Ty) is injective and has dense range.
Then one can extend the definition of f(7y,...,Ty) to the case of f €

H*> (2, B) (and even to a larger space, actually) with the following device. If
f e H®(Q, B), then ¥ f € Hy°(2, B). Then we can set

ST Ty) s=W(T, .. Ty)  (W)(Th, ... Tw).
This definition extends the one given for f € HF°(2,B), but in general
f(Ty,...,Ty) is a closed, densely defined, and not necessarily bounded, op-

erator. One can prove that
Lemma 4.12. If f, g € H*(R2, B), then

f(T,....Ty) +g(Ty, ... . Ty) S (f +)(T1, ..., Ty)
and
f(Ty, ..., Ty)g(Ty, ..., Ty) S (fo)(T, ..., Ty).
Lemma 4.13. If S € Band f(z) = SVz € Q, then f(Ty,...,Ty) = S.
LeMMA 4.14. Vx € X limg_ 4 oo Wi (T, ..., Ty)x = x.
REMARK 4.15. If f € H®(Q,B) and f(Ty,...,Ty) € L(X), then from
Lemma 4.12 we get
(Ve )Ty oo, TN) = W(Th, ... Ty) f(Ths oo T
therefore Vx € X we have, by Lemma 4.14,
f(Ty, ..., Ty)x = lim (W f)(Ty,...,Ty)x. O
k—+00
DEFINITION 4.16. Let A be a closed subalgebra of B. We say that (71, ...,Tx)
has a bounded joint H*°(€2, .A) functional calculus if f(Ti,...,Ty) € L(X)
Ve H®(Q, A).

Remark that this definition includes the case of scalar valued functions f,
when A = {AIyx; 1 € C}.

Another useful result is the following.
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LemMA 4.17. Let A be a closed subalgebra of B. Then a necessary and
sufficient condition for (Ty, ... , Ty) to have a bounded joint H*° (2, A) functional
calculus is that3C € RT suchthatV f € H (2, A) || f(T1, ..., TV < C || flloo-

In this case, Vf € H®(Q, A) | f(T1, ..., Tyl < C TI; cos2(8;/2) I flloe-

In some concrete cases, e.g. when X = LP(R"), in order to prove the
estimate || f(T1,... . Tw)ll < C|fll for f € H{°(R2,.A) it may be useful
to use multiplier theorems. Therefore the “vector-valued case” (that is, f €
Hy° (2, A)) is expected to be much more difficult than the “scalar-valued case”
(ie. f e Hy°(2,C)), for in the former case one should work with operator
valued multipliers, instead of scalar valued multipliers. Other difficulties can
be found if we do not know anything about the existence of a bounded joint
H*> (2, A) functional calculus, and we want to prove that f(Ty,...,Ty) is
bounded for a given f € H*(2, A). In this connection we have the following
theorem, that we shall use later.

THEOREM 4.18 (see [19], Theorem 4.4; [8] Theorem 6.7). Assume that
(T, ..., Ty) have a bounded joint H* (') functional calculus, where Q' is a set
of the same type as 2, defined with respect to smaller angles. Let f : Q — B be
a holomorphic function whose range is R-bounded. Then f (T, ..., Ty) € L(X).
Moreover AC(Ty, ..., Ty, p, X) € RT such that || f(Ty, ..., Ty)| is not greater
than C(Ty, ... , Ty, p, X) times the R,-bound of the range of f.

In the sequel, we shall deal also with a different situation. To explain what
is the matter, we first give a definition.

DErINITION 4.19. Let T be a linear operator acting in the complex Banach
space X, § € [0, w/2[. We say that T is bisectorial with spectral angle § if:

(i) D(T) and R(T) are dense in X;
(i) ¥s 2 o (T);
(iii) V&' €16, F[ 3C() € R* such that VA € C\ Ty [|[A(A — T)~ || < C(8).

Since X5 C S +1 it is obvious that a bisectorial operator with spectral
angle § €]0, 7[ is also a sectorial operator with spectral angle § + 7. However
in this case we wish to define f(7) also when f is holomorphic on Xy, with
8§ < & < m/2, and not necessarily on the whole sector S Iy In a similar way,
if Ty, ..., Ty are bisectorial operators with commuting resolvents, we wish to
define f(T,...,Ty) when f is holomorphic on the set Q = J];_, Xp,, where
Vk Bi is greater than the spectral angle oy of the bisectorial operator 7j.

In order to do this, let us agree that in the present situation the meaning of
such symbols as H (2, X), H*(2, X), Hy°(2, X) is analogous to the one of
the sectorial case, given in Definition 4.9. Then we define at first f (71, ..., Ty)
when f € Hf*(2, B). If yx €log+75, Bi+75[, we call Ty the curve parametrized
by R\ {0} 3¢ > |t e 7k 8" and set l:k =T U (—TI%), where I'y is oriented,
as above, according to the decreasing imaginary parts, while —I'; is oriented
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according to the increasing imaginary parts. With I = H,ivzl I, we can set

N
P )= Qe [ @ T[e - 107 e
k=1

One can prove again that this integral exists, and does not depend on the choice
of the y €l + 5, B + F[. Moreover, when f € H@O(H,Icvzl S B), if we

set I' = [[o_, T, we have

N N
[r@ -1 d:= [ @ [[e-107"dz
r k=1 r k=1

and this means that, for such functions f, the definition of f (7}, ..., Ty) for the
bisectorial case coincides with its definition for the sectorial case. This happens,
for instance, for the scalar function W; hence also in the bisectorial case we
can extend the definition of f(7y,...,Ty) to the functions f € H*(Q2, 5) by
the formula

F(Ty, ... Ty) =W(Ty, ..., Ty) " (WF)(Ty, ..., Ty).

Then it is possible to prove that also in the bisectorial case Lemmas 4.12, 4.13,
4.14, 4.17, and Theorem 4.18 hold true. Details can be found in the paper [8].

5. — Some preliminary results on elliptic polynomials

In the sequel, m and n are positive integers, and P : C"*! — C is a homo-
geneous polynomial of degree 2m, with complex coefficients. We’ll emphasize
the last argument of P by writing P(z,A) with z € C" and A € C.

DEFINITION 5.1. Let w € [0, [, L € R*. We say that P is (L, w)-elliptic
if the following conditions hold:

(i) |PGx,in)| = L7 (e, )P Y(x,1) € R" x R;
(i) P(ix,it) € S, V(x,1) e R" x R;
(iii)) the maximum of the moduli of the coefficients of P is < L.
REMARK 5.2.

(a) It is quite obvious that a sufficient condition for a homogeneous polynomial
P to be (L, w)-elliptic for some L and w is that P(ix,it) ¢ R~ U {0}
V(x,t) € (R" x R)\ {(0,0)}.

(b) Assume that P is (L, w)-elliptic. If we write

P(z,k)=§:( > ck,az“)/\",

k=0 |a|=2m—k
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then by condition (i) of Definition 5.1 ¢, 0 = (—=1)" P(0,i) # 0; in
particular Vz € C" the polynomial C > A — P(z, ) has degree 2m.

(c) It follows from condition (iii) that L > |cay.0l = |P(0,i)] > L~ therefore
L>1. O
Henceforth it is understood that P is (L, w)-elliptic, for some fixed L > 1

and w € [0, [. In all the inequalities that will follow, the constants will depend

on P, but only through L and w.

We now study the behaviour of P(z,1) when (z, 1) € (Z,)" x Z,. We
need some lemmas.

LEmMMA 5.3. If w = |w| el 7 = |z| e, with a, B € R, then
lw —z| = (Jw| + |z]) | sin((a@ — B)/2)|.
PROOF.
2 2
lw—z|* = (|w|cosoz — |z cos,B) + (le sina — |z| sinﬂ)
= wl* + |z> = 2 w| |z| cos (@ — B)
2 2 2 2
= (Il = 121)"cos’ (@ = B)/2) + (Il + I21) sin’ (@ = B)/2). O
LeEMMA 5.4. Let z, w € C\ (R™ U {0}) such that \w — z| < |z|. Then

. w—z]
|arg w| < | arg z| 4 arcsin I
Z
PROOF. Put A = w/z. Then 1 — Reir < |A — 1| = '“}lz—f‘ < 1 so that
Re) > 0 and hence |argA| < 7. From w = Az it follows that |argw| <

|argA + argz| < |argz| + |argX|; hence in order to prove the lemma it is
enough to show that |argA| < arcsin|A — 1|, and since |argA| < % this is
equivalent to sin’ argh < [ — 1], ie. to sin’ arg A < [A|> —2|A| cosarg A + 1,
that is obviously true. O
q+N—1

When N > 1 and ¢ > 0 are integers, we set £y, = ( p

number of indices o = (ay, ..., ay) with |a| = gq.

), ie. the

LEMMA 5.5. Let N and q be positive integers and let Q : CN — C be a
homogeneous polynomial with deg Q = q. We call M the maximum of the moduli
of the coefficients of Q. Then for arbitrary &, n € CN

10 + 1) — Q@) =27 £y o M Il max {I£177", lnl*~" }.

Proor. We have obviously

o _
E+n —&= > (/3) n“PEr.
B=a,pFa
If ol =¢q, B <o and B # «, then |B| < g — 1; in this case we have

e PERL < Il 98 1E 1) < |l (maX{HT]H» ||5I|})q_l.

Since Y 4., (;) =2/l =29 the assertion is proved. O
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2m+1 -
THEOREM 5.6. Let 6 € Jw, w[. We set ¢ = (2 Mg om L ) sin(0 — w).

