
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

DORIN BUCUR

NICOLAS VARCHON
Boundary variation for a Neumann problem
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 29,
no 4 (2000), p. 807-821
<http://www.numdam.org/item?id=ASNSP_2000_4_29_4_807_0>

© Scuola Normale Superiore, Pisa, 2000, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_2000_4_29_4_807_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Boundary Variation for a Neumann Problem

DORIN BUCUR - NICOLAS VARCHON

Abstract. We study the stability of the solution of a two dimensional elliptic
problem with Neumann boundary conditions, for geometric domain perturbations
in the Hausdorff topology. We prove that the solution is stable if two conditions
are satisfied: the number of the connected components of the complement of the
variable domain is uniformly bounded and the Lebesgue measure is stable.

Mathematics Subject Classification (2000): 35J20 (primary), 35B20 (secondary).

1. - Introduction

Given a ball B C R 2 and f E L~(B), for every open set S2 c B we denote
by UQ the weak variational solution of

Denoting Eg the extension by zero of u ~ to an element of L 2(B), we study
the continuity of the mapping Q ...-+ uQ E L2(B), if the family of domains is
endowed with the Hausdorff complementary topology (see [8] and Section 2
for the exact definition).

Even if this topology does not have much in common with problem (1),
there are two main reasons to use it: the family of all open subsets of B is

compact, and the family of admissible perturbations is quite large; in particular,
it contains a large class of non-smooth perturbations which can change the
topology of the domain. Of course, a simple counter example proves that

without any constraint the continuity of the mapping Q H Eg E L2 ( B ) does
not hold in this topology (see for example [10]). The Hausdorff topology is also
used to describe the behavior of the solution of a Dirichlet problem associated
to the Laplace operator in terms of the geometric domain variation. We refer
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to the paper of Sverak [21 ] where the 2-dimensional case is treated, and to [8]
for an extension in N-dimensions.

When dealing with moving boundaries, is more difficult to handle the
Neumann boundary conditions than the Dirichlet conditions, since, in general,
there do not exist extension operators if the boundaries are not smooth (as
for example domains with cracks). This is one reason for which a suitable
relaxation result for the Neumann problem is difficult to obtain in the general
frame. We refer to the paper of Chenais [12], where the continuity of the
mapping S2 H ün E L2(B) is obtained, provided that all Qn satisfy a uniform
geometric condition (called uniform cone condition). The proof is based on the
existence of extension operators with uniform norms, which is a consequence
of the geometric constraints.

By means of representation theorems and r-convergence tools, in [13] is
found the equation satisfied by the weak limit of a sequence of solutions of
Neumann problems for domains having the boundary converging in the Haus-
dorff sense to some set contained in a smooth, a priori given, manifold. In [14],
[18] the authors study the limit of a sequence of solutions for a a periodical
structure by homogenization techniques. We also refer to [2], [3], [17] for sev-
eral results of relaxation and for description of some non-local effects. We refer
to [7] for a stability result obtained under some suitable capacitary constraints
on the moving boundary and under the hypothesis that the moving boundary
lies in a fixed smooth manifold.

The departure point for our paper is the result of Chambolle and Doveri [10].
There is proved the following two dimensional result: if S2n converges in the
Hausdorff complementary topology (simply denoted HI) to some S2 such that
the number of connected components of and the length of the boundaries
1í1(aQn) are uniformly bounded, then converges to ün. The condition that
the H1-measure of the boundary has to be finite, along with the connectivity
assumption, might be seen as a regularity assumption on 8Qn through the
representation theorem of a continuum.

