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Optimal Stability for Inverse Elliptic Boundary
Value Problems with Unknown Boundaries

GIOVANNI ALESSANDRINI - ELENA BERETTA -

EDI ROSSET - SERGIO VESSELLA

Abstract. In this paper we study a class of inverse problems associated to elliptic
boundary value problems. More precisely, those inverse problems in which the
role of the unknown is played by an inaccessible part of the boundary and the role
of the data is played by overdetermined boundary data for the elliptic equation
assigned on the remaining, accessible, part of the boundary. We treat the case
of arbitrary space dimension n &#x3E; 2. Such problems arise in applied contexts
of nondestructive testing of materials for either electric or thermal conductors,
and are known to be ill-posed. In this paper we obtain essentially best possible
stability estimates. Here, in the context of ill-posed problems, stability means the
continuous dependence of the unknown upon the data when additional a priori
information on the unknown boundary (such as its regularity) is available.

Mathematics Subject Classification (2000): 35R30 (primary), 35R25, 35R35,
35B60, 31B20 (secondary).

1. - Introduction

In this paper we shall deal with two inverse boundary value problems.
Suppose Q is a bounded domain in W with sufficiently smooth bound-

ary a S2, a part of which, say I (perhaps some interior connected component
of a S2 or some inaccessible portion of the exterior component of a03A9), is not
known. This could be the case of an electrically conducting specimen, which is
possibly defective due to the presence of interior cavities or of corroded parts,
which are not accessible to direct inspection. See for instance [K-S-V]. The aim
is to detect the presence of such defects by nondestructive methods collecting
current and voltage measurements on the accessible part A of the boundary 

If we assume that the inaccessible part I of a 03A9 is electrically insulated,
then, given a nontrivial function 1/1 on A, having zero average (which represents
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the assigned current density on the accessible part A of 8Q), we have that the
voltage potential u inside Q satisfies the following Neumann type boundary
value problem

Here, v is the exterior unit normal to aS2 and cr = denotes the
known symmetric conductivity tensor ant it is assumed to satisfy a hypothesis
of uniform ellipticity. Let us remark that the solution to ( 1.1 a )-( 1.1 c) is unique
up to an undetermined additive constant. In order to specify a single solution,
we shall assume, from now on, the following normalization condition

Suppose, now, that E is an open subset of which is contained in A, and
on which the voltage potential can be measured. Then, the inverse problem
consists of determining I provided is known. This is the first object of our
study and we shall refer to it as the Inverse Neumann Problem (Neumann case,
for short).

An allied problem is the one associated to the direct Dirichlet problem

Here, as above, I, A are the inaccessible, respectively, accessible, parts of 
and ar is the conductivity tensor satisfying the same hypotheses. Our second

object of study is the inverse problem consisting in the determination of I from
the knowledge of orVM’ where E C A is as above. We shall refer to it as
the Inverse Dirichlet Problem (Dirichlet case, for short). We believe that also this
problem may be of interest for concrete applications of nondestructing testing,
for instance in thermal imaging. In this case, the inaccessible boundary I
could represent a priviledged isothermal surface, such as a solidification front.
Of course, it should be kept in mind that, dealing with thermal processes,
the evolutionary model based on parabolic, rather than elliptic, equations is in
general more appropriate, for related issues see, for instance, [B-K-W], [Bi],
[V 1 ] . However, we trust that also a preliminary study of a stationary model
may be instructive.

Such two problems, the Neumann and Dirichlet cases, are known to be

ill-posed. Indeed there are examples that show that, under a priori assumptions
on the unknown boundary I regarding its regularity (up to any finite order of
differentiability), the continuous dependence (stability) of I from the measured
data in the Neumann case, orVM’ VIE in the Dirichlet case) is, at best, of
logarithmic type. See [A12] and also [Al-R].
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The main purpose of this paper is to prove stability estimates of loga-
rithmic type (hence, best possible) for both the Neumann and Dirichlet cases,
(Theorems 2.1, 2.2), when the space dimension n &#x3E; 2 is arbitrary. We recall
that, for the case n = 2, results comparable to ours have been found in [Be-V]
when o~ is homogeneous and in [R], [Al-R] when o~ can be inhomogeneous
and also discontinuous. Other related results for the case of dimension two can
be found in [Bu-C-Yl], [Bu-C-Y2], [Bu-C-Y3], [Bu-C-Y4], [An-B-J]. Let us
also recall that, typically, the above mentioned results are based on arguments
related, in various ways, to complex analytic methods, which do not carry over
the higher dimensional case.

In the sequel of this Introduction, we shall illustrate the new tools we
found necessary to develop and exploit when n &#x3E; 2. But first, let us comment
briefly on the connection with another inverse problem which has become quite
popular in the last ten years, namely the inverse problem of cracks. On one
hand there are similarities, in fact a crack can be viewed as a collapsed cavity,
that is a portion of surface inside the conductor, such that a homogeneous
Neumann condition like (I,lc) holds on the two sides of the surface. On the
other hand there are differences, for the uniqueness in the crack problem at
least two appropriate distinct measurements are necessary [F-V], whereas for
our problems, either the Neumann or the Dirichlet case, any single nontrivial
measurement suffices for uniqueness, see for instance [Be-V] for a discussion
of the uniqueness issue. Let us also recall that for the crack problem in
dimensions bigger than two, various basic problems regarding uniqueness are
still unanswered. See, for the available results and for references [Al-DiB ] . It is
therefore clear that a study of the stability for the crack problem in dimensions
higher than two shall require new ideas. Nonetheless, the authors believe that
the techniques developed here might be useful also in the treatment of the crack
problem.