If(0,0) # (z, 1) € (S,)" x T, then P(z, 1) € Sp and |P(z, )| > 57 [I(z, M]*"
ProoF. Let (0,0) # (z,A) € (¥,)" x %,. For suitable (x,7) € R* x R

and a1, 0 B € [~p, 0] we have (z,2) = (elixy, ..., enix,, eit).
Obviously [|(x, DIl = [I(z, M) |-
From Lemma 5.5 we get

|[P(z,A) — P(ix,it)|

= 22 i1 2 Lz 2) — G inl max {Gx, il 2"l 2) = Gx, in)P '}
and

n
Iz, 2) = Gix,in)]> =D le'™ — 1P x7 + [P — 112
k=1

=4 (Z sin®(ay /2) x7 + sin®(B/2) z2>
k=1

< 4sin*(@/2) I(x, OI* < o lI(x, DI
so that (as it is obvious that ¢ < 1)

|P(z, &) — P(ix,it)] < 2" Lys1om Lo ll(x, )"

57 Sin® — @) llGx, D"
On the other hand we have |P(ix,it)| > L~ |(x, 1)]*", hence

|P(z,A) — P(ix,it)] 1

1
— < —sin(@0 —w) < —.
|P(ix,it)] 2 2

Therefore

1 1 1
P(z, \ —|P(ix,it)] > — ||, D" = — || (z, M||*".
[P(z )I>2| (ix l)|_2L G, o)l 7L Iz, Ml
Moreover from Lemma 5.4 it follows that

o .| P(z,2) — P(ix, i1)|
|arg P(z, )| < |arg P(ix, it)| + arcsin —
[P(ix,it)]
(1 T
< w + arcsin (E sin(f — a))) <w+ 1 sin(f0 — w) < 6.

|

In the sequel we shall denote with ¢y the function on Jw, w[ to ]0, Z[
defined by

-1 f0—-w
00(6) = (2" o L7) - sin ==

COROLLARY 5.7. If@ €lw, [, (0,0) #* (z,A) € (E(po(g))n X Ewo(g), then
P(z,1) € S@tay2 and |P(z, M) = 57 1z, W)™
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Proor. Immediate consequence of Theorem 5.6. O

THEOREM 5.8. Let 0 € Jw, w[. If u € C\ Sg and (z, 1) € (Zyy0))" X gy 6),
then

0—ow
4
ProoF. Suppose that w # 0 and (z,A) # (0, 0), otherwise the inequality

is trivial. We set u = |u|e'®, with & < |a| < w. Then by Lemma 5.3 and
Corollary 5.7 we have

1 . "
lw =P M|z 57 sin G WP + i)

= Pz sin S TEEED (14 b, )
= sin T O EOZ (1) 4 i)z
2
> an sin "7 (lul + 1w, 0

REMARK 5.9. Letus fix 0 € |lw, n[,x € [0 —7m, 7 —0], B=(B1,...,Pn) €
[—@0(0), po(@)]". For ¢ = (&1,...,¢,) €C", L€ C and v € C we set

0@, 1, v) = (=D v2 4 pePicy, ..., e, 1),

Then Q is a homogeneous polynomial of degree 2m in n+-2 variables; moreover
Theorem 5.8 implies that Q does not vanish on (i R)"*2\ {0}. Since n+2 > 3,
by means of well-known arguments (see e.g. [2], Proposition 2.2), one obtains
that for (x, £) € R"*1\{(0, 0)} the equation (in the unknown A) Q(ix, A, i&) =0
has m roots with positive real part and m with negative real part. This means
that for (0, 0) # (z, ) € (Xgyy1)" x (C\ Sp) the equation (in the unknown A)
= P(z,A) has m roots with positive real part and m with negative real part.
Then we shall write

w—P(z,2) = P00 P, (4)

where the polynomial PZJfM (P;,,) collects the roots with positive (negative) real
part of uw — P(z,-). O

1
DEFINITION 5.10. V(z, ) € C"T! we set B(z, ) = ||z|| + |p|2m.

THEOREM 5.11. V6O €lw, [ there exist positive constants r(L, w,0) and
M\ (L, w,0) such that if u € C\ Sp, z € (Zyy0))", + € Cand

It — P(z, M) < Mi(L, w,0) Bz, W)™

then A & Xy, andr(L, o, )~ Bz, m) < A <7 (L,w,8)B(z, w). Inparticular
any root A of the polynomial i — P(z, -) satisfies these conditions.
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Proofk. Let 6 €lw, [, p € C\ 84, z € (Zyy0)" and 2 € C. We set

R 1 - 0—w
My = Sz sin ==

(D If A € Zyy) then from Theorem 5.8 it follows that

I — Pz, M) = Mo B(z, w)*".

(IT) Taking into account step (I) and Lemma 5.5 we have

= P@ W] 2 = P@E,0) = Pz 0) = Pz, 1)
> Mo Bz, 00" = 2" Ly o L1 max {1z, 2271}

= Mo Bz, i)™ = 2" €p2n LI max { Bz, ™", h~! |,
Therefore if C €]0, 1] and |A| < CB(z, n) then we have
=P W) = (Mo = 2" byr12m L C) Bz )",

so that in particular for C = Q%" €, 12, L)™' My we get

1
=Pzl = 5 MoB(z, .

(IID) Since |com.0l > L' (see Remark 5.2 (c)) we have

2m—1

= PG = lemol P =1l = >0 (D lejal 12°1) 11
j=0 |a|=2m—j
2m—1

> L7 AP = il = > Lwom—j LIz AV
j=0

= L7 AP = |l = € 2 L1zl max {12277, 22
Therefore if |A| > B(z, u), then we have
= Pz M| = LA™ = Bz )™ = ugrom L Bz, ) A"
= AP (L7 A = b an LB ) = Bz, i)™
so that in particular for |A| > 24,41 2n L? B(z, n) we get

lw— Pz, ) = @z L L — 1) Bz, ™.
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Hence the assertion is proved, with

1 )
22m+1 L S 4

M, = min {Mo/z, 22, L — 1} = Mo/2 =

and

r = max {22m+1 Zn_;,_],zm L Mo_l, 2£n+1,2m LZ} = 22m+l €n+1,2m L M()_l

4m+1 2
_ 2 m Zn+1,2m L

©sin((0 —w)/4)

If y is a circuit parametrized by the function ¥, and ¢ € C, we denote by
cy the circuit parametrized by ci; it is obvious that the length of cy equals
|c| times the length of y; moreover if ¢ # 0 and a ¢ y, then ca ¢ cy and
w(cy,ca) = w(y,a).

DErINITION 5.12. Let 0 € Jw, w[, and let r(L, w, 6) have the same meaning

as in Theorem 5.11. We call yf the closed curve (oriented counterclockwise)
composed by:

(i) the arc of the circle centred at 0 with radius r(L, w, 6), from
r(L,w,0) e—i(%_(ﬂo(@)) to r(L,w, ) ei(%—(po(e));
(i1) the segment from
r(L,w,0) ei(%“ﬁo(@)) to r(L, w, 9)7] ei(%—wo(@));
(iii) the arc of the circle centred at 0 with radius r(L, w,8)~", from
r(L, w, 0)—1 ei(%ﬂﬂo(@)) to r(L, w, 9)—1 e*i(%ﬂpo(e));
(iv) the segment from r(L, w, 0)~! e G0 o 1(L, w,0) e T,

Moreover, we set y, = —V,", and for (0,0) # (z, ) € C" x C ygi(z, n) =
IB(Za M)Vei-

It follows from Definition 5.12 that if A € y,” U y,, then either A €
Yo Or |A] € {r(L,w,6)7", r(L,w,0)}. Hence the following theorem is a
straightforward consequence of Theorem 5.11 and Definition 5.12.

THEOREM 5.13. Let 6 € lw, 7|, (0,0) # (z, u) € C" x C. Then we have:

(@) if & € v (2. ), then =Re ) > My(L, w,0) B(z. ju), where
M>(L,®,0) =r(L,w,0)"" sing(6);

(b) y9+ (z, w) and vy, (z, ) are disjoint from Xy ),

(©) ifu € C\Spandz € (Zyy0))", then any solution A with positive (negative) real
part of the equation P(z,)) = u does not belong to y9+ (z, ) (to yy (z, 1))
and has winding number equal to 1 with respect to y9+ (z, ) (to yy (z, 1)),

(d) if e € C\ Sy, 2 € (S and i € v (2, 1) U v, (2, ), then

I — P(z, )| = Mi(L, w,0) Bz, ™.
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The boundary operators relative to the differential operator P(D,, D,) will
be expressed through m homogeneous polynomials By, ... , B, in n+1 variables,

with deg By = m; < 2m. We assume that these polynomials satisfy an “w-
complementing condition”, that is:

if (0,0) # (x,u) € R" x ((C\ S,) U {0}) then the polynomials
(5.14)

Bi(ix,), ..., Bu(ix,-) are linearly independent modulo P, 0

Here one could make a remark similar to 5.2 (a) concerning the fact that (5.14)
is satisfied for some w € ]0, [ provided that it holds for x € R~ U {0}. What
we actually need, however, is a similar condition with ix replaced by z € (Z,)"
for some o > 0, and so in the last part of this section we are going to deduce
it from (5.14).

For the sequel of this section we fix 6 € ]w, [.

Assume that (0,0) # (z, n) € (Zyy0)" X (C\ Sp). For j, ke {l,... ,m}
we set

(5.15) (copt) = / L ACTO
. 8k, j\Z, ) = — —
J 2mi A P(z,\)

and we call G(z, u) the m x m matrix with entries g ;(z, u).
LEMMA 5.16. Let (0,0) # (z, ) € (Zg50)" X (C\ Sp), T € RY. Then
det G(tz, 72" 1) = £ @3V M Get G (2, ).

Proor. detG(z, ) is a sum of m! addenda, each one of which is

m
£ 1 gr.ow (z, ), where o is a permutation of {1,...,m}. Since, for t € R
1 MU Bi(tz, 1) ,
2m ’ +myp—2m
i(tz, T [ — d}\. = tj k i\Z,
8k.j( W =5 /y(;uz,#mm T~ P(ra. ) 8k.j(z, 1)
an easy computation concludes the proof. O

LEMMA 5.17. 3 Lo(0) € R" such that for (0, 0) # (x, n) € R" x (C\ Sp)

| det G(ix, )] = Lo(0) Blix, )3/ me.

Proor. The complementing condition (5.14) and Lemma 3.4 imply that
det G(ix, ) % 0 when (0,0) #£ (x, n) € R" x (C\ Sp). Since the set

Vo :={(ix,n) € (R)" x (C\ Sp); Blix, u) = 1}
is compact, the result follows from Lemma 5.16 with L0(9)=r1‘1/in |detG|. O
b

In the sequel Ly will denote the function on ]Jw, [ introduced in Lemma
5.17. We denote with L; the maximum of the moduli of the coefficients of the
polynomials By, ..., B,.
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THEOREM 5.18. There exists ¢ €10, ¢o(0)] (depending on L, L, , 0, Lo(9))
such that if (0,0) # (z, n) € (Xy)" x (C\ Sp) then

Lo(O 2 m
et Gz, )| = %) Bz, ) I i

Proor. Let ¢ €10, ¢9(0)] and (0,0) # (z, ) € (Eiw_)” x (C\ Sp). For
suitable x € R"” and «y, ..., o, € [—¢, ¢] we have z = (e'“lixy, ..., e ix,).

