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Prym Varieties and the Canonical Map of
Surfaces of General Type

CIRO CILIBERTO - RITA PARDINI - FRANCESCA TOVENA

Abstract. Let X be a smooth complex surface of general type and let ~ : X
Ppg (x)-1 be the canonical map of X. Suppose that the image E of 0 is a surface
and that 0 has 2. Let E : 5’ -~ E be a desingularization of E and
assume that the geometric genus of S is not zero. Beauville [B2] proved that in this
case the surface S is of general type and c is the canonical map of S. Beauville also
constructed the only infinite series of examples that were available in the literature
up to now. This construction has been our motivation for introducing the notion
of a good generating pair, namely of a pair (h : V - W, L) where h is a finite
morphism of surfaces and L is a nef and big line bundle on W satisfying certain
assumptions. The most important of these are: i) = 

ii) the general curve C of L is smooth and non-hyperelliptic. We show that, by
means of a construction analogous to that of Beauville’s, every good generating
pair gives rise to an infinite series of surfaces of general type whose canonical
map is 2-to-1 onto a canonically embedded surface. In this way we are able to
construct more infinite series of such surfaces (cf. Section 3). In addition, we give
bounds on the invariants of good generating pairs and we show that there exist
essentially only 2 good generating pairs with dim 1. The key fact that we
exploit for obtaining these results is that the Albanese variety P of V is a Prym
variety and that the Prym map has positive dimensional fibre over the point of the
moduli space of p.p.a.v.’s corresponding to P.

Mathematics Subject Classification (2000): 14J29 (primary), 14H40 (secondary).

1. - Introduction

Let X be a smooth surface of general type and let
be the canonical map of X, where 1: is the image of 0. Suppose that £ is a
surface and that 0 has degree 8 &#x3E; 2. Let E : S -+ E be a desingularization of
~. A classical result, which goes back to Babbage [Bab], and has been more
recently proved by Beauville, [B2] (see also [Catl]), says that either pg (S) = 0
or S is of general type and c : S ~ E is the canonical map of S. In the latter

Pervenuto alla Redazione il 30 maggio 2000.
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case we have a dominant rational map 1/1 : X --~ S of degree 3, which we call a
good canonical cover of degree 3 (see Definition 2.3 for a slightly more general
definition).

While it is easy to give examples with pg (S) = 0 (see [B2]), not many
examples of good canonical covers can be found in the current literature. There
are some "sporadic" examples such that the surface X is regular (see [VdGZ],
[B2] Proposition 3.6, [Catl] Theorem 3.5, [Cl], [Pa2]). In addition, there is
an interesting construction, due to Beauville (see [Cat2], 2.9 and [MP]), which
gives an infinite series of good canonical covers of degree 2 with X irregular,
precisely with q(X) = 2. Beauville’s construction is recalled in Section 4 and in
Example 3.1. The corresponding canonical covers have been extensively studied
in [MP], where they have been classified in terms of their birational invariants.

In trying to find more examples of canonical covers, we have realized that
Beauville’s construction is an instance of a more general situation. This has

prompted us to define a good generating pair (see 2.4). Roughly speaking, a
good generating pair is a pair (h : V -* W, L), where h : V - W is a finite
morphism of degree 2, V is a smooth irreducible surface, W has isolated double
points of type A 1, and L is a nef and big line bundle on W. In addition, one
requires that: i) I and there is a smooth non-hyperelliptic curve

ii) h*Kw = Kv (this means that h is ramified only above the singular
points of W); iii) the pull-back of the adjoint linear system Kw + L I is the

complete linear system
The relationship between generating pairs and canonical covers is the fol-

lowing (see Section 2 for more details). Consider the map
and the projections pi, I = 1, 2, of W x P’ onto the two

factors. A general surface has only points of
type A I as singularities. We set the
minimal desingularization, 1/1’ =,e-l oo. Then, using adjunction both on V x PI
and W x P1, one sees that 1/1’ : X ~ S is a good canonical cover of degree 2.

General properties of generating pairs (h : V -~ W, L) are studied in
Section 5 (see also Section 8, that contains some information about higher
degree generating pairs). In particular, we prove that V and W have the same
Kodaira dimension (see Proposition 5.5) and W is regular. Then we compute
the irregularity of V, which is always &#x3E; 0, in terms of the genus g of the

general curve CElLI I and of the degree of h (see Proposition 5.4). We also
give formulas for the invariants of the canonical covers arising from a given
generating pair (see Proposition 2.7). It is interesting to notice that Beauville’s
example is essentially characterized by the fact that V and W have Kodaira
dimension K = 0 (see Proposition 8.2 for a more precise statement). The case
of Kodaira dimension 1 is also rather restricted, as Proposition 8.3 shows.

Beauville’s example corresponds to the case in which V is a principally
polarized abelian surface, W is its Kummer surface, and L is the polarization
on W which lifts to a symmetric principal polarization on V. Unfortunately, it
is not easy to find more examples. In Section 3 we list all the examples we
know. Each of these gives rise to an infinite series of good canonical covers,
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which possibly deserve to be studied in detail, as has been done for Beauville’s
examples in [MP].

The difficulty in finding generating pairs is explained in Section 6. This is
where Prym varieties come into the picture. If (h : V - W, L) is a generating
pair, and C is a general curve of then h*C = C’ - C is an unramified
double cover, with a related Prym variety Prym(C’, C). In Theorem 6.1 we

prove that Prym(C’, C) is naturally isomorphic to the Albanese variety of V.
As a consequence we find that, if the generating pair is good, then the Albanese
image of V is a surface and therefore the Kodaira dimension of V and W is
non-negative (see Corollary 6.2). Moreover, some general facts about irregular
surfaces and isotrivial systems of curves on them, which have been collected
in Section 4, imply that the Prym map has an infinite fibre over the point
corresponding to the cover h : C’ ~ C (see Proposition 6.6). Using this fact
and some results about the fibre of the Prym map due to several authors (see
Section 6 for references), we prove that if (h : V -+ W, L) is a good pair then
one has the bounds g s 12 for the genus g of C and q  11 for the irregularity
q of V (see Theorem 6.9 and Proposition 6.11). We think it should be possible
to improve these bounds if one had a better understanding of the fibres of the
Prym map. For instance, one would like to know answers to questions like:
when do these fibres contain rational curves? Questions of this type are, of
course, of independent interest.

Finally, using Reider’s method, we obtain the bound L2  4 (see Propo-
sition 7.3), and it becomes clear why there are not so many possibilities for a
good generating pair.

We give a complete classification of good pairs with L ample and dim L j &#x3E;
1. These satisfy dim 3 and L2 = 3, 4. The only example with dim JL) = 3
is Beauville’s one (see Corollary 7.4). The cases with dim j L j = 2 are studied
in Section 7 (see Theorem 7.10). We show that L2 = 3 and this corresponds
either to Example 3.3 or to a suitable modification of Beauville’s example; in
the proof, we notice that the general curve C is trigonal and we apply a global
version of the well known trigonal construction [Ca2], which is the inverse of
the equally famous Recillas’ construction. A different proof of the same result
is sketched in Remark 7.9.

In the pencil case dim ILl = 1 (in which there are examples, like 3.2, but
a classification is still lacking) we give strong restrictions for the case L2 = 4
(see Corollary 7.7).

Using similar ideas, we are able to construct an infinite family of good
canonical covers with X regular. We will return to this in a forthcoming paper.

NOTATION AND CONVENTIONS: all varieties are defined over the field of

complex numbers. A map between varieties is a rational map, while a morphism
is a rational map that is regular at every point. We do not distinguish between
Cartier divisors and line bundles and use the additive and multiplicative notation
interchangeably. The Kodaira dimension of a variety X is denoted by K(X).
We denote by -num the numerical equivalence between divisors on a smooth
surface.
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2. - Canonical covers and generating pairs

NOTATION 2.1. Let S be a surface with canonical singularities, i.e. either
smooth or with rational double points, so that in particular S is Gorenstein.
We denote by Ks the canonical divisor of S, and we let j 

be the geometric genus and q (S) - Os) the irregularity. If

, the canonical map of S is the rational map o :
defined by the moving part of the canonical system
smooth locus of S and 6 : S’ ~ S is any desingularization, then
and 4 The Albanese map of S’ factors

through c, since the exceptional locus of e°is a union of rational curves, and
so we can speak of the Albanese map of S.

Let X be a smooth surface of general type and let q5 : .
be the canonical map of X, where E is the image of ~. We assume that E
is a surface and that q5 has degree d &#x3E;- 2, and we denote by 6 : ~ 2013~ E a
desingularization of E. We recall the following theorem due to Beauville, [B2],
Theorem 3.4.

THEOREM 2.2. Under the above assumptions, either:

(i) pg (S) = 0 or;
(ii) S is of general type and E : S -~ ~ is the canonical map of S.

We introduce some terminology for surfaces that satisfy condition (ii) of
Theorem 2.2:

DEFINITION 2.3. Let X, S be smooth surfaces of general type. Let :
X -+ S be a dominant rational map of degree d &#x3E; 2. Assume that:

(CCl) pg(X) = pg(S); .

(CC2) the canonical image of S is a surface E.

In this case the canonical map o : X -+ £ of X is the composition of
~r and the canonical map 6 : ~ 2013~ E of S, and we say that * : X - S is a
canonical cover of degree d. If E : S -+ £ is birational, then we say that the
canonical cover is good.

A few sporadic examples of canonical covers are known in the literature
([VdGZ], [B2] Proposition 3.6, [Catl] Theorem 3.5, [Cl], [Pa2]). However, so
far, there is only one construction, due to Beauville (see [Cat2], 2.9 and [MP]),
which gives an infinite series of such covers. We recall it next.

Let V be a principally polarized abelian surface such that the principal
polarization D is irreducible, and let h : V -~ W be the quotient map onto the
Kummer surface W = V/  -1 &#x3E;. The surface W can be embedded into P3
as a quartic surface via a complete linear system I L I such that
Consider the map and the projections p~ , i = 1, 2,
of W x PI onto the two factors. A general surface E E

3, has only points of type A 1 as singularities. We set
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the minimal desingularization,
Then it is easy to check, using adjunction both on V x P~ and W x P1, that
~ : X -+ S is a good canonical cover of degree 2.

We wish to study to what extent this construction can be generalized. We
introduce a class of pairs (h : V -)- W, L), where h : V --~ W is a finite

morphism of surfaces and L is a line bundle on W, such that by applying the
above construction to (h : V - W, L) one gets an infinite series of canonical
covers.