In this paper, we find a necessary and sufficient condition for the con-

tinuity of the mapping Q - ün E L2(B), for a sequence converging in the
Hausdorff complementary topology, and having the number of the connected
components of the complementaries uniformly bounded. From this point of
view, this result might be seen as a "dual" of the the result of Sverak. More
precisely, we prove that if S2n converges in the Hausdorff complementary topol-
ogy to S2 such that the number of connected components of the complemen-
taries is uniformly bounded, then for every f E L2(B) one has üCn - ün
if and only if lS"2nl -~ ~ S2 ~ , where [ . j I denotes the Lebesgue measure. The

key argument is based on a topological property of the H-convergence in
relation with the capacity. It can be easily seen that if the number of con-
nected components of and the length of the boundaries are uni-

formly bounded, then the number of connected components of Ql is uniformly
bounded and the Lebesgue measure is stable for the Hausdorff complementary
convergence.
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We apply this result to prove existence of an optimal domain which min-
imizes a shape functional depending on ug. Using the density perimeter [9],
we identify some compact classes for the HC-topology with the property that if

Hc
S2n then ---&#x3E; I Q I. Existence results were already been given for the
minimization of energy type functionals like, for example, the Mumford-Shah
functional. Using the results of this paper, we can prove existence of a solution
for a larger class of functionals which are not necessarily of energy type, hence
not "min-min" problems. For example, given g E L 2 (B) we can prove existence
of an optimal domain which minimizes the functional

where UQ is the solution of problem ( 1 ), ~ (S2~ ) denotes the number of the
connected components of JR2 B ~2, and P denotes the density perimeter (see the
exact definition in the last section).

2. - General considerations

In this section are recalled the main notations and tools used in the paper.
Let us denote by B = Bo, R the ball centered in the origin of radius R in
The family of open subsets of B is denoted O(B) and is endowed with

the Hausdorff complementary topology [8] given by the metric

where

is the Hausdorff distance between two closed sets. The classical distance be-
tween two sets of R 2 is denoted by d and given by

For every / = N, we set 01(B) = {S2 E O(B) : ~(SZ~)  l {, where is the
number of connected components of IIg2 B SZ.

It is said that Qn converges in the sense of the measure to Q, and written

if the characteristic functions converge strongly in L 1, i.e.
I we denote the Lebesgue measure in R2.

Recall that and are compact in the HC-topology. Moreover,

if Qn c S2 then a.e. lim infn-oo x03A9n and limn-co IQ B S2n I = o. If
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:hen for any K there exists such that Vn &#x3E; n K we
have K c and for every x E there exists xn such that xn ~ x.

An open set S2 E O(B) is simply connected, if B B Q is connected, i.e.
S2 E C~1 (B).

DEFINITION 2.1. Let xo E S2 be fixed and S2 open connected and

simply connected subsets of B such that Vn a n(xo), Xo E S2n . It is said that

Qn converges to S2 in the sense of the kernel with respect to xo if
~ For every x E Q, there exists a neighborhood U of x such that for every

n &#x3E; n(U) we have U c S2n.
~ For every x E there exists xn E such that xn - x.

Let D be the unit disk of and gn : ~D --~ On, 9 D -* SZn be the
conformal mappings such that gn (0) = = xo, g’(0) &#x3E; 0, g’ (0) &#x3E; 0. Fol-

lowing [19], gn converges to g locally uniformly on D if Qn converges in the
sense of the kernel to S2 with respect to xo.

If Qn and S2 are connected and simply connected and Qn converges in HI
to S2, then Qn converges in the sense of kernel to S2 for every xo E S2. The
following property of the H’ convergence can be easily proven.

PROPOSITION 2.2. If 1 are two sequences in O(B) such that

for every n and ; 1. and then S2n U Q2n n

converges in.

The weak solution of problem (1) is the unique function u ~ E 

satisfying

In order to compare the solution of problem (1) on two different domains,
all functions of are extended by zero to elements of L 2 ( B ) as well
as their gradients. Hence, for every u E we denote u an element of

L 2(B), defined as ü(x) = u(x) if x E Q and ü(x) = 0 if x E B B S2. The

gradient of u is extended in the same way to an element of L 2 ( B R~). We
write Vu(x) if x E Q and Vu(x) = 0 if x E B B S2. In this way,
H 1 (0) can be seen as a closed subspace in L2 (B) x L2 (B, JR2).