Because of Lemma 5.17, the theorem will be proved if we show that when ¢
is suitably small

Lo(0 m
|det G(z, 1) — det G(ix, )| < % Bz, ) =3P i

To this end we remark that det G(z, u) —det G(ix, u) can be expressed as the
sum of m! addenda, each one of the type

m m
I gkow G w) =[] geowix, w
k=1 k=1

m h—1 m
= Z (H k.o (X, 1) (gh,cr(h)(zy ) = &h.o iy (i, M)) H k.o (k) (2, M))

h=1 \k=1 k=h+1

where o describes the set of the permutations of {1, ... ,m}. Therefore we are
going to prove the following estimates:

(5.19) |8x.j (2, W] < C(L, L1, »,0) Bz, w)"sH 2"
(and likewise for g ;(ix, n), noticing that B(ix, u) = B(z, n)) and

(5.20) 18k, (2. 1) — grj(ix, w)| < C(L, Ly, @, 0) ¢ Bz, p)" =",

Once we have obtained these estimates, it follows that

m m
‘ I gkow @ ) =[] growix. w| < Co B, 1)t (o () =2m)
k=1 k=1

= Cy Bla, )",

so that for a sufficiently small ¢ we get the result.
Let us prove (5.19). We have

(5.21) |Bi(z, M| = Ly pgtmg 1z D™
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moreover the length of y, (z,u) is < 2(1 + m)r B(z, n) and on y, (z, 1)
I — Pz, M) = M B(z, )™ (see Theorem 5.13 (d)) and |A| < rB(z, ).
Therefore

L/ 1A~ Bi(z, 1))
2 Jyrew = Pz, M)
1
e

A

18k, (2, )| =< d|2|

ATV Ly €t g 1 (2, M) |7
(z10) M, B(z, w)>"

d|r < C B(z, )"t/ =2,

Let us prove (5.20). Since B(ix, u) = B(z, u), we have y, (ix, n) =y, (z, 1w);
hence

1

i(z, ) — 8k, j(ix, = —
lgk,j(z, ) — gk, j(ix, | o

+/y_

9 i )

1 AV Bz, M) — Br(ix, A
b / |A] |Bi(z, A) — Bi(ix )|d|k|
2\ Jy; ixaw I — P(z, 1)

AN BRGx, M| P(z,A)—PGx, A
+/ [A] |k(.)|| (z,M)—P( )|d|/\|.
v, (ix,n) |M—P(lx,)\)||M—P(Z,)\,)|

di

/ M1 (Bi(z, M) — Bi(ix, 1))
Vg (ix,1) w— Pz, 1)

MUBe(Gix, x) A TUB(ix, ) x‘
(ix,p)

w— P(z, 1) uw— P(ix,A)

As in the proof of Theorem 5.6, we have |(z,A) — (ix, A)|| < ¢ ||z]|; therefore
from Lemma 5.5 we get

|Bi(z, A) — Bi(ix, 1)
< 2"yt g L (12, 2) = G, M) (max{[| G, ML N1z, ) = G, M) D™

< 2"l 1w Ly I G, D™ < 27 1y Ly @ [z, M)
Analogously

[P(z,A) — P(ix, A)|
< 27"Ly1amL ||(z, A) — Gix, Wl max{[[Gx, M, 1z, 1) — Gx, D"

<2 CpitamL @ |z 1Gx, MIP™" Y < 2281 am L @ (2, M1
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Therefore

lgk,j(z, ) — gk, j(ix, @)

1 AL oMy L L) ||k
b / [A] n+lmy 1<§>||(z )i dI|
2 ¥y (ix.p) M B(z, u)="

+/ A Lyt g 112, M) 227y o L g [l(2, W) [P d|A|
i M? B(z, w)*m

< CoB(z, p)mti—am O

In the sequel we shall use the function 6 +— (@), from Jw, 7[ to ]0, %[
implicitly defined in the statement of Theorem 5.18.

6. — The ordinary differential operators A,

In this section, as well as in the next ones, we fix p €]1, oo[, and denote
by p’ the exponent conjugate to p. The polynomials P and By,..., B, are
the same as in Section 5.

Vz € C" we consider the operator A, defined by

D(A.) = {u € WP (RT); (Bi(z, D)u)(0) =0 for 1 <k < m)
A,u = P(z, D)u Yu € D(A,).
Concerning the definition of A, we recall that a function v € WHP(R") is
almost everywhere equal to a continuous function on [0, +oo[, so that when
u € W-P(R*) the value at + = 0 of Bi(z, D)u is well defined. Since it is

obvious that both the domain and the range of A, are subspaces of L”(R™),
we look at A, as an unbounded operator in the Banach space L”(R™).

6.1. — The operators A, are sectorial

The aim of this subsection is to prove the following result.

THEOREM 6.1. Let 0 € o, w[and z € (Xy4))". Then A_ is a sectorial operator
with spectral angle 6.

Actually, what we shall prove is

LEMMA 6.2. Let 0 € Jo,7[ and assume that (0,0) # (z, 1) € (Zy9))" X (C\ Sp).
Then n € p(A,) and

C(L,Ly,»,0,Lo(®))
Izl + [pl

(6.3) e = AD i ewr@ty <



H% CALCULUS FOR AN ELLIPTIC OPERATOR 513

Once proved Lemma 6.2, going back to Theorem 6.1 we remark that

(i) the domain of A. is dense in LP(R™) as it contains C{°(RT);

(i) when z # 0 Lemma 6.2 implies that 0 € p(A;), so that A, is boundedly
invertible, and in particular R(A,) = LP(R");

(iii) Ao is the restriction to D(Ag) of c,.0 D" (where D is the derivative
operator in L”(R™)), and hence it is injective, because such is D: this
implies that R(Ao) is dense in LP(R™) since this is a reflexive space;

(iv) for u € C\ Sy the inequality (6.3) yields

(e — AD Ml zwr @ty < C(L, L1, w, 0, Lo(H)).

Thus Theorem 6.1 will be proved.

However in Section 8 we’ll need something more, and so instead of (6.3)
we are going to prove that

(6.4) ID (e = AD Ml gwrty < C(L, Lis @, 0, Lo©®) Bz, 1) "
(for £ < 2m) of which (6.3) is a particular case, since B(z, )*" > ||z]|*" + |ul.

ok ook

Solving in D(A;) the equation

pu—Au=f
with f € LP(R™), is the same as solving the problem
u € Wrr(R+)
(6.5) pu(t) — P(z, Dyu(t) = f(t1) teR"
(Bi(z, D)u)(0) =0 1 <k <m.

From the w-complementing condition and Theorems 3.8 and 5.18 we get
that the homogeneous equation with arbitrary initial data has a unique solution:
this proves that problem (6.5) has at most one solution; in order to prove the
existence of the solution of (6.5) we only need prove the existence in W7 (R*)
of a solution of the equation pu — P(z, D)u = f: after that it is enough to
sum this solution v with the solution w of the homogeneous equation with such
initial conditions that annihilate the initial data of v.

As usual, we need some preliminary results.

LEMMA 6.6. Let Q € PwithdegQ =r > 1, Q&) = Y i_oar M. Let
y € A1(Q). Then

2i J, Q%)

Proor. Since the integral does not depend on y € A;(Q), it is not restric-
tive to assume that y be a circle centred at 0, with large radius p, oriented
counterclockwise. Since the integral does not depend on p, the result can be
easily obtained by letting p — +o0. O

1 Al d 0 fo<j<r—1
“lal ifj=r—1.

r
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DErINITION 6.7. Let 0 € ]w, [, and (0, 0) # (z, n) € (Zp@)" x (C\ Sp).
We set

1 ekx
L Jy () U — Z,
Hz,,u(x) = 1 ¢ o
- / ——F dix if x <0.
27 y+(z.,;t) " — P(Z, A)

0

REMARK 6.8. It follows from Theorem 5.13 (a),(c) that

Yo (z, 1) Uy, (2, ) € A(n — P(z, ).

Since deg(n — P(z,-)) =2m > 2, we get from Lemma 6.6 that

1
/ ———dr+ / ——dx =0
y;r(z,u) nw— Pz, 2) v, (z,pn) M — P(z, 1)

4

and that ensures that H , is correctly defined at x = 0. The independence of
H;, from 0, and more generally the independence from 6 of any integral of

the type
,)» AX
/ Qz, M e 0
vt 1 — P(2. )

where Q is a polynomial, is an obvious consequence of Cauchy’s theorem. O

REMARK 6.9. Let us deduce some properties of the functions H, ,. It is
understood that 6 € o, [ and (0, 0) # (z, 1) € (Zyp6))" X (C\ Sp).

(a) It is obvious that H, , € C*(R\ {0}), with

1 A et
Hw = | T e Pe
* 1 A e
- / ———dr if x <O0.
2mi Syt mw— Pz, M)

0

In particular the limits HZ(’-Q(OJF) and HZ(;Q(O_) exist; by Lemma 6.6 we
get
HION) - HY0)=0if 0<j<2m—2
H P O0F) = H P (07) = =
(see the representation of P given in Remark 5.2). In particular H, , €
sz_z(R).
Here, as always in the following, we have denoted by Hz(],i the j-th deriva-

tive of H;, on R\ {0}; the symbol DjHZ,M will always denote its j-th
distributional derivative on R.
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(b) Taking into account the estimates of Theorem 5.13 (a), (d), for x € R* we
obtain from (a)

~ 1 |A|/ y
O s 5 [y i
o 27 JyFeaw MiB(z, p)*"

= C B(z, M)J‘+172m e MaB@Wlx]

Then we get that HZ(JJ e L'(R) N L®(R) and Vq € [1, co]

IHO ILa@) < Clg) Bz, w)/ 72" =),

(c) Let Dy denote the distributional derivative on R \ {0}. By (a), we get
D'H,, = D{H,, for 0 < j <2m—1, while D*"H_ , = D}"H, ,—c5, (8
(where &g is Dirac’s measure at 0).

Let f € LP(R"), and let us extend f to R by setting f(x) =0 for x < 0.
Then H,, * f € L”(R), and

D§H, ., * f if £ <2m

D'(H. =

so that
(1= P(z, D) (Hey % ) = (1 = P(z, Do) Hepp) 5 [ + f.