DEFINITION 2.4. Consider a pair (h : V -+ W, L), where h is a finite

morphism of degree d &#x3E; 2 between irreducible surfaces, V smooth, W with at
most canonical singularities and L is a line bundle on W, such that:

(GP2) h°(W, L) &#x3E; 2 and L is big, i.e. L2 &#x3E; 0;

(GP3) the general curve C of I L I is smooth of genus g &#x3E; 2 and the curve
C’ : = h * C is not hyperelliptic; 

~

We call (h : V -~ W, L) a degree d and genus g generating pair of canonical
covers, and we denote by L’ the line bundle h*L on V. The pair is said to be
minimal if both V and W are minimal.

The generating pair is called good if the general C of ~.L ~ is not hyperelliptic
(hence g &#x3E; 3 in this case).

Notice that condition (GPl) is equivalent to the fact that h is ramified only
over the singular points of W. Condition (GP3) and Bertini’s theorem imply
that the general curve C in I L I is smooth and irreducible, hence L is also nef,
i.e. LD &#x3E; 0 for every effective divisor D on V. The assumption that C’ is not
hyperelliptic is a technical condition whose meaning will be clearer later (cf.
for instance Theorem 6.1). Finally, the base points of ILI, if any, are smooth
points of W.

In the rest of this section we show that by applying the original construction
of Beauville to a (good) generating pair one obtains an infinite series of (good)
canonical covers, and we compute the invariants of such canonical covers. In
order to do this, we need the following result, that will be proven later (cf.
Proposition 5.4):

PROPOSITION 2.5. If (h : V - W, L) is a generating pair, then q (W) = 0.

We introduce now some more notation:

NOTATION 2.6. Given a generating pair (h : V - W, L) of degree d and
genus g, we denote by pi, i = 1, 2, the projections of W x PI onto the two
factors and we write We denote by the
line bundle pi L 0 (n), where n is a positive integer.

In addition, we let :E E ~ be a general surface, Y = A*(E). We denote
by 6 : ~ -~ E and E’ : X - Y the minimal desingularizations, by f the map
ÎÍly : X -+ E, and by # the map E -1 o f o E’ : X -~ S.
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PROPOSITION 2.7 (We use Notation 2.6). Let (h : V - W, L) be a generating
pair of degree d and genus g. If n &#x3E;- 3, then one has:

i) let E E 1£(n)1 be general and let Y = h*:E; :E and Y are surfaces of general
type with at most canonical singularities. If in addition L is ample, then S and
X are both minimal;

ii) 1/1 : X --&#x3E;. S is a canonical cover of degree d, that is said to be n-related to
the generating pair (h : V --+ W, L). If the generating pair is good, then
1/1 : X -&#x3E;. S is a good canonical cover, while if the generating pair is not good
then the canonical map of S is 2-to- I onto a rational surface;

iii) the invariants of S are:

iv) the invariants of X are: and o

PROOF. Recall that by condition (GP3) of Definition 2.4 the general curve
of ILI I is smooth, and thus, in particular, L ~ I has no fixed components. It
follows that also the linear system has no fixed components and is not
composed with a pencil, and thus the general surface :E E [ is irreducible.
Moreover the set of base points of [ is the inverse image via p 1 of the set
of base points of ILI and thus it is a finite union of fibres of pl . Using Bertini’s
theorem and the fact that the general curve of ILI is smooth, one proves that the
singularities of the general E ~ [ at points of the fixed locus of [ are
finitely many rational double points of type Ar. Now, the projection p, restricts
to a generically finite map p : ~ -~ W of degree n which, by Bertini’s theorem
again, is unramified over the singular points of W. So the general has, over
each singular point x of W, n singularities which are analytically equivalent to
the one W has in x (i.e. n canonical singularities) and it is smooth at points
that are smooth for W x Pl and are not base points of 1£(n)l. To describe

the singularities of Y = h*(E), we notice that the restriction Y -+ £ of h is
ramified precisely over the singularities of :E that occur at singular points of
W x PI; so Y has d singularities analytically isomorphic to those of E over
each of those singular points of :E that occur at base points of ] and it is
smooth elsewhere, since it is general in In conclusion the singularities
of Y and are canonical, and their invariants, which we now compute, are
equal to those of X, S, respectively.

By the adjunction formula and condition (GPl) in Definition 2.4, one has
and

and thus

To compute the remaining invariants of S, E and X, one considers
the long cohomology sequences associated to the restriction sequences

and



911

By Kawamata-V’iehweg’s vanishing theorem, we have
Hence:

where the last equality follows again from Kawamata-Viehweg’s vanishing and
the last equality but one follows from q(W) = 0. Therefore, by the definition
of generating pair:

A similar computation gives
The linear system I contains the restriction of the system

whose fixed locus is the inverse image via pi of the fixed locus of
Let C be a smooth curve; since W is regular, the linear system
restricts to the complete canonical system Thus C does not

contain any base point of Kw + L 1. If L is ample, this implies that
has a finite number of base points, none of which is also a base point of I L 1.
Thus in this case the fixed locus of + £(n - 2)) I intersects the general
E in a finite number of points and, a fortiori, the canonical system of E has
no fixed components and the surfaces X, S are minimal.

Notice now that separates the fibres of since
A fibre is identified by p 1 with a curve I and

the restriction of to F is identified with the restriction of
to C, which is the complete canonical system since W is

regular. Thus, if the general C is not hyperelliptic, then the canonical map of
S is birational and 1/1 : X --~ S is a good canonical cover, while if the general
C is hyperelliptic then the canonical map of S is of degree 2 onto a rational
surface and 1/1 : X -~ S is a non good canonical cover. D

Since we aim at a classification of generating pairs, we introduce a notion
of blow-up. We will show (cf. Corollary 6.3) that almost every generating pair
is obtained from a minimal one by a sequence of blow-ups.

DEFINITION 2.8. Let (h : V --~ W, L) be a generating pair of degree d and
genus g. Let x E W be a smooth point. Then we can consider the cartesian
square:

where f : W’ -+ W is the blow-up of W at x, with exceptional divisor E and,
accordingly, V’ is the blow-up of V at the d points x 1, ..., xd of the fibre of h
over x. Fix m = 0 or 1 and assume that:
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(i) L2 &#x3E; M2 ;
(ii) f *L - mE) ~!: 2 and the general curve C ~ is smooth.

Then the pair
- a a is again a generating pair, and

we say that it is obtained from (h : V -~ W, L) by a simple blow-up. The

blow-up is said to be essential if m = 1 and inessential if m = 0.

The reason why we only consider m  1 in the above definition is that

generating pairs satisfy the inequality L2  4 (cf. Proposition 7.3).

3. - Examples of generating pairs 
’

In this section we describe some examples of generating pairs.
EXAMPLE 3.1. Beauville’s example. (see [Cat2], 2.9, [MP], Example 4 in

Section 3). This example has already been described in Section 2: V is a

principally polarized abelian surface with an irreducible polarization D, W is
the Kummer surface of V, h : V --~ W is the projection onto the quotient, and
L is an ample line bundle on W such that the class of L’ = h*L is equal to 2D.
This generating pair is good and therefore so is any related canonical cover.
More precisely, by Proposition 2.7, an n-related canonical cover 1/1’ : X -~ S is
minimal, with geometric genus 4n - 3. The invariants of S and X satisfy the
relations:

According to [MP], Theorem 4.1, this is the only good generating pair such
that the related canonical covers satisfy K 2 = 6pg(X) - 14 and Kx is ample.

Notice that if the polarization D on V is reducible, then (h : V -+ W, L)
is a non good generating pair (cf. also [MP], Example 2 in Section 3), that we
call the non good Beauville’s example.

EXAMPLE 3.2. A good generating pair of degree 2 and genus 3 (cf. also [C2],
Example (c), page 70). Let A be an abelian surface with an irreducible principal
polarization D, let p : V -~ A be the double cover branched on a symmetric
divisor B E and such that = 

· Since Kv p* (D), the
invariants of the smooth surface V are: By the
symmetry of B, multiplication by -Ion A can be lifted to an involution i of V
that acts as the identity on hO(V, We denote by h :
the projection onto the quotient. We observe that

! and the only singularities of the surface W are 20 ordinary double
points. In addition, so

that the bicanonical map of V factors through h : V - W. An alternative
description of W is as follows. One embeds, as usual, the Kummer surface
Kum(A) of A as a quartic surface in p3 = P(HO(A, 2D)*). The surface W
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is a double cover of Kum(A) branched over the smooth plane section H of
Kum(A) corresponding to B and on 6 nodes (corresponding to the six points
of order 2 of A lying on D). The ramification divisor R of W -+ Kum(A)
is a canonical curve isomorphic to H, and thus it is not hyperelliptic. This

completes the proof that (h : V -+ W, Kw) is a good generating pair. Under
suitable generality assumptions, Kw is ample, as well as An n-related
canonical cover 1/1 : X -+ S has geometric genus 5n - 3 and is, in general,
minimal. The invariants of S and X satisfy the relations:

EXAMPLE 3.3. A good generating pair of degree 2 and genus 4 (cf. [C2],
Example 3.13). Let r be a non-hyperelliptic curve of genus 3 and let V :=
Sym2(T). The surface V is smooth minimal of general type with invariants:

If we embed r into P2 via the canonical
system, then the canonical map of V sends the unordered pair {p, q) of points
of V to the line hence it is a degree 6 morphism onto the
plane. There is an involution i on V that maps V to {r, s }, where

The fixed points of i correspond to the
28 bitangents of r and the canonical map of V clearly factors through the
quotient map Hence the invariants of W are:

and thus
In addition we have

and thus 12KV = So, the pair (h : V -+ W, Kw) is a good generating
pair, since the restriction of I to C is a base-point free g3 I and the general
canonical curve C of W is not hyperelliptic. Notice that Kw and Kv are ample.
An n-related canonical cover 1/1 : X ~ S is minimal, of geometric genus 7n - 4.
The invariants of S and X satisfy the relations:

An interesting question, concerning this example and the previous one, is
whether these are the only generating pairs such that the related canonical
covers have invariants satisfying (1) and (2).

EXAMPLE 3.4. A non good generating pair of degree 3 and genus 2. Let

p : EXAMPLE 3.4. A non good generating pair of degree 
3 and genus 2. Let

p : W -+ p2 be the double cover of p2 ramified on an irreducible sextic B
with 9 cusps (B is the dual of a smooth cubic). The surface W is a K3 surface
whose singularities are 9 double points of type A2. According to [BdF] (cf.
also [BL2], [Ba]), there exists a smooth cover h : V -+ W of degree 3 ramified
only at the 9 double points. Notice that the surface V is an abelian surface.
We set L = ~*(0p2(l)) and we remark that the pair (h : V -+ W, L) is a non
good generating pair, since by
the ampleness of L. An n-related, minimal, canonical cover 1/1 : X - S has
geometric genus 3n - 2. The invariants of S and X satisfy the relations:
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The surfaces S thus obtained have invariants lying on the Noether’s line K 2 =
2pg(S) - 4. It would be interesting to know whether there are other canonical
covers with so low geometric genus.