Given a sequence of elements in O(B), it is said that 

converges in the sense of Mosco to H1(Q) if
Ml ) For E H1(Q) there exists a sequence 0,, E such that ~n

converges strongly in L2(B) to $ and converges strongly in JR2)
to V4&#x3E;;

M2) For every sequence k H ~k E such that (O~k, is weakly
convergent in L2(B) x L2(B, JR2) to (u, VI, V2) we have that (u, VI, V2) = 0
a.e. B B Q and Vu = (VI, v2) in S2, this equality being understood in the
sense of distributions.
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In order to simplify notations, for un E and u E H1(Q), we write

un ~ u instead of (ün, 
The capacity of a set E c R2 is defined by

where UE is the class of all functions u E such that u &#x3E; 1 a.e. in a

neighborhood of E. We say that a property p(x) holds quasi everywhere on E
(shortly q.e. on E) if the set of all points X E E for which p(x) does not hold
has capacity zero. We refer to [16] for further details concerning capacity.

LEMMA 2.3. Let and be two sequences such that for
all n E N, S2n C SZn and such that limn_co Cap(Qn B Qn) = 0. If the first Mosco
condition holds for the Sobolev spaces associated to and Q, then it also
holds for the Sobolev spaces associated to and Q.

PROOF. Let us suppose in a first step that u E n M =

Let on E such that ~n ~ u. Using the sequence 
we will construct a sequence {un E such that un -o u. Let vn -
- (M V On) A M. Obviously, vn belongs to n u.

There exists a function wn E such that 0  1, wn = 1 a.e. on

a neighborhood of and
We define for x E S2n and for .
It is easy to verify that un and that i

for x E Qn and Vun (x) = 0 for
Let us prove that u. We have

On the other side

Since is dense in the first Mosco condition holds. 0

3. - Continuity with respect to the geometric domain variation

The main result of the paper can be formulated as follows.
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HC
THEOREM 3. l. Let I E N be fixed, and Qn, S2 E 01 (B) be such that S2n - S2.

Then for every f E L 2 ( B ) we have uQ,, if and only if lQn I --+ Q [.
The proof of this theorem is divided in three steps. In the first step we

assume that all the open sets of the sequence Qn and the limit set Q are
connected and simply connected and we use conformal mappings for proving
the convergence in the sense of Mosco of the associated Sobolev spaces. In the
second step, we assume only Qn to be connected and simply connected, while
S2 is arbitrary. In this step, by a geometrical lemma and several arguments
relating the convergence of domains to the capacity, we reduce the problem
to the first case. In the last step, by a localization procedure, we recover the
theorem in the general case.

The convergence in the sense of Mosco of the Sobolev spaces is the main
tool we use to obtain continuity. The relation between the continuity with respect
to the geometric domain variation for problem (1) and the convergence in the
sense of Mosco of the Sobolev spaces is given in the following proposition,
which we prove only for the sake of completeness.

PROPOSITION 3.2. Let S2n, S2 E such that converges in the sense

of Mosco to H1 (S2). Then for every f E L2(B) we have that ug,, - ug.
PROOF. For the simplicity of the notation, we set Un = and u = u,2.

Taking un as test function in equation (1) on Qn, by the Cauchy-Schwartz
inequality we obtain that are uniformly bounded in L2(B, JR3). Hence,
there exists a subsequence (still denoted with the same index) which weakly
converges to (v, vl , V2) in L2 (B, JR3). From the second Mosco condition we

get that (v, v2 ) = 0 a.e. in QC and that Vu = v2 ) on Q in the sense of
distributions. Hence vp E H 1 (0). In order to prove that v = u it is sufficient to
verify that v satisfies the equation on Q. Let us consider an element q, E H 1 (S2) .
From the first Mosco condition, there exists q5n E such that on -+ 0.
Writing (2) on Qn with q5n as test function, and extending the integrals by zero
on B B Qn we have

Making n - oo we get

hence v is solution for (1) on Q. Consequently we can write v = M.
In order to prove the strong convergence, we only remark that

From the uniqueness of the solution on Q we get that the whole sequence
converges strongly to u in the sense un ~ u. D
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REMARK 3.3. Given and in O(B) such that for every f E L2(B)
we have ug, it is not clear if converges in the sense of Mosco
to H (Q). If Qn converges in HC to Q, then the converse of Proposition 3.2
follows immediately.