Since for x € R*

+1 .
(=P )0 =5 [ erdr=0
L Sy

we have (u — P(z, D))(H; , x ) = [. O

As we have seen in Remark 6.9 (c), Vf € LP(RY) H,, = f (or more
precisely the restriction to Rt of the convolution between H. , and the natural
extension of f to R) is a solution of the inhomogeneous equation. As we
noticed above, as a consequence of Theorem 3.8, this fact implies that problem
(6.5) has a unique solution, so that u — A, is proved to be a bijective operator
from D(A,) onto L?(R™). We shall write this solution in the form

(n — Az)_lf =H;,x f+w,,(f).

where w; ,(f) is the solution of the homogeneous equation that annihilates
the initial values of H, 4 * f. For 0 < £ <2m, we have, by Remark 6.9 (b),
||H§2 L1y <CB (z,10)~2™; therefore Young’s inequality and Remark 6.9 (c) yield

(6.10) ID (He % Pllzr@sy < C B w) " I f Lot

whenever 6 € |w, [, and (0,0) # (z, ) € (Zp@)" x (C\ Sp).
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Now we turn to study w, ,(f). As deg By < 2m, Remark 6.9 (c) yields
also

(Be(z DY(Hey % £))(0) = ((Be(z D)Hoy) % f ) (0)
- / (Bu(z. D)H..,)(~s) f(5)ds

Bk(Z A) e s
" 2mi / /m o = PGy P
_— /0 hsn(s) £(5) ds

where we have set

1 Bi(z, L) e
6.11) Btz (s) = / Bz e ™ o
2 +(Z w M= P(z,A)

Then w, , (f) is the solution of the problem
w e Wr(RH)
(6.12) { pw() — Pz, D)yw(r) =0 t eRT
(Bi(z, DYw)(0) = [5% hizu(s) f()ds 1<k <m.

LemMmA 6.13. Let (by, ... ,by,) € C", and let (0,0) # (z, 1) € (Zy0)" X
(C\ Sp) for some 0 € Jw, m[. The problem

(6.14) ww(t) — Pz, D)w(t) =0 teRT

w e WP (RY)
{ (Bi(z, D)Yw)(0) = by l<k=m.

has a unique solution w; ,, of the form Z;szl 8k (z, ) by uj 7, where 8 i (z, 1) €
C, uj ., € LP(R") and they satisfy the estimates

18 x(z, W| < C(L, Ly, 0, 0, Lo(9)) B(z, )™k~
Itz llLp @ty < C(L, @, 0) Bz, w)! 2" 1/P,

Moreover the inequality

m
ID w il pp@+y < C(L. Ly, .0, Lo(0) > Bz, )"V |y
k=1

holds for £ < 2m.
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Proor. The existence and uniqueness of the solution of problem (6.14) are

direct consequences of Theorem 3.8, since det G(z, u) # 0 by Theorem 5.18.
We set (for 1 < j <m and t > 0)

G-1) I Mhet
(6.15) i, (1) = HYI” (z):—./ 2
JsZ 1k k2 2 Vg_(zgll«) "w— P(Z, )»)

Then, according to Theorem 3.5 (b), {#1,; 4, .. .,Um,z .} 1S a basis of ker PZTM(D),
so that by Theorem 3.7, w, , is a linear combination of uy ; ., ..., Uzt

m
Wy = ch(za ) Ujz,u
j=1
for some coefficients c;(z, u) € C. Therefore
m
¢
(6.16) D'w. =" ¢z wu;) .
j=1
We know from Remark 6.9 (b) that
¢ i P om—
(6.17) ||”J(,z),#||LP(R+) = ||HZ(,[:] 1)||LP(R+) < CB(z, w)ti—2m=/»,
As for the coefficients c¢;(z, i), they have to satisfy the equalities

by = (By(z, D)w,,,,)(0) = ch(z, w) (Bi(z, D)u; - ,,)(0)
j=1

i Jyy e = Pz, 1)

_ zm: ¢j(z, 1) M7 Bi(z. 2)
B 21
j=l1

dh =" g (2, ez, )
j=1

(see (5.15)). Let us call §;(z, u) the coefficients of G~ '(z, w); then

det G¥ (z, )

, — (_1\Jtk
(6.18) 8jk(z, ) = (=1) et Gl )
where GN(z, 1) is the matrix obtained from G(z, u) by deleting the k-th
row and the j-th column. Each addendum of det G¥(z,u) is of the type
+ Hh# 8h.om)(z, ), where o is a bijective function of {1, ... ,k—1,k+1,... ,m}
onto {1,...,j—1,j+1,...,m}. Therefore, by applying the estimate of The-
orem 5.18 for det G(z, 1) and formula (5.19) for g ;(z, 1), we obtain

(6.19) 18(z, W) < C Bz, W)> ",
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where C = C(L, Ly, w, 0, Lo(#)). Finally, from

(6.20) cj(z ) =Y 8jk(z, 1) bi
k=1

we get the desired expression of the solution w, ,. Moreover we have

lcj(z, )] < C Y Bz )™ " |y
k=1

and (6.16), (6.17) yield

m

4 ?)
1D W, ll oy < D e @) uf) oy
Jj=1

m

<C Y B W by Bz, wy P
jk=1

m
=mC Y Bz, W) WP by, O
k=1

The following lemma, combined with (6.10), concludes the proof of Lemma
6.2 and of the inequality (6.4).

LEMMA 6.21. Let (0,0) # (z, ) € (Zy@)" X (C\ Sp) for some 0 € Jw, w[.
Vf e LP(RY) the solution of problem (6.12) is given by

(=3 84 u)/ i (5) £(5) ds 2
Jj.k=1

and
ID (W (Do) < C B W 2" 1 fll Lo gty

Proor. The expression of w ,(f) is given by Lemma 6.13. By the same
lemma we have

622 1D e Dlurss) = € YA 0| [Thouo) £ as).
k=1

By the definition of Ay, (see (6.11)) and Theorem 5.13, we have

1 |Bi(z, 1) e~/Rer
o (O] < — / diA
2 Jyfew In— Pz )
1 / —tMpB(z. 1)
< Bez Ml dIA]
27 Jyfeaw M, B(z, p)*m
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and from (5.21), we get
(6.23) e (D] < C Bz, )" 1720 =t MRPEM)
where C = C(L, Ly, w, ), and so

”hk*z’”‘”Ll’,(R+) < CB(z, M)mk*2m+(l/P)‘

Now Holder’s inequality gives

(6.24) | /0 hie(8) f(8)ds| < C B, )™ 2" P | £l

and by inserting this inequality in (6.22) we get the result. O

Summing up we have proved that for £ < 2m D*(u — A.)~! is a bounded
operator on L”(R™), and that

625 D(u—A)"'f = D'(H., % f) + /0 U DIKL s F(s)ds

where we have set

Kop(ts) = 8u(z 1t) hiczyu () 2 pu ().
J.k=1

6.2. — Analyticity with respect to z

In this subsection we prove that V¢ € N with £ < 2m the function z
DY (u — A.)~! is analytic.

LEMMA 6.26. Let (M, v) be a o -finite measure space, let g € [1, oo[, and let
be an open subset of C". We are given a function F : M x Q2 — C, and we assume
that:

(a) Vz € Q the function t — F(t, 7) is measurable;

(b) for every compact subset W of Q2 there exists a non-negative function Fy €
L9(v) such that |F(t,z)| < Fw()V(t,2) e M x W;

(c) Yt € M the function z — F(t, z) is holomorphic on 2.

Then F(-,z) € L1(v) Yz € Q and the function 7 +— F (-, 7) is holomorphic from Q
to L1(v).
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Proor. We have obviously

/ |F(t,2)|?dv(t) 5/ Fiy()7dv(t) < 400
M M

and so F(-,z) € L1(v) Vz € Q. Next, if z9 € @, and z belongs to a compact
neighbourhood W C Q of zg, V¢ € M we have F(t,z) — F(t,z0) — 0 and
=20

|F(t,z) — F(t,z0)|? <27 Fy(t)?, so that the dominated convergence theorem
yields the continuity of z +— F(-,z) as a function from 2 to L9(v).

In order to prove that the same function is holomorphic with respect to
z=(21,...,2y) it is sufficient to show that it is holomorphic with respect to
each variable z;. That amounts to show that fy F(-,2)dzx = 0 whenever y is
a small circle which embraces a disk contained in the z;-section of the open
set €2, and the integral on y is understood in the sense of L7(v). Now, by
([9], Theorem III.11.17), this integral, as an element of L9(v), is the function
t— fy F(t,z)dzi, and this integral is constantly 0 by assumption (c). O

LEMMA 6.27. Let 6 € lw, x|, and n € C\ Syp. Then the following functions
are holomorphic on (Zy))":

z > 8k (z, )
7> Hz(ﬁi (¢ < 2m) with respect to the norm of L' (R)

2 ut? (£ < 2m) with respect to the norm of L? (R™)

Jizm
. /
z > hg ., with respect to the norm of L? (R™)

where H , was defined in 6.7, hy ., was defined in (6.11), u; . , was defined in
(6.15) and 8 x (z, i) was introduced in the proof of Lemma 6.13.

Proor. The coefficients §; i (z, (t) are the entries of the inverse of the matrix
G(z, ), whose entries gy j(z, u) were defined in (5.15); therefore the analyticity
of §;(z, u) follows from the analyticity of g j(z, u). Now we remark that
8k.j (2. 1), e (s) (When s € RY), uf) (1) (when t € R*) and H) (1) (when
t € R\ {0}) are defined as integrals of the type

/ fz.2) Jh
i) b — Pz, A)

0

where f is a holomorphic function on C"*!. However it is obvious that if
20 € (¥y))" and z belongs to a suitable neighbourhood of zg, then

A , A
/ fz, ) dA:/ f(z, ) .
ygi(z,u) nw— Pz, A) ygt(Zo,u) w— Pz, 1)

and this proves the analyticity of all these complex valued functions of z.
Next, with the aim of applying Lemma 6.26 (in order to obtain the ana-
lyticity in the sense of L?) we remark that the measurable dependence on the
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variables s and ¢ is obvious, and so we only have to prove that H'"), hy ., and
Q) . .. . o _ o

Ujop satlsfy condition (b) of that lemma, with ¢ =1, ¢ = p’, ¢ = p, respec-

tively. This follows at once from formula (6.23) (for &y ;,) and the pointwise

estimates of H;, and its derivatives (which include u; ., and their derivatives)

given in Remark 6.9 (b). O

THEOREM 6.28. Let £ be a non-negative integer, £ < 2m. Assume that 6 €
lw, [, and i € C\ Sy. Then the function z — D' (;u — A.)~" is holomorphic from
(Zy@))" to L(LP(RT)).