EXAMPLE 3.5. A series of non good generating pairs of degree 2 with unbounded
invariants. For i = 1, 2, let Ci be a smooth curve of genus gi &#x3E; 0 with a double

cover q,i : Ci - P , and let O’i be the involution on Ci induced by We set
and we denote by h : V - W the projection

onto the quotient. We remark that there exists a double cover f :
such that factors as , I We denote by H
a divisor of type on and we set L = f*H. Both systems Kv I
and I Kv I are pull-back via i This immediately
implies that is a non good generating pair of degree 2 and

genus One has: Pg (W) =- gig2, q(V) = g 1 -I- g2 . An n-related
canonical cover has geometric genus I
and moreover

Notice that, if gl = g2 = 1, we find again the non good Beauville’s example
(cf. Example 3.1).

4. - Auxiliary results on irregular surfaces

In this section we collect a few general facts on irregular surfaces that will
be used in the rest of the paper. We use Notation 2.1.

PROPOSITION 4.1. Let h : V --~ W be a finite morphism of surfaces with
canonical singularities such that and j if 4- - v -"’" 

- _

q (W ) &#x3E; 0, then the Albanese image of V is a curve.

PROOF. The critical set A of h is finite by assumption. We let Wo =
W B (Sing ( W ) U 0 ) and vo = h -1 Wo, so that the restricted map h : vo ~ Wo is
a finite etale map between smooth surfaces. In particular h is flat, and there is
a canonical vector bundle isomorphism where E is locally
free of rank (deg h - 1). Since i - 1, 2, one has

Notice that this decomposition as a direct
- .. - .

sum is canonical. We set and

We deduce that and we denote by
the projection onto the first factor of this decomposition. To ensure that

the Albanese image is a curve, we show that tl A T2 = 0 for every choice
of Noticing that both M¡ and Mi are
non-zero (since we only need to show that A r = 0
for every choice of a E M) and r Indeed, to show that 1B2 M ¡ = 0 we
fix (0 =4)T E M 1: if Crl,,Or2 E M+, the vanishing h*ai A r = 0 (i = 1, 2) means
that is pointwise proportional to r (i = 1, 2), so that and h*a2 are
mutually pointwise proportional. Similarly one proves that A2MI = 0.
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Since is an isomorphism. Notice also that:
a for any and that for Or E M+ and

Therefore I for any and ker
as required. - 11

We recall the following results:

PROPOSITION 4. 2 (Serrano, [Se], Section 1). Let V be a smooth surface, let C
be a smooth curve, and let p : V - C be an isotrivial fibration with fibre D. Then
there exist a curve B, a finite group G acting both on B and D, an isomorphism
f : C ~ B / G, and a birational map r : V -+ (D x B) / G, where G acts diagonally
on D x B, such that the following diagram commutes:

where p" is the map induced by the projection D x B -+ B. The irregularity q (V )
is equal to g (C) + g (D/ G). In particular, if q (V) &#x3E; 0 and g (C) - 0, then the
Albanese image of V is a curve isomorphic to D j G and the Albanese pencil is given
by the composition p’ o r, where p’ is the map induced by the projection D x B --~ D.

PROPOSITION 4.3 (Xiao, [Xi], Theorem 1). Let p : V ~ Pl be a fibration
with fibres of genus y. If p is not isotrivial, then y &#x3E; 2q (V) - 1.

The next proposition combines the previous results.

PROPOSITION 4.4. Let V be a smooth surface with a pencil I D such that the
general curve D of I D is smooth and irreducible of genus y &#x3E; 1; if the Albanese
image of V is a curve, then one (and only one) of the following holds:

i) there exists a birational map r : V --~ D x PI such that D is the strict transform
via r of a fibre of the projection D x Pl -+ Pl. In this case y = q (V );

ii) there exist an hyperelliptic curve B, a free involution i on D, and a birational
map r : V -+ (D x B)/Z2, where Z2 acts on B as the hyperelliptic involution,
on D via i and diagonally on D x B, such that D is the strict transform via r of a
fibre of the projection (D x B) /Z2 -+ B /Z2 = pl. In this case y = 2q (V ) -1.

iii) y &#x3E; 2q(V) - 1.

In particular, if p is not isotrivial, then iii) holds.

PROOF. Since the statement is essentially birational, we may assume that
D defines a morphism p : V -~ PI, up to blowing up the base locus of
I D 1. Denote by a : V - C the Albanese pencil. If p is not isotrivial, then
y &#x3E; 2q (V) - 1 holds by Proposition 4.3. If y = 2q(V)-I, then by the Hurwitz
formula the restriction of a to a smooth curve D is an étale cover of C, whose
degree is 2. Thus p is isotrivial, contradicting the previous assumption.
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Assume now that p is isotrivial. By Proposition 4.2, there is a commutative
diagram:

r

where B is a curve, G is a finite group acting on B and on D and acting diag-
onally on D x B, r is a birational map and f : Pl - B/ G is an isomorphism.
Again by Proposition 4.2, the Albanese image of V is isomorphic to D/ G.
So we have either G = { 1 }, corresponding to case i), or 2q(V) - 1  y, with

equality if and only if G = Z2 acts freely on D. The latter case corresponds
to case ii). D

5. - General properties of generating pairs

In this section we give some useful information on the degree, genus and
Kodaira dimension of a generating pair.

NOTATION 5.1. If (h : V 2013~ W, L) is a generating pair of degree d and
genus g, we write C for a general curve of ILl and C’ = h*C, so that C and
C’ are smooth curves of genera g and d(g - 1) -I-1 respectively, and h restricts
to an unramified cover x : C’ -~ C of degree d.

LEMMA 5.2. Let (h : V --+ W, L) be a generating pair of degree d and genus
g. If the Albanese image of V is a curve, then d (g - 1 ) + 1 &#x3E; 2q ( V ) - 1.

PROOF. According to Proposition 4.4, we distinguish three cases. Setting
D = C’, y = d (g - 1) + 1 and keeping the rest of notation of Proposition 4.4,
we only need to exclude the first two cases:

i) V is ruled and C’ is a section: in this case the adjoint system -I- L’i
is empty, contradicting assumption (GP4) of Definition 2.4;

ii) there are two subcases:

ii-a) Assume B = P . Then V is ruled over C’/Z2 and C’ is a bisection of
V meeting each fibre of the map p : V -~ C’/Z2 in two distinct points
interchanged by the free Z2 action. By repeatedly blowing down -1
curves E such that EL’  1, one obtains a map f : V --+ V’ such that
V’ is minimal and the map p factors as p’ o f , where p’ : V’ -~ C’/Z2.
The curve C" = f (C’) is smooth and the induced map f : C’ --+ C" is
an isomorphism. Moreover, the map p’ : V’ -~ C’/Z2 is a projective
bundle, i.e. there exists a rank 2 vector bundle M on C’/Z2 such
that V’ = ProjC’/Z2 (M), and C" meets each fibre of p’ in two distinct
points interchanged by the free Z2 -action.
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If we denote by H the tautological section of V’ and by L" the line
bundle determined by C" on V’, then the condition that the projection
map C’ --~ C’/Z2 is unramified of degree 2 is equivalent to L" being
numerically equivalent to 2H - deg(M)F, and thus we have Z2 = 0.
This would imply L’~  0, contradicting the fact that L’ is big.

ii-b) Assume that B is not rational. Notice that (C’ x B)/Z2 is the quotient
of C’ x B by a free Z2 -action. Hence it is smooth. In addition it is
minimal, since it is a free quotient of the minimal surface C’ x B. This
implies that the birational map r : V -~ (C’ x B)/Z2 is a morphism.
Let C" be a fibre of the morphism (C’ x B)/Z2 ~ B/Z2 = Pl- Since,
by Proposition 4.2, C’ is the strict transform of C" via r and since
C"~ = 0, we have again that L’~  0, which is impossible since L’ is
big. D

LEMMA 5.3. Let (h : V -~ W, L) be a generating pair of degree d and genus
g. Then d ( and if equality holds then the Albanese image
of V is a surface.

PROOF. Consider a pencil P C !Lj I such that the general curve is smooth
and irreducible. Up to blowing up, we may assume that the pull-back of P
on V via h is a base point free pencil. If the corresponding fibration is not
isotrivial, then the claim holds by Proposition 4.3. If the fibration is isotrivial,
then the Albanese image of V is a curve according to Proposition 4.2, and we
have 4 by Lemma 5.2.

PROPOSITION 5.4. If (h : V - W, L) is a generating pair of degree d, then
q (W) = 0, and the list of possibilities is as follows:

If the pair is good, then case i) holds; in case ii), g = 3, and in case iii) the Albanese
image of V is a surface.

PROOF. By Kawamata-Viehweg’s vanishing theorem one has ho(W, Kw +
. Analogously, one has i

and thus I by condition (GP3) of Definition 2.4.
Assume that q ( W) &#x3E; 0. By Proposition 4.1, the Albanese image of V is a
curve and Lemma 5.2 implies that
2q (W ) -1, but this is impossible, since d, g &#x3E; 2. So, q (W) = 0 and, according
to Lemma 5.3, one has The

statement includes all possible solutions. In cases ii) with g = 3 and iii) we
also apply Lemma 5.3.

Assume now that the pair is good. By the above discussion, we have d  3.
By ([B2], Proposition 4.1 and Remark 4.2), if 1/1 : X -~ S is a good canonical
cover of degree 3, then q(X) ::: 3. On the other hand, by Proposition 2.7,
canonical covers arising from a good generating pair of degree 3 and genus g
satisfy
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PROPOSITION 5.5. Let (h : V ~ W, L) be a generating pair: then K(V) =
K(W).

PROOF. Since K ( V ) &#x3E; K ( W ), we may assume K ( W )  1. Consider the

following commutative diagram:

where f : W’ ~ W is a minimal desingularization and h’ : V’ 2013~ W’ is obtained

by taking base change, normalizing and finally solving the singularities of the
surface thus obtained. We notice the following facts:

(i) b is a sequence of blow-ups, since V and V’ are smooth surfaces. Thus
where E is an effective divisor supported on the b-

exceptional locus, and we have for every m &#x3E; 1.

(ii) Kw, = since W has only canonical singularities. Therefore we
have b*Kv = b*(h*Kyy) = h’*Kw,.