Remark also that if S2n converges in HI to Q, then Qn converges in measure
to S2 if and only if I Qn I -~ This is an easy consequence of the lower
semi continuity of the measure in the H’-topology. If S2n converges in both
H’ and in the sense of measure to Q, then the second Mosco condition is
satisfied. Indeed, let glk E such that (Ok, is weakly convergent
in L2(B) x L2(B, to (u, VI, V2). From the convergence in measure of S2nk
to S2 we get that (u, v 1, v2 ) = 0 a.e. B B S2. On the other side from the

HI-convergence, for every V E Co’(0), there exists k E N large enough such
that w E Then we can write

Making k -~ oo and using the weak convergences, we find

i.e. Vu = (VI, v2) in S2.
The first Mosco condition does not hold, in general, for a sequence of

domains converging in HI and in measure. This is the reason for which
the constraint on the number of connected components has to be imposed in
Theorem 3.1.

3.1. - Connected and simply connected sets

Let us suppose that every Qn and the limit set S2 are connected and simply
connected. Since it is sufficient to prove the continuity for a subsequence,
without restricting the generality we can suppose that - a.e.

x E B. Fixing a point Xo E Q, we have that Qn converges in the sense of the
kernel to SZ with respect to xo. Let us denote by gn, g the conformal mappings
gn : D --~ S2n , g : D such that gn (0) = g (0) = xo, g’ n (0) &#x3E; 0, g’(0) &#x3E; 0.
In order to prove the continuity result of Theorem 3.1 in this particular case,
it is sufficient to prove the first Mosco condition. This is contained in the

following lemma.

LEMMA 3.4. Under the previous hypotheses, for every 0 E H (Q) there exists
a sequence on E such that 0,, - 0.

PROOF. Let us consider a function 0 E fl L°° (S2) fl C° (S2). We

simply define on Qn the function = 0 0 9 o and prove in the

sequel that on -+ 0. Classical properties of the conformal mappings give
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, Moreover, and

We have Indeed, for a.e. x E B B SZ, we have
= 0 and for n large enough = 0. = 0 and q6n (x) = 0,

for n large enough. For x E Q, we prove in the sequel that on (x) -~ ~ (x), i.e.
--+ Ø(x). Since 0 is continuous in x, it is sufficient to prove that

g o -~ x, or equivalently

From the Hausdorff convergence, for n large enough we have x E Qn, hence
is well defined. On the other side, gn converges uniformly to g on

compact sets in D. Is therefore sufficient to prove the existence of some 1 &#x3E;

r &#x3E; 0 such that E Dr, where Dr is the disk centered in 0 with ray equal
to r. Let us denote z E D the point such that g(z) = x, and take 1 &#x3E; r &#x3E; 0
such that z E Dr. Then gn(aD,.) = agn(Dr) converges in the sense of Hausdorff
to = Therefore, there exists p &#x3E; 0 such that for all n &#x3E; np
we have B (x, p) f1 = 0. On the other hand, - g(z) = x, hence
B(x, p) 0 for n large enough, hence B(x, p) c gn (Dr), for n large
enough. Finally, E Dr, hence (3) holds.

Since for a.e. x E B ~n (x ) 2013~ ~(jc) and q,n, ø are uniformly bounded in

L°°(B), the Lebesgue dominated convergence theorem gives that
Since we deduce immediately that

Since is dense in H 1 (Q), by a classical diagonal
procedure the first Mosco condition follows. 0

3.2. - Simply connected sets converging to an arbitrary set

In this subsection, we suppose that every open set Qn is connected and

simply connected, but the limit set Q is arbitrary. In fact, Q should also be
simply connected, as a consequence of the HC-convergence, but may have more
than one connected component. In this case, the argument used in Lemma 3.4
fails to work. It is exactly in this point, that Chambolle and Doveri [10] had to
impose the constraints on the number of the connected components and on the
7il-measure of the boundaries, in order to describe the structure of the limit of
the Jacobians of the conformal mappings. In the sequel, we give a geometrical
lemma which will allow us to reduce this case to the previous one. This is the
key result of the paper.