ProOF. We recall that the operator valued function z — D (u — A.)~! is
holomorphic if and only if Vf € L”(R") the function z — D*(u — A,)"' f is
holomorphic. Therefore we fix f € L?(R'). From (6.25) we know that

m 00
D'(u—A) "f=D"H ux )+ 8ulz. 1) /0 hiz(8) f(s)ds i) .
k=1
Now we recall that D‘Z(HZYM x f) = Hz(eli * f if £ < 2m and Dz”‘(HZ,M * f) =
Hz(?lj") * f — CZ_ni,O f. Since the convolution by f is a bounded linear operator
from L' to L?, and since we already know (Lemma 6.27) that z > H)) is

holomorphic as a function from (X,g))" to L'(R), we get immediately that
7> Hz(lli * f is holomorphic with respect to the norm of L”(R™).
The same argument works for the second summand, since the functional

g»/o ¢(s) £(s)ds

is bounded on L? (R*). O

6.3. — R-boundedness

Now we prove the R-boundedness of the function z > z* D (u — A.)~!
when |o|+¢ < 2m. In order to apply a suitable version of the Mihlin multiplier
theorem, we need the following lemma.

LEMMA 6.29. Let B, ..., By €10, [, and let g € rqroo(r[,fj:1 Sﬂk). Then
VYo € NN andVt € (RT)N we have

N
|T* D*g(7)] < a! H(Sinﬂk)_“" 1€ 1loo-
k=1
PrOOF. We take &; €10, sin B[, so that ¥z € (R*)V it is [}, B(w, 8 ©) C
H,ivzl Sp,. If we fix T € (RT)N and call v« the boundary of B(ty, & 1) oriented
counterclockwise, then

o! g(2)

D = — dz.
o @mi)¥ ‘/Hllcvl)’k T,z — zoat T
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Hence

7% D*g()] < (2 )N H(zmsk rk>1'[(8k 7)) gl = ! 1‘[8;‘” I8 loo-
k=1 k=1

Now we let §; tend to sin By Vk, and the proof is ended. O

LeEMMA 6.30. Let 0 € lw, w[ and (0,0) # (z, u) € (Xp6))" % (C\ Sp). Then
VEeR
1
w— P(z,i§)

Proor. In the definition of H ,(x) when, say, x > 0, the circuit y, (z, 1)
can be replaced by the segment [—i R, iR] oriented upwards and followed by
the semicircle [7/2,37/2] > @ — Re'® if R is large enough. For the integral
on the semicircle we have

sz,u(S) =

37/2 oRxe® '
’/ ———— (R da
72 M — P(z, Re'®)

so that

R
<m sup ————— 0
M=r |t — P(z, A)] R oo

1 +ioo M 1 eixé
HZ,M(x)z—./ 7dk=—/—,df;“.
270 J—jco M — P(2, 1) 2 Jr u— P(z,i§)

When x < 0 a similar argument gives the same equality for H; , (x). This proves
that x — 27 H; ,(—x) is the Fourier transform of the function & — m,
whence the assertion of the lemma follows immediately. O

THEOREM 6.31. Let £ be a non-negative integer, o an n-tuple of non negative
integers, and suppose that |«| + £ < 2m. Assume that 0 €]lw,n[. Then for
0# pn e C\ Sy the function

()" 22> 2D (u— A" e LILP(RY))

L+
has R-bounded range, and its R,-bound is < C(L, L1, , 0, Lo(0)) |M|W_1.

Proor. Because of Lemma 4.2 it is sufficient to prove the R-boundedness
of the sets {S; ,;z € (Xy©)"} and {T, ,; z € (Zy))"}, where

Seunf = 7 DZ(HZ,M * f)

and

Tof = DN =2 3 8146 “)/ Bz (8) £ 8) ds w2, (1)

J.k=1

=z* /Oo D'K. ,(t,s) f(s)ds.
0
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Here we have set

Kz,u(t, §) = Z (Sj,k(zy ") hk,z,u(s) uj,z,u(t)-
Jk=1

We have z“ D‘Z(HZ,M % f) = (D(z* -.w)) * f, and from Lemma 6.30 we get

o (6L
D'(z%H. __Zagy
FOO'C Hea))®) = - s
Therefore Theorem 5.8 yields
la| |10 "
FD ) )] < C(Low.6) — B o o ) B,

Izl + 1€ 12 + |l —

Again by Theorem 5.8, if £ € i X, ), then P(z,i&) # p, so that F(D )
can be extended holomorphically to i ¥,y (which is a double-sector containing
R\ {0}) and satisfies there the same estimate. Hence Lemma 6.29 implies that
we have also

d Y M—1
sup Ed—f(D (Z"H, )| = C(L,w,0) || 2m .
2€(Zy(g))", E€R\{0} §

Now we can apply Theorem 4.4, and get the R-boundedness of the set of
operators {S; ,; 2 € (Zp@)"}-

We turn to the operators 77 ,. From the inequality (6.23), Lemma 6.13,
and Remark 6.9(b) we know that

|hizu(s)| < CB(z, p)meH1=2m o —s Moz )
18,k (z, )| < C Bz, py> k=

. - e
) (O = [HET V(0] < € Bz, )/ T2 o7 Maben

so that, taking into account the elementary equality sup re ™ =e™!

reRt+

, we get

|2 Df Kot 5)] = C iz Bz, ) 727 HMRAE

(6.32) ol—3m Ctle|
C Bt C |ul
T eM, r+s “eM, t+s

Now an application of Theorem 4.5 concludes the proof. O
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6.4. — H*° functional calculus

In this subsection we prove that the operators A, have a bounded H* func-
tional calculus, and that for any bounded holomorphic function 4 the operator
valued function z — h(A;) is R-bounded and holomorphic.

LeEmMmA 6.33. Let 6 €lw, [, § €10, —0[. Then Yh € H§°(Sp1s) the set
{h(A)); z€(Zyp))"}is R-bounded, and its R,-bound is < C(L,Ly,w,0,Lo(0))1h ]| cc.

ProoF. Let h € H§°(Sp+s5). We have
1 ~1
hA) = o /h(u) (= A)"dp
i Jy

where y is the curve parametrized by R\ {0} > ¢ > |t]e™" 58" oriented
according to the increasing values of . Now we take f € L?(R™), and recall
that

(=AD" f = Hopx f + /O Ko u(5)f(s) ds

(see (6.25)). Since |h(1)| < C min{“w, |M|—S} for some s € R* and

C
I Hzp* fllop@t) < W I fllp @+

+

(see (6.10)) the integral fy h(w) (H . * f)dup exists in the norm of L”(R") and

f = fy h(w) (H;, = f)dp is a bounded linear operator on L”(R™) to itself.
Moreover from

//Ih(M)IIHZ,M(x)IddeMI
y JR
(634) = [ GO el 1 d
Y
<C /min{w, =Y el + 2177 d ) < o0
Y
it follows that the function

1
X W) =5 - / h(w) Ho(x) dut
Y

is well defined and summable on R. We want to show that Vf € L?(RY)

1
6.35) Wons f =5 - / h(w) (Hey 5 f) dpt
Y
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and it is not restrictive to assume that f € LP(R") N L>®(R™), since we
know that both sides of (6.35) define bounded operators on L”(R%). Then
(6.35) follows immediately from an exchange of order of integration, which is
allowed by inequality (6.34), since f is bounded.

Now we compute the Fourier transform of W, ;. By means of the usual
exchange of order of integration we obtain, by Lemma 6.30,

1
(FW.)(®) = 5 /y h(w) (FH,,)(€) du

_ b h(p) _ .
= 2ni /y = PG ip) PG

as it follows from the residue theorem, since P(z,i§) € Sy (at least when & # 0,
see Theorem 5.6). More generally 5.6 implies that the function A — h(P(z,i)))
is defined and hence holomorphic on i X,); therefore from Lemma 6.29 we
get

sup max{ sup [(FWo) @), sup
€T p0)" 0 <R OFeek

d
3 e (sz,h)(%‘)‘} < Cllh]lc-

By Theorem 4.4, it follows that {f = W.nxfiz€ (Ev,(g))"} is a R-bounded

subset of L(L?(R")), with R,-bound < C || ]|c.
Concerning the kernel K. ,, the inequality (6.32) yields

1
1
K, .(t,8)] <C |/4|2_m_1 o~ 1+s) My || 2m

so that
1
L1 as m
/Ih(M)Ile,M(t,S)IdMSCIIhlloo/IMIZ'" Lem @ Mali2m gy
Y y

00
(636) =4mC ”h”oo / e—(t+s) Myr dr
0

B dm C
Myt +5s)

Therefore Vf € LP(R") and Vt € R

171l oo-

S % | £(s)|
/y/o |h<u>||Kz,u<r,s>||f<s>|dsd|u|scnhHOO/O o

<Ct7 V7 ||hs Il Lpwt)-

This allows us to perform the following exchange of order of integration

ds

/yh(“)/o Kz,,ta,s)fcs)dsom=/0 /yh(u) K.t s)dp f(s) ds
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and since, by (6.36), the kernels (¢, s) — fy h(pn) K, . (t,s)dp satisfy the as-
sumptions of Theorem 4.5, we obtain the R-boundedness of the set of operators

{f»i/huo /OOK (25) f(s)dsdu: z € (5 >"}
i y 0 Z,u\" ’ ©(0)

with Rj,-bound < C ||h]l. Now we put together the results concerning the two
addenda, using Lemma 4.2, and we obtain that the set {h(Az); z € (E(p(g))”}
is R-bounded, with R,-bound < C ||/ ]|x. O

THEOREM 6.37. Let 0 €lw, [, § €l0,m — 0. Then Yz € (Zyp))" the
sectorial operator A; has a bounded H(Sypys) functional calculus. Moreover
Vh € H®(Syys) the set {h(AZ); zZ € (E(p@))"} is R-bounded, and its R,-bound is
S C(L7 L17 a)7 91 L0(9)7 8) ”h”OO‘

Proor. Let z € (Zy4))" be fixed. The result of Lemma 6.33 implies that
Vh € Hg°(Sp4s) we have [|h(A;)]| < C||hlloc. By Lemma 4.17 this proves
that A, has a bounded H®°(Sy+s) functional calculus. In order to prove the R-
boundedness of {h(AZ); zZ € (2(/;(9))”} and to estimate its R,-bound we use the
sequence (Wy)ien of functions introduced in Definition 4.10 (with N = 1). It is
easy to prove (see [8]) that sup |W(u)| < cos™2((9+68)/2). Now, by Remark

HESH4s
4.15 and Lemma 6.33, if zV, ..., 2™ € (Z )" and fi,..., fv € LP(RY),
we have

N ) 1/p
S [ YXeanan s -
ce{—1, 13N r=l1

=lm (Y Hzst, (W W) (A0) fr

P )I/P
k—o00 LP(RT)
ce{—1, 1}V r=1

1/p
N
) p
< C cos2((60 +8)/2) |hlloo ( > HZS’ fr LP(R+)> '
86{*1,1}]\, r=1

This proves that {h(AZ); z € (E(p(g))"} is R-bounded, and gives the required
estimate of its R,-bound. O

THEOREM 6.38. Let 0 €lw,w[, 6 €]0,7 — 0, h € H*(Syrs). Then the
Sfunction z — h(A;) is holomorphic on (Z,))".