Suppose that K(W) = -oo, i.e. W is rational by Proposition 5.4. Hence
also W’ is rational, and therefore there is an effective irreducible big divisor
D on W’ such that DKw~  0. By remark (ii) above, there is an effective

big divisor D’ on V’ such that D’(b*Kv)  0. This, together with remark (i),
shows that K (V’) = K(V) = -oo.

Assume now that K ( W ) = 0; then there exists a nef and big line bundle H
on W’ such that = 0. Thus (h’*H)(b*Kv) = (h’*H)(h’*Kw,) = 0, and
thus h’* H is a nef and big divisor that has zero intersection with the moving
part of any pluricanonical system. Thus it follows that K (V’)  0. If K (W’) = 1,
then there exists a fibration f : W’ -~ D, where D is a smooth curve, such
that the general fibre E of f is an elliptic curve. So (h’*E)(b*Kv) = 0, and
thus the maps given by the pluricanonical systems are all composed with the
fibration f ’ = f o h. This shows that K ( V )  1. D

By the previous proposition, one can speak of the Kodaira dimension of
a generating pair. Generating pairs of degree 2 and Kodaira dimension 0 are
completely described in Proposition 8.2.

6. - Pairs of degree 2 and Prym varieties

We consider here the case of generating pairs of degree 2. The relevance
of this case is underlined in Proposition 5.4, where it is shown that all good
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generating pairs have degree 2 and that all generating pairs of degree &#x3E; 2 have
genus  3.

If CElLI is a general curve and C’ = h * C, then the map h induces an etale
double cover x = C’ -~ C. If one denotes by J (resp. J’) the Jacobian of C
(resp. C’), then the connected component containing the origin of the kernel of
the norm map 1f*: J’ - J is a (g - I)-dimensional abelian subvariety, on which
the principal polarization of J’ induces the double of a principal polarization.
This principally polarized abelian variety is called the Prym variety of C’ - C
and it is denoted by Prym (C’, C). The connection between generating pairs
and Prym varieties is explained in the following theorem.

THEOREM 6.1. Let (h : V -~ W, L) be a generating pair of degree 2. Let C E
| L| be a general curve. Then there is a natural isomorphism w : Prym (C’, C) -&#x3E;. A,
where A = Alb(V) is the Albanese variety of V. In particular P r ym (C’, C) does
not depend on 

PROOF. By the definition of generating pair, the singular points of W are t
ordinary double points, where t satisfies the relation x (V, = 2x (W, OW) -
t /4. Evaluating the Euler characteristic of V and W as in Proposition 5.4, one
deduces that t = 4(g + pg(W)) &#x3E; 0. So, one can choose a ramification point
xo for h in V. Since W is regular by proposition 5.4, the Albanese map of
W with base point h (xo) is the zero map. The Albanese map of V with base
point xo, denoted by a : V - A, is equivariant with respect to the involution
induced by h and the multiplication by -1 on A. In particular, the restriction
C, : C’ 2013~ A is also equivariant.

Now we use the universal property of Prym varieties (cf. [BLI], page
382). Let f3 : C’ -~ Prym(C’, C) be the Abel-Prym map with respect to a
point c’ E C’ and let r : A - A be the translation by a (c’) . Then there is
a unique homomorphism cp : Prym(C’, C) --+ A, independent of c’ E C’, such
that = r 

Denote by J’ the Jacobian of C’. Let j : C’ -~ J’ be the Abel map with
base point c’ and y : J’ -~ Prym(C’, C) the map such that f3 = y o j. Let

i * : J’ -~ A be the homomorphism induced by the inclusion i : C’ ~ V and
the choice of c’ E C’. Notice that, up to a translation, we have ajci = i * o j.
Then it is clear that i * factors, up to a translation, as cp o y. The differential
of i * at the origin of J’ is dual to the map H I (V, On) - which
is injective since ~(V,Ov(2013Z/)) = 0 because L’ is big and nef. So i* is

surjective and w is an isogeny since A and Prym(C’, C) both have dimension
g - 1 by Proposition 5.4. To show that V is an isomorphism, it is enough to
prove that i* has connected fibres. In turn, this follows if we show that the

map Hl (C’, Z) 2013~ H, (V, Z) induced by the inclusion i : C’ - V is surjective.
The system I L’I has no fixed part by assumption, so by Theorem 6.2 of [Za]
there exists an integer k such that gives a morphism 1/1 : V -~ PN; the
image of g is a surface, since L’ is big. So there exists an hyperplane H in PN
such that 1/1-1 H = C’ as sets. By Theorem I.I, page 150, of [GM], the map

-~ 1f1(V) is surjective, and thus is surjective too.
1:1
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COROLLARY 6.2. Let (h : V --* W, L) be a generating pair of degree 2 and
genus g; then the Albanese image of V is a surface. In particular, the Kodaira
dimension of the pair is non-negative.

PROOF. Assume that the Albanese image of V is a curve r. Then r has
genus g - 1. On the other hand, by Theorem 6.1, the Albanese image of V
contains the Abel-Prym image of C’, which is isomorphic to C’ (cf. [BLl],
Proposition 12.5.2), since C’ is not hyperelliptic. This is a contradiction and
thus the claim is proven. 0

COROLLARY 6.3. Let (h : V -+ W, L) be a generating pair of degree 2; then
(h : V -~ W, L) is obtained from a minimal pair by a sequence of simple blow-ups
of weight 0 or 1.

PROOF. Denote by i : V - V the involution induced by h and let E be a
-1 curve of V. We claim that either L’ E = 0 or L’E = 1. Let c : V -~ Vo be
the blow-down of E, let C’ E I L’I be smooth and let Co = E (C’); notice that
Co is singular if and only if L’ E &#x3E; 1. Let a : V - A be the Albanese map
of V; A is also the Albanese variety of Vo and, if we denote by ao : Vo - A
the Albanese map of Vo, one has a = ao o E. Thus a (C’) - ao(Co); by
Theorem 6.1, a(C’) is isomorphic to C’, since C’ is not hyperelliptic, and thus
Co is smooth and L’E  1. Let E’ be the image of E via i; E’ is also a
-1-curve and thus, since K(V) &#x3E; 0 by Corollary 6.2, either E = E’ or E and
E’ are disjoint. If E = E’, then E contains precisely 2 fixed points of i, but
this contradicts the fact that E2 is odd. So E ~ E’ and F = h (E) = h (E’) is
a -1 curve contained in the smooth part of W. Let V’ be the surface obtained
by blowing down E and E’, let W’ be the surface obtained by blowing down F
and let h’ : V’ - W’ be the double cover induced by h; if one denotes by M
the direct image of L, then it is easy to check that (h’ : V’ -~ W’, M) is also
a generating pair. By iterating this process finitely many times, one eventually
obtains a generating pair with V minimal. Thus Kv = h*Kw is nef, and it
follows that KW is also nef and W is minimal, too. D

COROLLARY 6.4. Let (h : V -~ W, L) be a generating pair of genus g and
degree 2. Then:

(ii) if the Kodaira dimension of the pair is 2, then pg (V) = pg (W) &#x3E; max {g -
1, 2g - 6}; if pg(V ) = 2g - 6 then V is birational to the product of a curve of genus
2 and a curve of genus g - 3.

PROOF. By Corollary 6.2, Thus we have x ( ~ ) &#x3E; 0,
The case of Kodaira dimension 2

follows from the theorem at pg. 345 of [B4].

COROLLARY 6.5. Let i be a generating pair of genus g and
degree 2. If is a pencil containing a smooth curve, then IC’I is not
isotrivial.

PROOF. Follows from Corollary 6.2 and Proposition 4.2.
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If we denote by Rg the moduli space of étale double covers of curves of
genus g and by 1 the moduli space of principally polarized abelian varieties
of dimension g - 1, then the Prym map Pg : 1 associates to every
isomorphism class of étale double covers the corresponding Prym variety. The
geometry of Prym varieties has been extensively studied by many authors. We
are going to use some of these results in order to give a bound on the genus
of good generating pairs.

PROPOSITION 6.6. Let (h : V - W, L) be a generating pair of genus g and
degree 2. Let C E I L be general and let C’ = h*C. Then the fibre of the Prym map
Pg : .A.g_ at the point ofRg corresponding to the double cover C’ ~ C has
positive dimension.

PROOF. Follows from Theorem 6.1 and Corollary 6.5. 0

It is known that the Prym map is generically finite for g &#x3E; 6 (cf. the

survey [B5] and the references quoted therein). However there exist positive
dimensional fibres of 7~g for any value of g. In order to state Naranjo’s Theo-
rem 6.7 that characterizes the positive dimensional fibres of Pg for high values
of g, we recall that a curve C is called bi-elliptic if and only if it admits a
double cover C -+ E onto an elliptic curve E.

THEOREM 6.7 (Naranjo, see [Na2], page 224 and [Nal], Theorem (10.10)).
Let C’ ~ C be an unramified double cover of a genus g curve C.

(i) If g &#x3E; 13, then the fibre of Pg at the point ofRg corresponding to C’ - C is
positive dimensional if and only if C is either hyperelliptic or bi-elliptic. In the
latter case, if C --&#x3E;. E is a double cover of an elliptic curve, then the Galois
group of the composition C’ - C -+ E is G = Z2 X Z2 and each quotient of
C’ under an element of G has genus strictly greater than 1.

(ii) Assume that g &#x3E; 10, that the fibre of Pg at the point ofRg corresponding to
C’ - C is positive dimensional and that C is bi-elliptic. Then the Galois group
of the composition C’ ~ C ~ E is G = Z2 X Z2, and each quotient of C’
under an element of G has genus strictly greater than 1.

From the point of view of generating pairs, the hyperelliptic case in The-
orem 6.7, i), corresponds to the case of generating pairs of degree 2 which
are not good, and Example 3.5 shows that these exist for arbitrary values of
g. On the other hand the bielliptic case can be excluded for good generating
pairs with g large, as Theorem 6.9 below shows.

We recall some general and elementary properties of bi-elliptic curves and
bi-double covers, i.e. finite covers with Galois group Z2 x Z2 (cf. [Nal], page
50 and ff.; [Pal]). If C is bi-elliptic, then the double cover C - E with E
elliptic is unique up to automorphisms of E if g &#x3E; 6. Analogously, a bi-elliptic
curve C is not hyperelliptic if g &#x3E; 4 and it is not trigonal if g &#x3E; 6.