A Lipschitz continuous mapping y : [a, C R - R 2 is called curve. If
= x, = y, we denote yx, y the range of y. A curve is called simple

if y is injective. For any 3 &#x3E; 0 we denote by

a closed square centered in x of the side of length equal to 8.
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Let us make the following hypotheses. Suppose that S2 = S2a U Qb with
open and disjoint. Let wa and Wb be smooth connected sets such that

wa C 0,, and Z3b C Qb. Let 8  o minf d(cva, aS2a), d(Wb, aS2b)}, and U a
simply connected set such that dHc(U, Q)  E.

LEMMA 3.5. Under the previous hypotheses, there exists a point x E B B S2
such that C (x, 9s) intersects any curve y contained in U and joining a point of a)a
to a point of Wb.

PROOF. Let 8 and U satisfying the hypotheses. For every x E B B SZ
we have C(~, 9c) n (wa U = 0 and coa U cob C U. If wa and Wb lie in
different connected components of U, the conclusion of the proposition follows
directly since there are no curves in U joining wa to cvb. Suppose that coa and
Wb belong to the same connected component of U. Let us fix xa E wa and
xb E Wb. From the connectedness of wa and wb and the fact that x E B B S2
and 8  a S2b ) }, it is sufficient to prove the assertion
of the proposition only for curves joining xa and xb.

From the compactness of B there exists a finite family .~ of squares
C(x, 38) centered in points of B which covers B B Q. Since wa and cob are
contained in different connected components of S2, any curve joining xa to xb
in U intersects at least one square of .~’.

We construct an essential family of squares denoted with the

following properties: any curve Yxa, xb contained in U intersects at least one
element of and for any square of there exists at least one curve

yxa,xb c U which intersects this square and only this one from the family 
In order to construct Fess we define

such that

Since ~’o is finite, we can write = {C/; ./ == 1,..., t). We construct the
sequence of sub families in the following way. For 1 - p  t, we

set

if for every yxa,xb such that yxa,xb n Cup =1= 0, there exists Cj E Fp-l, j =1= p
such that yXa,xb fl ø. If not, we set Fp Finally, we observe that

has the desired properties, and set = Ft.
We prove in the sequel that any two elements of have non empty

intersection. Suppose for contradiction that Cl, C2 E Yess, and CI 0.

By the definition of there exist YI : [o, 1 ] H and y2 : [0,1] H R 2
two curves joining xa to xb in U such that y, and y2, intersects only CI and
C2, respectively, from the family Since Fess is finite, we can suppose
that the curves are simple and consist of a union of segments parallels to the
bisectrices and to the axes, respectively. Their intersection is therefore a finite
set of points containing xa and xb. We can write

with
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For every i - 0, 1,..., m - 1 we shall construct a simple curve yi joining
to such that

· y1 is contained in U,
· Yl does not intersect any square of 

This contradicts the construction of since putting together the curves yi
for i = 0, 1,..., m - 1, we obtain a curve contained in U, joining xa to xb
and which does not intersect any square of 

Let i between 0 and m - 1 be fixed. There exists a, fJ E fo, 1]2 such
that y2 (a) - and = Without restricting the generality,
we can suppose that a  ~8 (the case a &#x3E; fJ is treated identically). Let

then r is a Jordan curve

(without self intersections) consisting of a finite union of segments. Then R 2 B r
is the union of two connected components. We denote by rint the bounded
connected component, which has r as boundary [11]. Since U is simply
connected, we have rint C U.

Two situations may occur. If for t E does not inter-
sect the square C1, we define yi as y, restricted to [ti, tl+1 ]. If there ex-
ists t E such that E C1, we construct yi as follows. Let
d = minfd(Cl, C2), d (yl , C2), d(y2, Cl )} &#x3E; 0. Let C~ be the square of size
3c + ~ having the same center as C1. Then C~ does not intersect neither C2
nor y2. Then rint B C’ is a simply connected set with the boundary contained
in Moreover y2([a, 8 ]) is contained in the boundary of one connected
component having nonempty intersection with rint. Let us denote this connected
component and take for yi, Then, yi joins to

does not intersect CI and C2, and is contained in rint U r. Moreover, it
does not intersect any other square of if not this square would be contained
in rint, hence in U, which is impossible from the fact that dHc(U, Q)  E.