Proor. We first assume that i € HJ°(Sp+s). Then

hA) = —— /h(u) (1w — A~ d
27i Jy,
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where for u € y and a suitable s > 0
1) = 47" = € max {Jual®, (el } el

which is a summable function on y. Since z ~ (u — A,)~! is continuous
on (Xy,@6))" (Theorem 6.28), the dominated convergence theorem yields the
continuity of z + h(A;). Moreover for k € {1,...,n}, if o is a small circle
that embraces a disk contained in the zi-section of (X,))", we have, by
Theorem 6.28,

/h(Aadzk:/h(m/(u—Azrldzkdu:o
o y o

and this proves that z — h(A;) is holomorphic.
Next, we take h € H*(Sg4s5). Then (Wi h)ren is a sequence in H§°(Sg4s)
such that (Wi h)(A,) f k—> h(A) f Yz € (Zy0)" (see Remark 4.15), and in
—00

particular Vz the set {(Wh)(A,)f;k € N} is relatively compact in L?(R™).
Since we also have

[(¥xh) (A < C cos™((0 + 8)/2) ||l o,

by Lemma 6.29 the functions z +— (Wih)(A;)f are locally equicontinuous
on (Xy@))"; therefore by Ascoli’s theorem we can extract a subsequence that
converges uniformly on compacta, and hence z + h(A;)f is holomorphic
Vf e LP(RY). As it is well known, this yields that z — h(A,) is holomorphic

with values in £(L?(R™)). O
7. — The operators D, ..., D, in L”(R" x R")

In this section we work in the Banach space L”(R" x RT) (with 1 < p <
oo, as usual), and we are concerned with the derivative operators Dy, ..., D,
with respect to the “tangential” variables xi,...,x,. D; is considered as an
unbounded operator in L?(R" x RT), with domain {u € L”(R" x R"); Dju €
LP(R" x RT)}. We will denote by D, the n-tuple of operators (Dj, ..., D,).

We quote, without proofs, some folk results on the spectral properties of
the operators D;.

Tueorem 7.1. Vj € {1,...,n} the operator D; is bisectorial with spectral
angle 0. More precisely:

(i) ifRer #0and g € LP(R" x RY), then

o
(A= D)~ glx, 1) = €™ / e Mg, 1 1) dr

Y
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for Re ) > 0 and

.
G= Dyl == [ e g ar,

—00

for Re ) < Oy
(i) ifa €10, Z[, and » € C\ Xy, then

1 1
)\, - D _l 2 n < . T .
II( )"l p @ xrt)) < sina [A]
THEOREM 7.2. Ifn > 2, and j, k € {1, ... ,n}, then Y(A, ) € (C\ (i R))?
(A — Dj)_1 commutes with (i — Dy) ™.

It is known from [18], Corollary 2 that each operator D; has bounded H>
functional calculus on X5 V§ > 0. If one applies this result and [15], Theorem
4.3 one obtains the following theorem, of which we give a direct proof.

THEOREM 7.3. Let B1, ... , Bn €10, 3, and letus set 2 = [[;_, Xg,. Thenthe
n-tuple of operators D, = (D, ..., Dy,) has a bounded joint H*°(2) functional
calculus.

Proor. We have to prove that f(Dy) € L(LP(R" x R")) Vf € H®(Q). To
this end, by (the bisectorial analogous of) Lemma 4.17, it is sufficient to show
that 3C € R" such that Vf € H*(2) 1 f(D)Il <C |l fllso- In order to prove
this statement we have to show that

”f(Dx)u”LP(R”x]R“‘) =< Cllfllso ||u||Lp(JR"xR+)

when u belongs to a dense subspace of L”(R" x R"), e.g. LP(R" x RT) N
L®(R" x RY).

Let us take f € HG°(S2). The first step consists in writing f(D,) as a
convolution operator (in the variables xi, ..., x,).

Vk € {1,...,n} we choose yx €15, 7% + Bl and set T :=Tp U (=Ty)
where Ty is the curve parametrized by R\ {0} 3 7 +— |t]e % 8"T We set
[ =]/, T and (when ¢ € {~1,1}) h, : CxR — C

e xp—(r) if e =—1
—e* ype(r) if e =1.

he(d,r) = {
It follows immediately from Theorem 7.1 that

0= DY) ux, 1) = / hsgn Rer Oos 1) U(x's X4 — 1, 1) dr.
R
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Therefore
(fDou) e = (2m')—"/Ff(z) (TT = Do~ ). 0 dz
k=1

= > (27‘(1')_"/

ee{—1,1}1 K&k Tk

f(2) / H.(z,r)u(x —r,t)drdz
RVI

where we have set Hq(z,7) = [, he, (z, ri). Now we notice that for z € r

n

n n -1
a4y [ 1t nldr=]] [ b G olde=]] 1Rezd™ =T] (a1 cos )
R k=1"F k=1

k=1
and so
n
-1
[ ey ute = roldr <l T] (10 nd)
R
k=1

Since f € Hg°(2), this proves that
[ @1 [ G = nutnldrdiz] < +oo
Hk ek R?

and hence we can exchange the order of integration, and get

f(Du)(x,t) = Qmi)™" f(z) H(z,r)dzu(x —r,t)dr
( ) se{zl,l}" /R" /H

« &kTk
= (F*u(,1)(x)
with
F(x) = Qri)™ f(z) He(z, x)dz.
Z /erkl"k

ee{—1,1)n

Since f € H{°(R), from (7.4) and Fubini’s theorem it follows that F € L'(R").
The next step is to show that (FF)(r) = f(ity,...,it,). We have

(FF) ()= Qi)™ > /Rne_”x’” /H Ff(z)Hg(z,x)dzdx.
k €kl k

ee{—1,1}"

Since |e7'* )| =1, by (7.4) we can exchange the order of integration, and we
obtain

FF@) =0 Y /H Q) FHLG )@z
Kkl k

ee{—1,1}"
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where

(FH,(z,))(1) = H(fhsk@k, ))(rk)—H / —'”k“kscls—H(zk—nk)
k=1 k=1

Hence

FF(t) = Qmi)™" Z / f@ H(Zk —in) 'dz
k=1

cet—tapn 71T exlx

= Qui)™" /ﬁf(Z) H(Zk — i) ' dz.
k=1

Now we break every curve Fk =TI U (—I'}) in a different way, setting I‘k
T, UL, where Tf =Ty N {z € C; Imz € R*). We give T'y the orientation
induced by the orientation of T therefore Fk is positively oriented with respect
to i R and Fk is positively oriented with respect to i R™. Hence

n
FF(t) = Qui)™ / /N‘9 f@) H(zk —in) 'dz,---dz
ee(—1,1)n Iy k=1
Here we have the sum of 2" integrals, and it is obvious that 2" —1 of these inte-
grals are equal to 0, namely those for which (e, ... ,&,) # (sgnty, ... ,sgnt,);
while the value of the remaining integral, i.e. of the one for which (¢, ... ,&,)=
(sgnty,...,sgnt,), is equal to f(ity,...,it,). This proves that FF(r) =
flty, ..., ity).

Now (third step) we estimate FF and its derivatives. We have obvi-

ously sup |FF(7)| < || flloo; moreover FF can be extended holomorphically to
TER?

[, G 3p,), and also for this extension we have sup [FFE)| < 1f loo-

celJemi G 2
Then it follows from Lemma 6.29 that Yo € N* (and in particular for |¢| = 1)

sup [t* (D*FF)(D)| = C || f llox-

TERN

As a final step, we apply the Mihlin multiplier theorem to the already proved
equality (f(Dy)u)(-,t) = F xu(-,t) and we get

I(FDOW G Dllr@ny = CllLf lloo Nul, OllLr@m)

whence

1/
15 Dol = ([ 1D dr)

= Cll flloo Il Lp gn xcrty- O
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ReEmMark 7.5. In Theorem 7.3 the variable ¢ did not play any rdle: we
have preserved it only for the sake of a more direct application of that theorem
in the next section. However we could have settled this result in the space
LP(R", L?(R")), which is naturally isomorphic to L?(R" x R™), or, more gen-
erally, in any space of the type L”(R", X), provided that the Banach space
X have such properties that allow to apply the Mihlin multiplier theorem to
X-valued functions of several variables, with scalar-valued multipliers: such
properties are the UMD property plus property (o) (see [29]). O

8. — The elliptic operator: resolvent and functional calculus

In this section we have to deal with the trace operator at + = 0 in the
space LP(R" x R™), that we call Typ. Among the several equivalent ways to
define it, the most useful for our purposes is the following. Let us consider
the operator D; in LP(R" x R™1): this is a closed operator whose domain is
D(D,) :={u € LP(R" x R"); D,u € LP(R* x R")}. Remark that if D(D;) is
endowed with the graph norm, then W7 (R" x RY) < D(D,) — L?(R" x R*)
(inclusions with continuous embeddings). While it is obvious that if f €
LP(R" x RT), then f(-,1) € L?(R") for almost every t € R™, it is also easy to
see that if f € D(D,), then as t — 0" f(-, 1) converges in LP(R"): the limit
function is, by definition, its trace To f € L?(R"); Ty is a bounded linear operator
on D(D;) to LP(R"). We also have, for almost every x € R", (Tof)(x) =
lim,_, o+ f(x, ) in the pointwise sense. Moreover if f € W"P(R" x R") then
Tof € W=LP(R"), and for |a| <r — 1 one has ToDY f = DTy f.

We shall also write f(x,0) instead of (7yf)(x).

Let P, By, ..., B, be the polynomials introduced in Section 5, and let L,
L, w, Ly have same meaning as before. We recall that P is (L, w)-elliptic
and that the w-complementing condition is satisfied. Since deg By = my; < 2m,
the trace at r = 0 of Bru(x,t) is well defined Yu € W2™P(R" x R").

Let A be the operator in LP(R" x R") (always with 1 < p < oo) defined
as follows:

D(4) = {u € WP ®" x RY): (Bu(Dy, DYu)(x,0) =0, 1 <k < m}
Au = P(D,, D))u.