If C’ ~ C is an étale double cover of a bi-elliptic curve C ~ E, then the
composition C’ - C - E is a degree 4 cover of E whose Galois group G
contains Z2. Assume that G = Z2 X Z2, denote by o~ the element of G such
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that C’ /  a &#x3E;= C and by crl (i = 1, 2) the remaining non trivial elements.
For i = 1, 2, set pi : C’ -+ Ci = C’ /  ai &#x3E; the corresponding projection and
notice that Ci is a smooth curve of genus gi, where 91 + g2 - g + 1. Then
there exists a cartesian diagram:

where, for i = 1, 2, oi : Ci 2013~ E is a double cover, and the branch loci Ai
of Oi, i = 1, 2, are disjoint. Moreover, cr = ~1 0 U2. The group G also acts
on Prym(C’, C). We denote by Pi the connected component containing the
origin of the fixed locus of the action of ai on Prym(C’, C) (i = 1, 2), and
we observe that (PI, P2) is a pair of complementary abelian subvarieties of
Prym (C’, C) of dimensions gl - 1 and g2 - 1, respectively.

LEMMA 6.8. Let (h : V -~ W, L) be a good generating pair of genus g &#x3E; 10.
Then the general curve C E I L is not bielliptic.

PROOF. By Corollary 6.3 we may assume that the pair is minimal. Suppose,
by contradiction, that the general curve CElLI admits an elliptic involution
C --~ E, which, as we saw, is unique up to automorphisms of E. Moreover,
by part (ii) of Theorem 6.7 and by Proposition 6.6, the Galois group G of the
composition C’ - C --~ E can be identified with Z2 x Z2. Theorem 6.7 also
ensures that there exists a cartesian diagram as in (3), with Ci of genus gi &#x3E; 1.
We wish to extend this construction to V.

In order to do this, we prove first that we may choose the involutions

{~1.~2} consistently on the curves C’ = h * C as C varies in In other words,
there is a double cover W -+ O of the open subset 4) of I C I parametrizing
smooth curves, such that its fibre at a general point C E (D is the pair of
involutions {orl, acting on C’ = h*C. We want to prove that T is the union
of two irreducible components both mapping birationally to 1&#x3E;, by showing that
there are two sections mapping the general point C E (D to ori, resp.
a2, namely that we can rationally distinguish Ql from a2.

Recall that, by Theorem 6. l, Prym (C’, C) is isomorphic, in a canonical
way, to the Albanese variety A of V. In this isomorphism, the connected com-
ponent Pi of the origin of the fixed locus of the action of cr, on Prym(C’, C)
maps to an abelian subvariety Bi of A (i = 1, 2). The pair (B1, B2) of comple-
mentary subvarieties can vary only in a discrete set, and therefore it is constant,
independent of C. This proves our claim about the reducibility of B11.

Next we claim that there are involutions ti on V inducing Ql on the general
C’, for i = 1, 2. Indeed, let .~ be a general pencil inside If x E V is a

general point, define ri (x) as where ai is the involution defined on the

unique curve C’ in A*(.F) passing through x. Since V is minimal, i1 extends

to an automorphism of V. Notice that ri is independent of F. Otherwise, as ,~’
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varies in a general rational 1-parameter family of pencils, the point ri (x) would
describe a rational curve, for x E V general; hence K(V) would be negative,
against Proposition 6.4.

We denote by Si the quotient surface V/ &#x3E;, by hi : V - Si the
projection onto the quotient and by Ci the image in Si of a general C’. The
singularities of Si and S2, if any, are A I points and - gi - 1. By
Proposition 4.4, if the curves Ci vary in moduli, 3, thus g =
91 + 92 + I  7, a contradiction. If the curves Ci do not vary in moduli,
then the Albanese image of Si is a curve by Proposition 4.2 and the inequality
gi  3 (i = 1, 2) holds by Proposition 4.3, since D

Now we are ready to prove the following basic result:

THEOREM 6.9. Let (h : V --~ W, L) be a good generating pair of genus g.
Then g  12~(V)~ 11.

PROOF. Suppose, by contradiction, that g &#x3E; 13. According to Proposition
6.6 and to Theorem 6.7, (i), we can assume that the general is bi-elliptic.
This, on the other hand, contradicts Lemma 6.8. 0

COROLLARY 6.10. Let (h : V 2013~ W, L) be a good generating pair of genus g.
Assume that, in addition, V is of general type. Then K 2  529.

PROOF. It follows by applying the index theorem to L and KW on W. D

A more precise statement is the following:
PROPOSITION 6.11. Let (h : V -~ W, L) be a good generating pair of genus g.

Then g  12 and:

(i) is bi-elliptic or trigonal, then g  9 and q ( V ) s 8;
(ii) if 10  g  12 then either the general curve C in I L is a smooth plane sextic

(and g = 10) or it is not bi-elliptic and has a base point free g4.
PROOF. The proof follows from Theorem 6.9, Theorem 6.7, and from the

following results:

(i) (Green-Lazarsfeld [GL]) Assume g &#x3E; 10. If the fibre of the Prym map Pg
is positive dimensional at the point of ~Zg corresponding to a double cover
C’ 2013~ C, then either C has a 94’ or it is a smooth plane curve of degree
six (and genus 10).

(ii) (Naranjo [Na2]) Assume g &#x3E; 10. Then the fibre of Pg over the point of
7Zg corresponding to a double cover of a trigonal curve C is finite. D

7. - Good generating pairs with h°(W, L) &#x3E; 3

This section is devoted to the proof of the following:
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THEOREM 7.1. Let (h : V -+ W, L) be a good generating pair such that L is
ample and ho(W, L) &#x3E; 3; then (h : V --* W, L) is one of the following :

(i) Example 3.1, and in this case

(ii) a blow-up ofweight 1 of case (i) above, and in this case ho(W, L) :

(iii) Example 3.3, and in this case

Theorem 7.1 will follow from a series of auxiliary results (Proposition 7.5
and Theorem 7.10), containing also some additional information on generating
pairs. We also make use of the following result, which is proven in Section 8
(it follows from Proposition 8.2 and 8.3).

PROPOSITION 7.2. If (h : V -~ W) 1

and h°(W, Z.) ~ 3, then it is obtained from Example 3.1 by a sequence of blow-ups,
at most one of which is essential, of weight 1.

We start by using Reider’s method to give an upper bound for L2 for most
generating pairs.

PROPOSITION 7.3. If (h : V -~ W, L) is a generating pair of degree 2 and
non-negative Kodaira dimension, then L2  4.

PROOF. Since L’~ = 2L2, it suffices to show that L’~  9. We assume that
L’2 &#x3E; 10 and we observe that, by the hypothesis, the linear system is
not birational on V. Indeed, if x E W is a general point and = 

then x2 are identified by I Kv + According to Reider’s theorem ([Re],
Theorem 1 and Corollary 2), there exists an effective divisor B = Bx passing
through xl and x2, such that L’B = 1 or 2 and B2  0. Since x is general we
must have B2 = 0 and, by standard arguments, we may assume that B moves in
a base point free pencil and L’ D &#x3E; 0 for each component of a general B. Since
the general curve C’ of IL’i is irreducible and meets the general curve Bx at the
points x 1 and x2, it follows that L’ B = 2. If the general B is reducible, then
B = ~1+~2. where B1, B2 are numerically equivalent irreducible curves. Then
L’ B¡ = 1 and V is covered by rational curves, contradicting the assumption
K ( V ) &#x3E; 0. So, L’ B = 2 and B is irreducible. Furthermore, the general fibre of
h is contained in some curve of the pencil described by Bx, as x varies in W.
This immediately implies that each curve of this pencil is invariant under the
involution L determined by h. On the other hand, IL’I cuts out on a general
curve B a g2 which induces on B the restriction of i. This means that the

image of B via h is a rational curve on W, which therefore has a pencil of
rational curves. But this contradicts K(W) &#x3E; 0. 0

LEMMA 7.4. Let (h : V --~ W, L) be a generating pair such that ho (W, L) &#x3E; 3.
Then there are the following possibilities:

and’ ’.

and ILl is base point free.
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PROOF. If h°(W, L) = r, then the restriction of the system ILl [ to a general
C is a linear system D ~ I of dimension r - 2 &#x3E; 0 and degree L2  4, according
to Proposition 7.3. We denote by I M I the moving part of D. If r = 3, then
L2 &#x3E; deg M &#x3E; 2, since C is not rational, and (i) is proven. If r &#x3E; 3, then
4 &#x3E; degM ~ 2dim)M) = 2(r - 2) ~ 4. Thus L2 = degM = r = 4 and
L I is base point free. 0

PROPOSITION 7.5. Let (h : V --+ W, L) be a good generating pair such that
h°(W, L) &#x3E; 3. The possible cases are:

(i) L2 = 4, L) = 3 and base point free. In particular, the general
C ElL is tetragonal.

(ii) h° (W, L) = 3 and either L2 = 3 or L2 = 4 and ILl has a simple base point.
In particular, the general C E I L is trigonal;

(iii) L2 = 4, h°(W, L) = 4, and the pair is obtained from Beauville’s Example 3.1
via inessential blow-ups.
PROOF. We denote by I D I the restriction of I L I to a general C of I L 1. As-

sume that we are in case (i) of Lemma 7.4: then (i) and (ii) follow by remarking
that the moving part of D ~ I has degree &#x3E; 2, since C is not hyperelliptic.

Assume that we are in case (ii) of Lemma 7.4. Then Clifford’s theorem
implies that g = 3, 1 D is the canonical system and C is embedded by I as a
smooth plane quartic. So the linear system ILl I maps the surface W birationally
onto a quartic Q C P3. The Kodaira dimension of W is non-negative by
Corollary 6.4 and thus K(W) = 0. Claim (iii) now follows by Proposition 7.2.

11

PROPOSITION 7.6. If (h : V 2013~ W, L) is a good generating pair of Kodaira
dimension 2 such that L 2 = 4 and h°(W, L) :!~ 3, then 10  g  12.

PROOF. The inequality g  12 follows from Theorem 6.9.
By Corollary 6.3, it follows that the pair is obtained from a minimal pair

by inessential blow-ups. Thus we may assume that the pair is minimal. Write
/~(~, L) = 2 + /, so that either 1=0 or I = 1.

Since W is of general type, one has 0  = 2g - 2 - L2 = 2g - 6,
hence g &#x3E; 4. For a general consider the exact sequence:

and notice that by the regularity of W and by
Riemann-Roch applied to C.

Assume first g  6. Then by Corollary 6.4, we have
Notice that h°(W, Kw - 2L) = 0, since

and L is nef. Thus Kw - L ~ I cuts out on C a

linear series of dimension &#x3E; 1 and of degree 2g - 10 s 2, contradicting the
assumption that C is not hyperelliptic.