To finish the proof, we notice that since any two squares of Fess have a
nonempty intersection, there exists a square centered in a point of B and
of side of length 98 which contains all the squares of J’ess. 0

Let us suppose that is a sequence of simply connected sets con-
verging in Hc and in measure to Q. Suppose that S2 is decomposed in its
connected components Q = Uzi 1 Ci (from a rank on, all components might be
empty). We prove the following lemma.

LEMMA 3.6. There exists a sequence of simply connected sets, such
that fo r every n E l~ we have S2n C S2n and fin = Ql n U Rn, where Ql n and Rn are
disjoint open sets such that S2n is connected and

PROOF. Let us construct the sequence · For every i E N, let us
consider the sequence such that Ci - Ukc-T4Uki, Uk’ are connected and
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smooth and Uk’ c We set n o = 1, and for k &#x3E; 1 we note

We consider Ck &#x3E; 0 such that and Let nk the’o k7
smallest index of the sequence greater or equal than nk-i 1 such that for
every n &#x3E; nk, we have Q)  Ek. For any couple (Uk , Uk), i = 2, ..., k
we apply Lemma 3.5 and find the squares We construct then the

sequence as follows:
I for
I for

We obviously have Capi , hence Cap· More-

over S2n HC Q. Indeed, let Q’ be the HC-limit of a subsequence of 
Then Q’ c ~2, and for all x E S2, there exists p &#x3E; 0 such that B (x, p) C S2n
for n large enough. For k large enough such that 98k  2 , the inclusion

§) C Qn holds, hence x E S2’. Finally Q’ = Q. Since the measure is

lower semi-continuous for the H~ convergence, we also get that S2n converges
in measure to Q.

For nk  n  nk+1 let us denote by Q~ the connected component of S2n
which contains ul, and write U Rn with Q~ n Rn = 0. Following
Proposition 2.2, for a subsequence (still denoted with the same index) we have

Q1 U Rn U R with S21 n R = 0 and S21 U R c Q. Let x E Ci and E &#x3E; 0
such that B(x, Ci . Then, B(x, for k large enough, hence x E ~2~.
Consequently we get Cl c Conversely, let x E and suppose that

x ft Ci . Then, there exists i &#x3E; 2 such that x E Ci, hence for n large enough we
have 03A91 n Ci 0 i.e. 03A91 U Cl is a connected set. This is impossible for n 2: ni

Hc
by the construction of Consequently we get QI = Ci, hence S2n H Ci

c 
and Rn ~ for the whole sequence. The convergence in measure of

Q~ and Rn to Ci and respectively, is immediate by the fact that

We are able to give now the continuity result for simply connected sets.

LEMMA 3.7. Let S2 c O1 B such that S2 S2. ?’hen the rstLEMMA 3.7. Let such that n --&#x3E; Q. Then the first
Mosco condition is satisfied.

PROOF. It is clear that it is sufficient to prove the first Mosco condition

for a set of functions which has its span dense in Splitting SZ into its
connected components SZ = Ci, it is sufficient to prove the first Mosco

condition for a function U E H 1 (o) fl L ’ (Q) which vanishes on Ci.
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We apply Lemma 3.6 to construct the sequence · Since

Cl, from Lemma 3.4 there exists a sequence such that o

Defining = for x E Q 1 and ~(jc) = 0 on Rn we
get E and u. Using Lemma 2.3 we conclude the proof. 0

3.3. - Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1 using a localization procedure
and Lemma 3.7.

PROOF OF THEOREM 3.1.

Necessity. Let us suppose that Qn, Q E 0/(B), S2n converges in HC to Q
and for every f E L 2 ( B ) we have ug. If we choose f - 1 B , then

= and fig = XQ, hence S2n -+ [Q[.