We want to prove the following:

THEOREM 8.1. A is a sectorial operator with spectral angle v, and V0 € lw, 7|
A has a bounded H* (Sy) functional calculus. In particular V0 € |w, [ we have:

(i) forn € C\ S, l(n — A7 < C(L, Ly, w, 0, Lo®))|ul~';
(ii) if h € H>(Sp), then [|h(A)|| = C(L, Ly, ®, 0, Lo(8)) lIhllc-
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The proof of Theorem 8.1 will be obtained as the conclusion of a long
series of preliminary results. The underlying idea, however, is rather simple:
in Section 6 we defined the operators A, by means of a formal replacement of
the derivative operators Dy, ..., D, with complex parameters zi,... , Z,; NOW
we are going to make the inverse replacement: we shall construct hZ(A) by
substituting D, to z in h(A;). This statement actually means that ~(A) will be
proved to be the operator in £(L?(R" xR™)) that corresponds to the holomorphic

and R-bounded function z +— h(A;) (or, more precisely, z — (h(A;)), see
Remark 4.6) in the homomorphism g — g(D,). Here Theorem 4.18 plays a
crucial role, because it allows to avoid any type of multiplier theorem with
operator-valued multipliers.

The first goal is to show that p(A) 2 C\ S, and to estimate |(u— A)~'||
on C\ S,. Remark that if u ¢ S,, then 36 € Jw, w[ such that u ¢ Sy.

We fix 6 €]o, [ and u € C\ Sp.

For the derivative operator D, the following result holds, analogous to
Theorems 7.1 and 7.2.

THEOREM 8.2. The resolvent set of the operator D; in LP (R" x R™T) contains
the half-plane {» € C; Re A > 0}, and for Re .. > 0 one has

o0
A —D) lux, 1) = e“/ e u(x,s)ds.
t

Moreover the resolvent operators of D, commute with the resolvents of Dy, . .. , D,,.

In Remark 4.6 we constructed a bounded linear transformation 7 >
T of norm < 1, which in the present situation goes from L(L”(R")) to
L(L?(R" x RT)); and we saw (Lemma 4.7) that this transformation preserves
the R-boundedness and the R,-bound.

In the following lemma we state some more properties of this transforma-
tion. The proofs are straightforward, and we omit them.

LeMMA 8.3. Let T € L(L?(R™)). Then:

(a) T commutes with the resolvent operators of Dy, ..., D,;
(b) if T € L(LP(RT), W"P(RY)), then T € L(LP(R" x RT), D(D})), and
DI(Tf)=(D'T) fVfeLl(R"xR".

o~

DEFINITION 8.4. Vz € (Zy0))" we set R, (z) = ((,u — AZ)‘I) )

Lemma 8.5. The following statements hold:
(@) Yz € (Zy@)" and VL € {0, ..., 2m]}, Df R, (2) is a bounded operator on

LP(R" x R™) to itself, and precisely Df R,.(2) = (DZ (n— Az)_l) s moreover

ID{ R, ()l prp@nxrty < C(L, Li, ®,6, Lo(®) Bz, )" "
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d) ifaeN", LeN and |a|+L€ <2m, then the function z+> 7% Df R, (2) is holomor-
phic and R-bounded on (Z,))" (with respect to the norm of L (R" x R1))

o]
with R,-bound < C(L, Ly, ®, 0, Lo(0)) || 2n .

ProoF. The first part of (a) is an immediate consequence of Lemma 8.3(b);
the other statements follow readily from the inequality (6.4) and Theorems 6.28
and 6.31, taking into account Lemma 4.7. O

DEerFINITION 8.6. For ¢« € N, £ € N and || + £ < 2m the function
Guat: (Zpe)" = LILP(R" x RT))

is defined by G 4.¢(z) = 2% D! R, (2).

Remark that the function G, ¢ is holomorphic and bounded, so that
G e(Dy) is defined.

LemmA 8.7. Fora € N*, £ € N and |a| + £ < 2m we have
Ga0(Dy) € LILP(R" x RY)),

and in particular || R, (D) |l z(Lp®n xr+yy < C(L, L1, 0,0, Lo®)| ]~

PROOF. Vz € (2,0))" Gue(2) = (Z“ D'(u — AZ)_1> commutes with

the resolvents of Dy, ..., D, by Lemma 8.3. Moreover (Dy,...,D,) has a

bounded H*° functional calculus (Theorem 7.3). Since by Lemma 8.5 (b) the
4|

Grel

function G ¢ ¢ is holomorphic and R-bounded, with R,-bound < C |u| 2
both assertions follow from the bisectorial analogous of Theorem 4.18. O

Our next task is to show that R, (D,) = (u — A)~ L.

In the sequel it is understood that T is a system of curves, contained in
(Xg))", of the type introduced in the proof of Theorem 7.3.

LEmMMA 8.8. Vf € LP(R" x RY) R, (D)) f € WP (R" x R*Y) and when
la| + € < 2m, D?D[e R;/,(Dx)f = G//.,(x,((Dx)f-

ProoF. In order to prove the lemma, it is enough to show that if |o|+£ < 2m
then Vf € LP(R" x RY)

(a) Gu,a,2+1(Dx)f = Dy, Gp,,a,fi(Dx)f
(b) Gu,a+ej,€(Dx)f = DjGu,a,Z(Dx)f-

Indeed (a) and (b) imply that Vf € LP(R" xRT) G, 4.¢(Dy)f belongs to the
domain of D, and of Dy, ..., D,, and hence it belongs to W7 (R"xR*). More-
over from (a) and (b) one obtains immediately that R, (D) f € w2mp(R" x RT)
and Gu,a,l(Dx)f = D?D[[ R;L(Dx)f

Let us prove (a) and (b). In both equalities, the left-hand side is a bounded
operator on L”(R" x RT), while the right-hand side is closed (because D; and
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D, are closed operators in L”(R" x RT)); therefore it is enough to show that
they coincide on some dense subspace of L”(R" x RT): e.g. on the range of

W (D), where W(z) =[]}, ufﬁ (see Lemma 4.11).
We take g € R(W(Dy,)), g = V(D,)f; then

Gp,,oz,((Dx)g = Gu,a,l(Dx) \I"(Dx)f = (\Ij Gu,(x,@)(Dx)f
= Qmi)™" /Nw(z) Guae(2) H(Zr — D) fdz.
r r=1

As it is £ < 2m, the range of G« ¢(2) = z"‘DfRM(z) is contained in D(D;)
(Lemma 8.5 (a)) and by definition D; G, o,¢(z) = G a,¢+1(z) which is a bounded
function of z (with values in LP(R" x R*)) by Lemma 8.5 (b). Therefore
2> V(@)D Gpoe) [0,z — D)~ f is summable on f, and since D, is
closed we get G, .¢(Dyx)g € D(D;) and

D, G (D) = Qa1 [ W) G @ [~ D' s

r=1

= (\I" GM,W,Z‘FI)(DX)JC = Gu,a,€+l(Dx) \IJ(Dx)f
= Gu,a,lJr] (Dx)g
This proves (a). To prove (b) we note that

V@) [[Gr = D) Guae@) f € DD;))

r=1

and

\I/(Z) Dj H(Zr - Dr)_l Gu,a,@(z)f
r=l1

=¥ [[G = D)7 Gratec@f =@ 7 [[G@ = D) Grate; e f.
r=1 r#£j

Here both the summands are summable on I' and
L 4@ TG = D)™ Gy 011 d =0
r#j

as one sees by integrating with respect to z;. Since D; is a closed operator, it
follows that G, 4.¢(Dy)g € D(D;) and

D; Gpar(Dy)g = 2mi)™" /F\v(o [[G = D)7 Grate @ f dz
r=1

= (\Ij Gu,oH—ej,E)(Dx)f = Gu,oH—ej,(Z(Dx) “Ij(Dx)f
= Gu,ox+ej,€(Dx)g- o

LeEMMA 8.9. Let (V))jen be the sequence of functions introduced in Definition
4.10, and let v € D(D;). Then V;(Dx)v — v in the norm of D(Dy).
Jj—o00
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Proor. We know from Lemma 4.14 that as j — oo the sequence (W;(Dy))jen
converges to the identity in the strong topology of L(LP(R"xR")). Moreover
it follows from Theorem 8.2 that W;(D,) commutes with the resolvents of
D;; therefore if v € D(D;), we have ¥;(D,)v € D(D;) and D;V¥;(D,)v =
W;(D,)D;v. Hence

W (Dx)v = vllpy = W (Dx)v —vllze + [|W;(Dx) Div — Dyvlle Pt 0. O

+00

We are now ready to prove that R, (D,) is a right inverse of pu — A.

Lemma 8.10. V f € LP(R" x R") we have R, (Dy) f € D(A) and f
(uw—A) R (Dy) f.

ProoOF. Let f € LP(R"xR™) be fixed. We first prove that R,,(Dy) f € D(A).
By Lemma 8.8 we have R, (Dy)f € WP (R" x R1); hence it remains to show
that the trace at t =0 of By(Dy, D;) R,(Dy) f vanishes Vk € {1,...,m}.

Setting

o~

Gr(2) = By(z, D)) Ru(2) = (Be(z, D) (1 — 4) ")

(see Lemma 8.5 (a)) we have, by Lemma 8.8, By(Dy, D;) R, (Dy) = Gi(Dy),
and so we have to show that G(D,) f € D(D;) and Ty G (D,)f = 0. The for-
mer assertion is a consequence of Lemma 8.3 (b), since Bi(z, D) (u—A,)"! €
L(LP(RY), WHP(RT)). In order to prove that Ty Gx(D,) f = 0, we construct a
sequence in ker 7y that converges to Gy(D,) f in the norm of D(D;). This se-
quence is (W;(Dy)Gr(Dy) f)jen. Since Gi(Dy) f € D(D;), Lemma 8.9 implies
that \Ilj(Dx)Gk(Dx)fjjoo Gy (D) f in the norm of D(D;); moreover, writing

W (Dy) Gi(Dx) f=(¥; Go)(Dy) f=2mi)™ /F‘Ijj(z) Gi(2) li[l(zr—Dr)_lfdz
the integral converges in the norm of D(D;); therefore
ToW;(Dy) Gi(Do) f = (2i)™" /ﬁ\v,(z) To Gi(2) f[(zr ~ D) fdz.
r=1
Finally we have

(G2 )) = Iim Gi(2) f (v, 1) = lim (Be(z, D) (1 = A) ™ f(x.)) () = 0

because the function ¢ — (u — A.)~! f(x,t) belongs to D(A.), and hence it
satisfies the initial conditions of problem (6.5).
This proves that T Bi(Dx, D;) R, (D) f =0, and hence R, (D,)f € D(A).
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Now we prove that (u — A)R,(Dy) = I pgnyrt). Y2 € (Zp@))" we have

(=P, D)(n—A) " =IpeH

so that, by Lemma 8.5 (a)

(k= P(z, D))R,(2) = (Upprt)) = ILp@wnxrt)-

On the other hand, by Lemma 8.8, (u — A)R, (D,) = (u— P(Dy, D;))R,(Dy)
is the operator that corresponds to the function z — (u — P(z, D;))R,(z) in
the homomorphism g — g(D,), and since that function is constantly equal to
I p®n gy, it is proved that (u — A)R,(Dy) = I pgnyg+) (see Lemma 4.13).