Therefore we have g &#x3E; 7. Corollary 6.4 and the above exact sequence yield:
Let , Then
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cuts out on C a special linear series of and

degree 2g -10. By Clifford’s theorem and by the fact that C is not hyperelliptic,
we have namely Thus we either have I = 0,

or , If then and thus
and cuts out on C a special linear series of

dimension at least r - 1 ~ 1 and of degree 2g - 14 ~ 2, contradicting again
the assumption that C is not hyperelliptic.

If g = 9, then = 0 and thus 1, since L is nef
and big. Assume that Kw - 3 L ) = 1; then we have Kw - 36 = Kw ( Kw -
3L) &#x3E; 0, since W is of general type. On the other hand, the index theorem
gives 36. It follows that K2 = 36 and K "-num 3L. Therefore Kyy = 3L,
since Kw - 3L is effective. So r = h°(W, Kw - 2L) = h°(W, L) = 2 + 1, and
for 1 = 0~ this contradicts the above inequality r -~- l &#x3E; 3. If I = 1, consider the
exact sequence:

By Clifford’s theorem we have So, for k = 2, the sequence
(4) implies Using this and sequence (4) for k = 3, one gets

, and thus On the
other hand, Miyaoka-Yau’s inequality would give a

contradiction.
So we are left with the case If I = 0, then r &#x3E; 3

and the restriction of I to C is a g4, contradicting again the fact that
C is non-hyperelliptic of genus 9. Thus the case g = 9 and I = 0 does not
occur.

If I = 1, then we have r = 2, since for r &#x3E; 2 we can argue as above and

show that 2L I restricts to a g4 on C. So we have
where the last inequality follows again by

Clifford’s theorem. In turn, , On the other hand,
by Proposition 6.4, one has with equality holding iff 1
with C1 a curve of genus 2 and C2 a curve of genus 6. Thus
and the restriction map is surjective. Since the
canonical map of V factors through the map h : and 
the curve C2 is hyperelliptic, and the canonical map of V has degree 4. The
canonical image E of V (and of W) is Pl x Pl embedded via the system

The curves of I L I are mapped 2-to-l onto curves D of E with
D2 = 2. So the curves D are of type ( 1, 1 ), and thus rational. It follows that
the general curve of ILl is hyperelliptic, contradicting again the assumption that
the pair be good. D

COROLLARY 7.7. If (h : V 2013~ W, L) is a good generating pair such that L2 = 4
12.

PROOF. Proposition 7.2 implies that the Kodaira dimension of the pair is 2.
The thesis follows from Proposition 7.2. D
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The next result shows that case (i) of Proposition 7.5 does not occur for
L ample.

PROPOSITION 7.8. Let (h : V 2013~ W, L) be a good generating pair with
L) = 3, L2 = 4 and L ample; then ILl has one simple base point.

PROOF. First of all we remark that the assumption that L is ample, Corollary
6.3 and Proposition 7.3 imply that the pair is minimal. By Lemma 7.5 we only
have to exclude that I L I is base point free. So we assume that I L I has no base
points and we show that this leads to a contradiction. As usual we denote by
C a general curve of I L I and by C’ the inverse image of C via h; we denote
by 0 : tV 2013~ P2 the finite degree 4 morphism given by I L 1. Notice that 15 is

flat, since it is a projective morphism with finite fibres from a normal surface
to a smooth one. Our proof requires various steps.

STEP 1. The polarized Abelian variety Prym(C’, C) is not a Jacobian or a
product of Jacobians. By Theorem 4.10 of [B 1 ] and the assumption that C is
not hyperelliptic, if Prym(C’, C) is a Jacobian then one of the following holds:
(i) C is trigonal, (ii) C is bielliptic, (iii) g s 6. Case (iii) is impossible by
Corollary 7.6. Since C has a free 94’, case (i) implies g  6, and therefore it
is also excluded. Finally case (ii) is excluded by Lemma 6.8.

STEP 2. The curves of IL’I are 2-connected. Notice that the curves of
are 1-connected since is ample. Assume that D E I L’I is not 2-

connected, namely that D = A + B with A, B effective and A B = 1. Then
and , hence ~ &#x3E;

If, say, A2 = 0, then L’A = 1 and A is irreducible, since L’ is ample, and
rational, since ILI is base point free. This contradicts K ( V ) = 2, hence A2 andw w w w w

B2 are both positive. Since 8 we have
whereas the index theorem gives

STEP 3. The branch divisor Z of q5 in p2 is not a union of lines. Here we

need to consider the intersection number of Weil divisors on W. We recall that,
since the singularities of W are A I points, given Weil divisors A, B on W, the
intersection number A B is an element of ~Z, and it is an integer whenever A
or B is Cartier.

Assume that Z is a union of lines and let R be a line contained in Z.
Then Co = ~*(~) E ILI is of the form Co = m A + B, with 2  m  4 and
with A, B effective, Weil divisors such that A is irreducible and not contained
in B. We set so that Notice
that yields Assume first LA = 2.

Then one has B = 0, m = 2, and thus Co = 2A’. Recall that by Proposition
6.1 the abelian variety Prym(C’, C) is naturally isomorphic to the Albanese
variety of V and denote by a : V -+ Prym(C’, C) the Albanese map. If 8

is the principal polarization of Prym(C’, C), then by Welters criterion a*C’
is homologically equivalent to for every Thus a* A’
is homologically equivalent to and it follows that A’ is smooth

and Prym(C’, C) is isomorphic to the Jacobian of A’. This is impossible by
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Step 1, and therefore LA -L-- 1. The condition LA = 1 implies that m  3,
B is nonempty and A is smooth and irreducible. Assume that m = 3, and
let R 1 C Z be another line; write O*Rl 1 = 1 -I- B1, with 2  3, A 1
irreducible and not contained in The equality 1 = AIL = 3A 1 A -f- 
gives AA1 { - 0, = 1, and thus 1 = BL = + 2, a
contradiction. Thus, for every line R C Z, we have q5*R = 2A + B, with A
irreducible and not contained in B. In particular, Z is reduced. Notice also that
A B &#x3E; 0, since the curves of are 2-connected by Step 2, and thus A and B
have nonempty intersection. Let xo E A n B, let yo = q5 (xo), and let C be the
pull-back of a general line through yo; then C(2A -I- B) = L(2A -I- B) = 4 and
xo accounts at least for 3 intersections. Thus either consists of xo only,
or contains also a point xo that is not a branch point of 0; in either case xo is
not a simple ramification point of 0 and therefore Z is not smooth at xo. Thus
there is another line R, C Z that contains xo. Write Ci = 2Ai -I- B1.
From 1 = AL = 2AA1 + ABI 1 we see that either AAI 1 = 2 and ABI 1 = 0 or
AAI 1 = 0 and AB, = 1. On the other hand, A 1 contains xo and thus we have

A 1 B &#x3E; 0 and A 1 A &#x3E; 0. Thus we have a contradiction, and Z is not a union
of lines.

We can now consider an irreducible component Z’ of Z that is not a line
and a general tangent line R to Z’. The curve Co = is reduced, but
singular at some point x. It moves in a base point free continuous system on
W. Set = {x 1, x2 } and let Co = h * Co . Notice that the map h : Co -~ Co
is etale. Moreover Co is singular at xl and x2, and we can apply Theorem
3.2 from [ML]. Then we have Co = A’ -I- B’ with A’, B’ reduced and with no
common component, since Co is reduced as well as Co, and A’B’ = 2. Actually
A’ fl B’ = {jci, X2), which proves that A’ and B’ are smooth at xl and x2.

STEP 4. One has A’~ = B’~ = 2 hence 2A’ and 2B’ are numerically equivalent
to L’. Since A’ and B’ move without fixed components on V, we have A’~ &#x3E; 0
and B2 &#x3E; 0. Furthermore we have A 2+ Bf2 = 4 and L’ A’ - A’~ + 2 and
L’ B’ = B’~ + 2. Suppose A’~ = 0, hence L’ A’ = A’B’ = 2. We claim that in
this case A’ is irreducible: in fact, if A’ = A + A2, then A 2 , A2 &#x3E; 0, since
A I and A2 move, and thus A i = A2 = 0 and A -nun A2, A 1 B’ = A2B’ = 1,
contradicting the fact that the curves of IL’I are 2-connected. Thus the general
curve A’ is irreducible and moves in an irrational pencil .~4’ on V. The involution
i determined by h : V - W fixes Co, hence it maps A’ to an irreducible curve
A". If A’ = A", then there exists A C Co on W such that A’ = h * A, A 2 = 0,
L A = 1. Thus A is smooth rational and, since A’ is general, W is covered
by rational curves, contradicting K (W ) &#x3E; 0. So A" is contained in B’. The
curve A" also moves in an irrational pencil .A", and A’A" &#x3E; 2, since A’ and
A" both contain xl and X2- Write B = A" + D, Co - A’ + A" + D; since
CóA’ = L’A’ - 2, we get A’A" = 2 and DA’ = 0. Since D also moves on
V without fixed components, it consists of curves of A’, hence D2 = 0. Since
L’ is fixed by i, we have L’ A" - L’ A’ - 2, A~ = A~ = 0, and therefore:
2 = A" L’ = A" (A’ + A" -E- D) = 2 + A"D, A"D = 0. Thus D and A" are

numerically equivalent, but this contradicts A’A" = 2.
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Suppose that A’~ = 1. By Proposition 0.18 of [CCML] we deduce that
A’ is smooth irreducible and V is isomorphic to the symmetric product of A’.
The canonical maps of symmetric products are well known. Thus, the fact
that the canonical map of V is not birational, since it factors through h, tells
us that either 3 &#x3E; P,, (A’) = q(V) - g - 1 or A’ is hyperelliptic of genus
p,, (A’) &#x3E; 4. The former case is impossible by Corollary 7.7. The latter case
is also impossible because I L’I cuts out on A’ a base point free Hence we
are left with the only possibility A’~ &#x3E; 2 and, similarly, B’~ &#x3E; 2, which implies
the assertion.