Sufficiency. Let us suppose that S2n, S2 E and that S2n converges
in HI to S2. Suppose moreover that S2n I --~ Then Qn converges also in
measure to Q. Since it is sufficient to prove the continuity for a subsequence,
we can suppose XQ (x) for a.e. x E B.

Let

be the decomposition of in I connected components (compact and disjoint,
eventually empty). For every index i = 1,..., I there exists a subsequence (still
denoted with the same index) such that

where Ki are compact connected sets, not necessarily disjoint and nonempty.
Since the solution of problem (1) on 03A9 is unique and the Hausdorff topology
is compact, it is sufficient to prove the continuity with respect to the domain
only for this subsequence.

We obviously have = K, U ... U Kl. Three possibilities may occur for
the sets Ki. They may have a strictly positive diameter, they may contain only
one point, or they are empty (see [4] for a similar analysis for the Dirichlet
problem). We construct a new open set Q+ such that Q c Q+ C B and
Cap(Q+ B S2) = 0, by eliminating those Ki which have zero diameter. After a
renotation of the indices, we can write

where I’  I, and &#x3E; 0. We then consider the sequence 
defined by

for every i = 1,..., We have and K~ connected. From the

construction of S2n we have 
i I
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The Hausdorff convergence of KF to Ki gives the existence of n = nS ~ N
such that

"t’

Consequently, for every x E B and for every n &#x3E; ns, the set
is simply connected. Moreover

We can then apply Lemma 3.7 for the previous sequences. Using an argument
based on the partition of unity as in [10, Appendix A], we obtain that for
every o E there exists §j E such that ~n ~ 0. Since

Cap(Q+ B S2) = 0, taking the restriction On = we obtain that

for every 0 E H 1 (0) there exists on E such that u, hence the
first Mosco condition is satisfied.

Using now Proposition 3.2 we have that Un ~ u. 0

REMARK 3.8. In the result of Sverak, the continuity of the solution of
an elliptic problem with homogeneous Dirichlet boundary conditions in two
dimensions is a consequence of the convergence in HI and of the uniform
bound on the number of the connected components of the complementaries.
From this point of view, it might be surprising that the Lebesgue measure can
control the continuity for the Neumann problem. In fact, the constraint on
the measure can be dropped, if instead of problem (1), a different Neumann
problem is considered in Dirichlet spaces (see [6]).

4. - Further remarks and applications

Let H : [0, 00) -+ R be continuous with N(O) == 0 and y &#x3E; 0 a fixed
number. We recall from [9] the definition of the density perimeter. The function
H plays a "corrector" role for the perimeter while y acts like a scale.

DEFINITION 4.1. The (y, H)-density perimeter of a set A c R 2 is

where A~ = B(x, 8).

The following results hold (see [9]). If Qn ~ Q and there exist M &#x3E; 0

such that for every n E N we have M, then M and

L1
Qn ---&#x3E; Q. For every Q ~ such we have =

. ’ 2

H1(03A9)
We give the following compactness result, which in view of Theorem 3.1

can be applied for proving existence for a class of shape optimization problems.
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THEOREM 4.2. M &#x3E; 0. Then the set

is compact in the and for every sequence such
tjC yl

that Qn 2013 S2 we have 2013 S2.
PROOF. It is a direct consequence of the properties of the Hausdorff topology

and of the density perimeter (see [9]). 0

The continuity result of [10] is a particular case of Theorems 3.1 and 4.2.
Indeed, if Qn is such then

hence the condition M becomes in fact M. Con-

sequently, Theorem 4.2 can be applied.
Remark also that the number of the connected components of the bound-

ary is not lower semi-continuous for the H’-convergence. It appears that The-
orem 4.2 gives existence results for minimization problems of a large class
of shape functionals defined on The direct method of calculus of
variations can be applied using the compactness-continuity result given by The-
orem 4.2.

Let F : Bx[O, I]xR3 - R be a positive lower semi-continuous function
and f E L2(B). Then, the following problem

has at least one solution. For fixed g E L2 (B), we consider

Using the density perimeter as a penalty term, the direct method of the
calculus of variations gives the existence of a solution for the following mini-
mization problem 11
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