O

Before proving that R, (Dy) is a left inverse of © — A, we need another
preliminary result (similar to Lemma 8.8). Vr € N we denote by W/"?(R" x R")
the Banach space (with the natural norm) of the functions u € L?(R" x R™)
whose derivatives with respect to xj,...,x,, up to the order r, belong to
LP(R" x RT).

LEmMMA 8.11. Let r € N, and let g : (Zy0)" — WIP(R" x RT) be a
holomorphic function (with respect to the norm of WP (R" x R™)). We assume that
forany o, B € N" such that |«|+|B| < r the function z z"‘Df(g(z)) be bounded
on (L))" with respect to the norm of L¥ (R" x R™). Then for |a| < r we have

Lve [ - Do Die@ydz = [9@ [[e - Do s@dz
r k=1 r k=1

Proor. It is sufficient to prove the result when r = 1. By assumption, the
functions z +— z;8(z) and z — D;(g(z)) are holomorphic and bounded in the
norm of L?(R" x RT). Then

Lvo e - b0 Dy a:
k=1

= [v@ (5 [e- 007 =Tl - Do) s dz.
r k=1 k#j

Now it is easy to see that
[ vo TTe-po s@ds =0

L k£

and this concludes the proof. O

LemMmA 8.12. Vu € D(A) we have R, (Dy) (u — A)u = u.
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PROOF. Let u € D(A). If £ € {0,...,2m}, then Dfu € W=t (R x RT).
We know that R,(z) commutes with the resolvent operators of Di,..., D,
(Lemma 8.3 (a)), therefore for |B] < 2m — ¢ we have that DfRM(z) Dfu =
R, (z) D Dfu. Hence for |a|+ |B| <2m — € we get (by Lemma 6.2)

||

Izl

¢
m ||D§c8 D[””LP(R”XR*)

12% D Ry (2) Dful| 1pn sty < C

and this allows us to apply Lemma 8.11 obtaining
n n
/ﬂ(z) [P " Ru(z) D Dl dZZ/NqJ(z) [P "2 R, () Dludz
r r=1 r r=1
whenever |«| + ¢ < 2m. Hence

/Fww 1[G — D) Ru@) (1 — Audz

r=1

= /N‘P(z) [1G — D)7 Ru(2) (e — P(z, D))udz.
r r=1

The function (u—A.)~! (u— P(z, D))u(x, -) is (for almost every x) the unique
solution of the problem

wo() — P(z, D)v(t) = (u— P(z, D)u(x,t) teRt

v e W¥P(RT)
{ (Bi(z, D)v)(0) =0 l1<k<m

so that (u — A.)~' (u — P(z, D))u(x, ) — u(x, ) is the solution of

pnvu(t) — P(z, D)v(t) =0 t € Rt

v e WP(RY)
{ (Bi(z, D)v)(0) = =(Bi(z, D)u)(x,0) 1 <k <m.

By Lemma 6.13 this solution is the function
= > 8z 1) (Belz, DY) (x, 0) )z
k=1

with §; x(z, u) € C that depends holomorphically on z and u; ., € LP(R") that
depends holomorphically (in L” norm) on z (Lemma 6.27). Therefore

Ru(Dy) (ke — Au=¥ (Do)~ Qmi)™ /F V() [[@ = D)™ Ru@) (0 — Audz

r=1
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(as we have seen above)

= V(DY) @ri)™" /gv(z) [IG@ = D)™ Ru@) (= Pz, D))udz
r

r=1

= vy e [ we [[e - Dy udz
r r=1
~wo e [ v@ [ - by
r r=1
x> 8u(z, 1) (B(z, DYu) (-, 0) @ uj. - . dz.
jk=1
Here
(D) 2ri) ™" /gv(z) [[G =D ude = WD) W(Du = u,
r r=1
so that the lemma will be proved if we show that Vj, k we have
J¥@ T = Do 046z ) (BeGz DO 0) @ty d =0,
r=1

Let us fix j, ke{l,...,m} and £ € {0, ... ,m;}. Then we set

8(2) = 8 1(z, ) (DfU) (-, 0) @ u) - -

From (Dfu)(-,0) € W?"=¢~LP(R"), u;,, € LP(R*) and the holomorphy
of §;x(z,n) and of u;., we obtain that g is holomorphic with values in
szm_é_l'f’(R" x RT). Moreover it follows from Lemma 6.13 that if |o|+|8| <

2m — £ — 1 then

12% D2 (@)l Lp@nxity = 121185520 11 1t 2l Loty 1DE DEuc-, 0) | Lo ey
< CIZ%| Bz, W) " Y IDEDEu(-, 0) |l Lp@n)

and this is a bounded function of z when |«| < my;. Then Lemma 8.11 implies

that for |a| < m; — £ we have
L@ TG = D)7 814002 D, 0) @2
r=1

= /Fw(m [1G = D)7 8julz, ) DEDu(-,0) @ uj- pdz
r=1
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and hence

/F\I’(z) H(zr — D)1 80z W (Bi(z. DO, 0) @ ;0 dz

- [we [1Gr — D" 6.4 1) (BiDy. DY)~ 0) @ 1y dz = 0
r=1

because (Bi(Dy, Di)u)(-,0) =0, as u € D(A). O

Putting together Lemmas 8.7, 8.10, 8.12, we have proved that p(A) 2 (C\STU,
and that V6 € Jwo,7[3C >0 such that VueC\ Sy one has |[(u—A)~ <& mE

In order to prove that A is sectorial with spectral angle w, we still have
to show that D(A) and R(A) are dense. For D(A), it is enough to remark that
D(A) D CP(R"xR). Concerning the range of A, it is known that, as L? (R"xXR™)
is a reflexive Banach space, from the inequality sup [l (u — A)~'|| < 400

HER™

(that we have just proved) it follows that L”(R" x Rt) = ker A @ R(A), as
we remarked in Subsection 4.2; therefore proving that R(A) is dense becomes
equivalent to proving that A is injective, and this we do.

LemMA 8.13. A is injective (and hence R(A) is dense in LP (R" x RT)).

PROOF. Assume that u eker A. Then Y € C\S,, we have u= pu(u—A)"'u =
u R, (Du. Let us take @ € N" such that |¢| = 2m, and an integer g >

max;<j<,(1 +a;). Then [z% < ||z||*" and hence, for z € T,

|v@7 R @) H<zr -y =c II |1'Z_; (Il + Dz~
O P o (s
§C£[1|1+ g Il chll+zrl2q'

Therefore, for © € R™,
W (D) ull =l W(Dx)? Ry (Dy)ull

= H(2m')—” 1 /;‘1’(1)" R (2) ﬁ(Zr -bp™ ”dZH

qu 1—ar

\ Jz,fo1 e
< Qm)" C|/¢L|H/~ e il

and as © — 0 we get W(D,)%u = 0. Since W(D,) is injective (Lemma 4.11),
it follows that u = 0. O

Lemma 8.13 concludes the proof that A is sectorial, with spectral angle w.
In particular the following a priori estimate holds.
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THEOREM 8.14. There exists C > 0 such that Vu € D(A)

||”||W2m,p(]Ran+) <C (”Au”LP(R" xR+) T ||M||LP(R"xR+))-

Proor. Let u € D(A). Then for |¢| + € < 2m we have, by Lemmas 8.8
and 8.12,

D*D'u = D*D'R_1(D,) (=1 — A)u = G_1.4.¢(Dy) (—1 — Au.

Therefore by Lemma 8.7

lo|[+€<2m

I/p
14
||u||W2ma1’(R”><]R+)= ( Z ”DgDzu”ip(Ran-‘r))

1/p
5( ZHG_M,AD»nP) (nAuuLp(Rnxmﬁ||u||Lp(Ran+>). O

lo|+€<2m

In order prove the boundedness of the H* functional calculus for A, we

consider the function G : (Zy4)" — LLPR" x RY)), G(z) = (h(AZ)).
We know that G is holomorphic and R-bounded on (X,))" with R,-bound
< C ||h]loo (see Theorems 6.37, 6.38 and Lemma 4.7). Moreover by Lemma 8.3
(a) the operators G(z) commute with the resolvents of Dy, ..., D,; therefore
G(Dy) € L(LP(R" xR™)), with |G(D,)|| < C ||h|lec (Theorem 4.18). Therefore
the following lemma concludes the proof of Theorem 8.1.

LemMa 8.15. Let h € H°(Sy). Then h(A) = G (D).

PROOF. As in Subsection 6.4, we take the curve y parametrized by R\{0} >
t> |t|e” %M (with w < n < 6). R,(Dy) is a bounded operator (Lemma 8.7)
and is defined by

R,(Dy) = W(D,)™! /N\v(z)RM(z) [[G@ D) "adz
r r=1

so that the range of fF\IJ @R, TI ., (z,—D,)"'dz is contained in D(¥(D,)™ ).
Now for some s € R

|w@n(w Ru@ [T = D071 = € [Tt + 217 ff™" min { |l ™, |ul'}
r=1 r=1
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and hence fy JzY @ h(w) R.(2) [T7= (zr — D,)"'dzdu converges in the op-
erator norm and equals [z W(z) fy h() Ry(2)du [T/, (z» — D;)"'dz. Then

h(A) = ! h R, (D,d
()—%/y (1) Ru(Dy) dp
=5 [exm oot [e@nw R 1[G - D) dzdu
i ) X = m i r r
(as W(Dy) ! is closed)

1 n
= 5 WD) /)/(Zm')n /F\Il(z)h(u) R TG — D~ dedy

r=I1

= Qri) ™" W(D >—l/w<z>i/h(mR @dn [ - D) 'dz
X F i y " 1 r r
= G(D,).

since

o~
~

1 1 »
%/yh(m Ru(z)dp = (%/th (L—Az) du)Z(h(Az)>=G(z)~ 0
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During the preparation of this paper the authors became aware that R. Denk,
M. Hieber and J. Priiss have obtained the L”-maximal regularity for the solution
of the Cauchy problem (1.1) when A is an elliptic operator of arbitrary order in
a domain, acting on Banach space valued functions, with minimal assumptions
on the regularity of the coefficients. In the case of constant coefficients on
a half-space they have also obtained the boundedness of the H functional
calculus. However their methods are quite different from ours.
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