STEP 5. The divisors A’ and B’ are exchanged by i. The divisor i (A’) = A"
is contained in Co and is numerically equivalent to A’, since 2A’ and 2A" are
both numerically equivalent to L’. If A’ = A", then there exists A on W such
that h*A = A’, A2 = 1. We apply Proposition 0.18 of [CCML] to the pull-back
of A to the minimal desingularization W of W and deduce that W is birational
to the symmetric product of A, contradicting q(W) = 0. If A’ is irreducible,
this is enough to prove that A" = B’. So assume that A’ is reducible and write
A’ = N + M, with N, M effective nonzero. Then 2 = A’2 = A’N + A’M, hence
A’N = A’M = 1 since A, as well as L’, is ample. This proves that N, M are
both irreducible. Since they move on V, we have N2 &#x3E; 0 and M2 &#x3E; 0 and the
index theorem yields N2 = M2 = 0, NM = 1 and N and M both describe base
point free pencils on V. Since A’ ~ A", B’ and A" have at least a common
component. Thus we may write B’ = M’ + N’, where M’ is equal to, say,

t(M). We have M’B’ - MA’ = 1, M,2 = M2 = 0, hence B’N’ - 1 and N’
is irreducible by the ampleness of B’. If = N’, then the claim is proven.
So assume N’. Then we have = N and there exists No C W such
that h*No = N. It follows that LNo = 1, and thus No is a rational curve. This
is impossible, since otherwise W would be covered by rational curves. Thus

= N’ and i exchanges A’ and B’.
STEP 6. Conclusion of the proof. We use the notation introduced in Step 1.

By Step 5, if the base point of the Albanese map a : V - Prym(C’, C) is
invariant for i, then a* B’ - (-1 )*a*A’, since a is equivariant with respect to I
on V and multiplication by -1 on Prym (C’, C). Thus a. (C’O) = a*(A’)+a*(B’)
and represent the same cohomology class. By Welters criterion, this

implies that a*A’ is equivalent in cohomology ng-2 S. By the criterion
of Matsusaka-Ran, Prym(C’C) is isomorphic as a principally polarized abelian
variety either to a Jacobian or to a product of Jacobians. This contradicts Step
1, and the proof is complete. 11

REMARK 7.9. The same ideas we exploited in the proof of the previous
proposition would also yield the following result: in case (ii) of Proposition 7.5,
the generating pair is either the pair of the Example 3.3 or it is obtained from
Beauville’s Example 3.1, with a blow-up procedure. We will next prove the same
theorem with a different technique, which also seems illuminating to us. Hence
we give here only an idea of its proof with the present methods.
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Assume for simplicity L2 _ 3. Then one considers the finite, degree 3
Map o : W -~ p2 determined by I L 1. First one shows that no line is in the
branch divisor of 0. Then one proves the existence of a 1-dimensional family of
reduced curves Co E ~ which split as Co = A+B, with A B = 2. This implies
that A2 = B2 = 1. At this point one uses Proposition 0.18 from [CCML] and
proves that V is birational to the symmetric product of A = B. The fact that
the canonical map of V is not birational tells us that either g  3, which leads
to the two cases which actually occur, or A is hyperelliptic of genus g &#x3E; 4.
But this not possible because, via h, A is birational to the image Co of Co,
and Co has a base point free g3.

The rest of this section is devoted to the analysis of case (ii) of Proposition
7.5 under the hypothesis that L be ample. We prove the following result:

THEOREM 7.10. Let (h : V - W, L) be a good generating pair of genus g
such that L is ample and ho(W, L) = 3. Then L2 = 3 and:

(i) either there exists a smooth plane quartic r such that (h : V - W, L) is
constructed from r as explained in Example 3.3;

(ii) or (h : V -~ W, L) is obtained from Beauville’s Example 3.1 via a simple
blow-up of weight 1.

By Propositions 7.5 and 7.8, a pair satisfying the assumption of Theorem
7.10 either has L2 = 3 and ]L] I is base point free or has L2 = 4 and ILI has
a simple base point. So, up to a simple blow up of the pair, we may assume
that L 2 = 3 and I L I is base point free. Thus for the rest of the section we
make the following assumption:

ASSUMPTION 7.11. (h : V ---&#x3E; W, L) is a good generating pair of genus g such
that L is ample, ho(W, L) = 3, L2 = 3 and ILl is base point free.

If Assumption 7.11 holds, then ILI defines a finite morphism f : W -~ P2
of degree 3. The restriction of f to the general curve CElLI I exhibits C as
a triple cover of P 1 showing that C is trigonal. Given a curve C of genus g,
a degree 3 map f : C ~ P~, and an unramified double cover C’ -~ C,
the trigonal construction ([Rec], cf. [B3]) yields a degree 4 map 0 D ~ P’,
where D is a smooth curve of genus g - 1 and q5 has no double fibre, such that
the Jacobian of D and Prym (C’, C) are isomorphic as principally polarized
abelian varieties. We briefly recall the trigonal construction. One considers the
induced morphism n ~3~ : C’~3~ -~ C(3) between the symmetric products of C’
and C. The curve D = 1f(3)-1 (gj ) has a natural morphism P ; it turns out
that D -~ PI splits as the disjoint union of two isomorphic smooth connected
degree 4 covers oi : Di -~ P 1, i = 1, 2, and one can set D = Di, 

The trigonal construction is a one-to-one correspondence, whose inverse is
the Recillas’ construction ([Rec], cf. [BL 1 ] page 391). Given a smooth genus
g - 1 curve D with a degree 4 morphism w : D -~ Pl without double fibres,
one defines a curve C’ C D ~2~ by setting:

1 -E- p2 E + p2 -I- p3 + P4 is a fibre of cp for some p3 , p4 ~ D}.
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The curve C’ is smooth and connected of genus 2g - 1, and has a natural
free involution which maps an element PI + p2 (in a fibre of cp) to the

complementary element p3 + p4. If 1f : C’ ~ C = C’/  cr &#x3E; denotes the
natural projection, it is easy to check that C is trigonal.

Recillas’ correspondence has been generalized in [Ca2], where the author
introduces the discriminant of a degree 4 Gorenstein cover (p : Z -+ Y, which is
a degree 3 morphism f : 0 (Z) --~ Y. We recall that a cover cp : Z ~ Y is said
to be a Gorenstein cover if the scheme theoretic fibre is Gorenstein over

k(y) for every y E Y (cf. [Cal]). If Y = P2, then the discriminant construction
gives a one-to-one correspondence between the following objects:

(A) normal Gorenstein covers f : W 2013~ p2 of degree 3 such that the singu-
larities of W are at most RDP’s and such that there exists a double cover
h : V ~ W branched exactly over the singularities of W;

(B) degree 4 Gorenstein covers cp : Z - p2 with Z smooth such that:
(i) for every y E p2 the Zariski tangent space to the fibre has

dimension  1 at each point.
(ii) the set Ro C p2 of points y such that the fibre is isomorphic

either to or to + 1, s 2 ) is finite.

The properties of this correspondence ensure that the branch loci of the as-
sociated covers w and f = coincide as divisor of P2. Moreover, the

singularities of W occur precisely over the points y E Ro. Notice that, in the
case we are interested in, the singular locus of W is not empty (see the proof
of Theorem 6.1), and therefore Ro is not empty. Finally, fibrewise, Zy is the
base locus of a pencil of conics whose discriminant is Wy.

Assumption 7.11 allows us to apply the trigonal contruction to the present
case. Thus, given a good generating pair (h : V --+ W, L) as in 7.11, there
exists a unique degree 4 Gorenstein cover cp : Z -+ p2 as in (B) such that the
morphism f : W --~ p2 associated to the system L ~ I is obtained from w via
the trigonal construction. We denote by I M I the pull-back to Z of the linear
system of lines in P2.

LEMMA 7.12. The smooth elements of IMI are isomorphic curves of genus
g-1 &#x3E;2.

PROOF. Let H be a general line in P2, let D = let C = 

and let C’ -~ C be the unramified cover determined by h. By Theorem 6.1,
the Prym variety P = Prym(C’, C) is independent of H. On the other hand,
C’ -~ C is obtained from D via the trigonal construction, and thus P and the
Jacobian of D are isomorphic as p.p.a.v.’s. In particular, since the genus of

I is at least 3, the genus of | M |is at least 2. By the global Torelli theorem
for curves, the isomorphism class of D is also independent of H. This implies
that the natural map from the open set of smooth curves of I M I to the moduli

space of curves is constant. 11

LEMMA 7.13. Let y E p2 and let My ~ I C I M be the pull-back on Z of the
pencil of lines through y. Then the general curve of I My is smooth.
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PROOF. The base scheme of The statement follows by
Bertini’s theorem since V : Z --~ p2 satisfies condition (i) of (B). D

LEMMA 7.14. Z is a minimal geometrically ruled surface, and the smooth
elements of 1M I are sections of the ruling.

PROOF. Denote by R c Z and by B C p2 the ramification divisor and the
branch divisor of cpo By condition (B), the ramification order of cp along each
component of R is  3, each component of R is mapped birationally onto its
image and different components of R are mapped to different components of
B. Let (Mt)tEpi be a general pencil contained in and assume that Mo is
singular. By applying stable reduction, one can replace Mo by a stable curve
Mo. Lemma 7.12 implies that Mo is isomorphic to Mr, for t general.

Assume that there exists a component 8 of R such that A = ~p (O) is not
a line. If V is ramified of order 3 along O, then the inverse image Mo of a
generic line tangent to A has an ordinary cusp over the tangency point and
it is smooth elsewhere. It follows that Mo is irreducible. Since pa(M) &#x3E; 1,
Mo is not rational; the special fibre of the stable reduction of a general pencil
containing Mo is the union of the normalization Mo of Mo and of a smooth
elliptic curve meeting Mo at one point, but this is impossible by the remark
above. If w is simply ramified along O, take (Mt ) to be the pull-back of a
pencil of lines such that Mo is the pull-back of a line simply tangent to A at
a point yo and meeting B transversely elsewhere. Then Mo has an ordinary
node at a point xo such that cp(xo) = yo and no other singularities. By the
remarks above, the curve Mo is not semistable; therefore we have Mo = 
where F is a smooth rational curve, Mo is isomorphic to Mr for t general, and
Mo F = 1. We have: 4 = M2 = + F), 3 (since Mo is not
hyperelliptic), and thus 3 and F2 = 0. Noticing that yo is a general
point of A, it follows that Z is ruled. Since the system IMI ] is ample, MF = 1
and, by Lemma 7.12, the curves of are not rational, Z is geometrically
ruled and minimal.

So we have proven that either Z is as claimed or all the components of
B are lines. Let A C B be a line; by condition (B), it is not possible that
f*A = 2A. Thus cp* 8 = mA + B, with m  3, A irreducible, B nonempty
and A not contained in B. Then one can argue as in Step 3 of the proof of
Proposition 7.6 and prove that B is not a union of lines. 0

PROPOSITION 7.15. Let B be the base curve of the ruled surface Z of Lemma
7.14 and let p : Z - B be the projection. Then there exists a birational morphism
s : B - r C p2 such that:

i) r is either a smooth quartic or a quartic with a double point;
and

PROOF. According to Lemma 7.14 there exists a rank 2 bundle E on B
such that Z = P(E) and = E (in particular, deg (det E ) = 4). Let D
be a smooth curve in I M 1, which we may identify with B via the map plD.
Then is identified with det E. By condition (B), (ii), if D is general, then
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CPID has no multiple fibre, while if contains a point of Ro (which, as we
know, is not empty) then CPID has at least one multiple fibre. So the restriction
of I M to D is not a complete system, i.e. det E) = 3. Let s : B - P2 be
the morphism given by the linear system I det E I and let r = s (B). If r were
a conic, then the map cp I D would have two multiple fibres for every smooth
D of IMI, contradicting condition (B). So r is a quartic and s is birational.
Since B has genus g - 1 &#x3E; 2, it follows that r is either smooth or it has one
double point and det E = 

Let U C H° (Z, M) be the subspace such that P(U) = If
we identify U with a subspace of H°(B, E), then i) the natural sheaf map

surjective (IMI I is base-point free). Moreover, ii) the map
/B2U --+ is an isomorphism (this follows from the discussion
above, since we have shown that IMI I does not restrict to the same 941 on all
the curves of 

If we choose a basis for U, then we have a short exact sequence:

Let the inclusion 01 be given by where si E

i = 0, 1, 2, and let S be the subspace of spanned
by s2. Notice that dim S &#x3E; 2, since E is torsion free. If dim S = 2, then
it is clear that E = OB ED OB(s*Kr) and condition ii) above is not satisfied.
Thus SO, Sl, S2 are independent and sequence (5) is the pull-back via the map
s of the twisted Euler sequence:

Now we are ready to finish the proof of Theorem 7.10:

PROPOSITION 7.16. Notation as in Proposition 7.15. The surface Z is the
normalization of the incidence surface Y = { ( p, I) E r x E l }, and the
maps p : Z - B and q; : Z --* P2 are induced by the projections of Y onto rand
(P2 ) * respectively.

Let f : W - p2 be the triple cover obtained from q; : Z -&#x3E;. p2 via the
discriminant contruction, h : V - W the corresponding double cover and L =

f*Op2 (1). Then:

(i) if r is smooth, then V = Sym2(r), and (h : V - W, L) is as in Example 3.3;
(ii) if r has a double point, write p + q for the only effective divisor linearly

equivalent to s* Kr 0 KÎ1. Then:
(a) V is the blow-up of at p + q, namely it is the blow-up of the

Jacobian J = J (B) = Pi c2 (B) of B at the points corresponding to KB
and p + q;

(b) W is obtained as the quotient of V by the involution which is induced on V
by the birational involution on Sym2 (B) which associates to the general divisor
x -I- y the divisor I s * Kr - x - Notice that W is the blow-up of the Kummer
surface Kum (J) at a smooth point;
(c) the generating pair (h : V -~ W, L) is obtained from Example 3.1 by a

simple blow-up of weight 1.
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PROOF. We keep the notation of the proof of Proposition 7.15. Assume first
r is smooth. Then the first assertion immediately follows by the well known
fact that P(Tp2 (-1 )) is the incidence correspondence inside p2 x (P2)*. Having
in mind Recillas’ construction described at the beginning of this section, also
part i) immediately follows. The case r singular is completely analogous and
can be dealt with in the same way. We leave the details to the reader. 0

8. - The other cases

In this section we collect some information on pairs that are not good or
not of Kodaira dimension 2. We start by classifying non good degree 2 pairs
with L2 = 4. (We recall that by Propositions 5.5 and 7.3 such a pair always
has L2  4.)

PROPOSITION 8.1. Let (h : V 2013~ W, L) be a non good generating pair ofdegree
2 with L2 = 4; then there exist smooth curves Ci, i - 1, 2, of genus gi &#x3E; 0 and
double covers Ci ~ PI such that (h : V - W, L) is obtained by a sequence
of inessential blow-ups from a generating pair constructedfromoi : Ci - Pl as in
Example 3.5.

PROOF. By Proposition 6.3 we can assume that the pair is minimal.
Let CElLI be general and let C’ = h*C. By [Mu], p. 346, we see that the

Galois group G of the composition of C’ -~ C with the hyperelliptic involution
on C can be identified with Z2 x Z2. As in the proof of Lemma 6.8, denote
by or the element of G such that C’/  or &#x3E;= C and by ai (i = 1, 2) the
remaining non trivial elements. For i = 1, 2, set pi : C’ ~ Ci = C’/  ai &#x3E;

the corresponding projection and notice that Ci is a smooth curve of genus gi,
where 91 + g2 = g - 1 and there exists a cartesian diagram:

where, for i = 1, 2, q5i : Ci ~ PI is a double cover. In the present case there is
an isomorphism Prym(C’, C) = J(CI) x J(C2) as principally polarized abelian
varieties, and A = Alb(V) is also isomorphic to Prym(C’, C) by Theorem
6.1. We can assume that g2 and the condition that C’ is not hyperelliptic
ensures that gl &#x3E; 0. Notice the existence of commutative diagrams:
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where C’ ---&#x3E; Prym(C’, C) is the Abel-Prym map, Ci ---&#x3E; J(Ci) is the Abel-
Jacobi map and pi : Prym(C’, C) = J(CI) x J(C2) --&#x3E; J(Ci) is the i -th

projection, i = 1, 2.
As in the proof of Lemma 6.8, one shows that there exist involutions ri, r2

on V that act on C’ as respectively, cr2. Clearly, the involution i associated
to h is equal to zl o r2. We denote by Si the quotient surface V/  ri &#x3E;,

by hi : V -~ Si the projection onto the quotient and by Ci the image in Si
of a general C’. The singularities of Sl and S2, if any, are A I points and
q(Si) - gi. More precisely, we claim that J(Ci) is the Albanese variety of
Si. Indeed, the map V - J (CI ) obtained by composing the Albanese map
of V with the projection onto Ci is equivariant with respect to ri, provided
that the base point of the Albanese map is invariant for ri. Thus we have an
induced map Si --~ J(Ci) and thus the Albanese variety Ai of Si is isogenous
to J(Ci). To show that this isogeny is actually an isomorphism, it is enough
to remark that the map Hi (V, Z) - Z) is surjective, since it is the
composition of HI (V, Z) -~ Hl (A, Z), that is an isomorphism up to torsion,
and of Hl (A, Z) - Hl (J (Ci ), Z) which is surjective. On the other hand,

Hi(J(Ci), Z) is also the composition of 
and HI(J(Ci), Z), hence the latter map is surjective and Ai is

isomorphic to J (Ci).
We claim that Si is birational to Pl x Ci. Indeed, by Proposition 4.3 the

curve C1 does not vary in moduli and the Albanese image of Si is a curve.

By Proposition 4.4, this concludes the proof of the claim. In particular the
Albanese image of Si is the curve Ci.

Composing hi with the Albanese map Si - Ci, we get morphisms fi :
V -~ Ci, i = 1, 2. Denote by F1 a fibre of fi. The Index theorem applied to
Fi + F2 and L’ gives ’, namely J
If Lj = 4, then Fl F2 = 1 and L’ is numerically equivalent to 2Fi +2F2. Thus

is birational, and therefore it is an isomorphism
since V is minimal. One has: 1’1 = ai x I d, r2 = 1 d x (72, L = cri x a2 and the
curves of I L’I are invariant for il, i2 and it is easy to see that (h : V - W, L)
is precisely as in Example 3.5. 0

Next we classify pairs of degree 2 and Kodaira dimension 0.

PROPOSITION 8.2. Let (h : V - W, L) be a generating pair of degree 2 and
genus g; if the Kodaira dimension of the pair is 0, then it can be obtained from
Example 3.1 (Beauville’s example) by a sequence of simple blow-ups, only three of
which at most essential, of weight 1.

PROOF. Assume that the pair has Kodaira dimension 0 and is minimal. By
Proposition 5.4 and Corollary 6.4, we see that g = 3 and the irregularity of V
is 2, hence V is an abelian surface. Since q(W) = 0 by Proposition 5.4, W is
the Kummer surface of V. By Theorem 6.1, if I is general then V is
isomorphic to Prym(C’, C) and thus, in particular, it is principally polarized.
In addition, by Welters criterion, C’ is a divisor of type (2, 2) and thus we
have precisely Example 3.1. By Corollary 6.3, this implies that if the pair is
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not minimal, then it is obtained from Example 3.1 by a sequence of blow-ups
of weight 0 or 1. Since L is big by assumption and Example 3.1 has L2 = 4,
there are at most 3 blow-ups of weight 1 in the sequence. D

The next result is an almost complete classification of pairs of degree 2
and Kodaira dimension 1.

PROPOSITION 8.3. Let (h : V --~ W, L) be a generating pair of degree 2 and
genus g with Kodaira dimension 1. Then there exist an elliptic curve E and an
hyperelliptic curve B of genus g - 2 &#x3E; 2 such that (h : V - W, L) is obtained by
a sequence of simple blow-ups of degree 0 or 1 from one of the following :

(a) the pair constructed from E and B as in Example 3.5. In this case the pair is
not good;

(b) a pair (ho : 1 Vo - Wo, Lo) such that g = 4 (and thus B has genus 2). In this
case L2 = 2, and, if the pair is good, then ho (W, L) = 2.
PROOF. By Corollary 6.3 we may assume that (h : V 2013~ W, L) is minimal.

Let p : V -- B be the elliptic fibration. The involution i determined by h on V
preserves the fibration V 2013&#x3E; E, and, since the quotient of V by i is regular, it
acts on B as an involution j with rational quotient. Since the Albanese image
of V is a surface, E is isogenous to the kernel of Alb(V ) -~ J(B), hence
p has constant moduli. By [Se], Section 1, V is a free quotient of a product
E x C and, in particular, = Notice that B has genus g - 2 &#x3E; 2,
since K ( V ) = 1.

Denote by F the general fibre of the pencil p 1 : W - P = B /  j &#x3E; ; F

is isomorphic to E and PI has 2g - 2 double fibres, each containing 4 nodes
of W. Now, with the usual notation, we take I a general curve and
C’ = h*C. Note that CF is even, since PI has double fibres and the general
C contains no singular point of W. So we set C F = 21. The system I is

equal to (g - 3) F ~, and thus the adjunction formula on V gives:

If I = 1, then we have C’~ = 8, namely L2 = 4, and pl restricts to a g2 on C,
so that C is hyperelliptic and the pair is not good. Thus Proposition 8.1 implies
that we are in case (a). Then we have 0  C’2 = 4[g ( 1 - 1) + 31 - 1 ], which
leaves us with the only possibility 1 = 2, g = 4, C’~ = 4, and therefore C2 = 2 and
this is case (b). If the pair is good, then h°(W, L) =2 by Proposition 7.5. D
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