The methods we use in this paper are based essentially on a single unifying
theme: Quantitative Estimates of Unique Continuation, and we shall exploit it
under various different facets, namely the following ones.

(a) Stability Estimates of Continuation from Cauchy Data. Since we are given
the Cauchy data on E for a solution u to (l.la), we shall need to evaluate
how much a possible error on such Cauchy data can affect the interior
values of u. Such stability estimates for Cauchy problems associated to
elliptic equations have been a central topic of ill-posed problems since the
beginning of their modem theory, [H], [Pul], [Pu2]. Here, since one of
our underlying aims will be to treat our problems under possibly minimal
regularity assumptions, we shall assume the conductivity cr to be Lipschitz
continuous (this is indeed the minimal regularity ensuring the uniqueness
for the Cauchy problem, [PI], [M]). Our present stability estimates (Propo-
sitions 3.1, 3.2, 4.1, 4.2) will elaborate on inequalities due to Trytten [T]
who developed a method first introduced by Payne [Pal], [Pa2]. The ad-
ditional difficulty encountered here will be that we shall need to compare
solutions u 1, u 2 which are defined on possibly different domains Q2
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whose boundaries are known to agree on the accessible part A only. Let
us recall that a similar approach, but restricted to the topologically simpler
two-dimensional setting, has already been used in [All], [Be-V]. We shall
obtain that, if the error on the measurement on the Cauchy data is small,
then for the Neumann case, also IVUII I is small, in an L2 average sense,
on S21 B Q2, the part of S21 which exceeds Q2. And the same holds for

on SZ2 BQI (Propositions 3.1, 3.2). In the Dirichlet case instead we
shall prove that u 1 itself is small in S21 B Q2, and the same holds for u2
on S22 (Propositions 4.1, 4.2).

(b) Estimates of Continuation from the Interior. We shall also need interior

average lower bounds on u and on its gradient (Propositions 3.3, 4.3), on
small balls contained inside S2. Bounds of this type have been introduced
in [Al-Ros-S, Lemma 2.2] in the context of a different inverse boundary
value problem. The tools here involve another form of quantitative unique
continuation, namely the following.

(c) Three Spheres Inequalities. Also this one is a rather classical theme in
connection with unique continuation. Aside from the classical Hadamard’s
three circles theorem, in the context of elliptic equations we recall Lan-
dis [La] and Agmon [Ag]. Under our assumptions of Lipschitz continuity
on a, our estimates (see (5.47) below) shall refer to differential inequalities
on integral norms originally due to Garofalo and Lin [G-L], later developed
by Brummelhuis [Br] and Kukavica [Ku].

(d) Doubling Inequalities in the Interior. This rather recent tool has been intro-
duced by Garofalo and Lin in the above mentioned paper [G-L]. It provides
an efficient method of estimating the local average vanishing rate of a so-
lution to (l.la). Let us recall that it also provides a remarkable bridge
to the powerful theory of Muckenhoupt weights [C-F] and that this last
connection has been crucially used in [Al-Ros-S] and also in [V2].

The last, fundamental, appearance of quantitative estimates of unique con-
tinuation is the following.

(e) Doubling Inequalities at the Boundary. For our purposes it will be crucial
to evaluate the vanishing rate of Vu (in the Neumann case) or of u (in
the Dirichlet case) near the inaccessible boundary I. In particular, the fact
that such a rate is not worse than polynomial (Propositions 3.5, 4.5) is an
essential ingredient in proving that the stability for our inverse problems are
not worse than logarithmic (see the proof of Theorem 2.1). Such evalua-
tions on vanishing rates near I, where an homogeneous boundary condition
applies (either (I,lc) or ( 1.2. c) ), can be obtained by the so called Dou-
bling Inequalities at the Boundary. The study of such inequalities has been
initiated by Adolfsson, Escauriaza and Kenig [A-E-K] and later developed
by Kukavica and Nystrom [Ku-N] and Adolfsson and Escauriaza [A-E]. In
particular, in [A-E] such inequalities are proven, for the Neumann problem,
when the boundary is 1 smooth, and, for the Dirichlet problem, when
the boundary is smooth, where the modulus of continuity w is of
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Dini type. We shall use essentially such results, with the only difference
that, mainly for simplicity of exposition, we shall assume, in the Dirichlet
case, that w (t) = t", 0  a ~ 1, that is of Holder type (Propositions 3.5,
4.5). Let us also recall that the conjecture which has been left open by
the above mentioned papers is that the Doubling Inequality at the Bound-
ary should hold true when the boundary is Lipschitz. Hopefully, if such
conjecture were proven, then our stability results, Theorems 2.1, 2.2, might
be generalized as follows. If I is a priori known to be Lipschitz with a
sufficiently small Lipschitz constant, then the logarithmic stability estimates
of Theorems 2.1, 2.2 should apply also to this case. If instead the Lips-
chitz constant of I is large, then the best possible stability estimate might
be worse than logarithmic. This last expectation is motivated by the fact
that two Lipschitz surfaces with large Lipschitz constant may be arbitrarily
close in the sense of the Hausdorff distance, but locally they need not to
be representable as graphs in a common reference system (see Rondi [R]
for an example). If it happens that this is the case for the unknown bound-
aries 1,, 12, then it might also happen that estimates on the smallness of

I in QI (in the Neumann case, for instance) are worse than loga-
rithmic. In fact from the proofs of Propositions 3.2, 4.2, the importance of
proving that II, 12 are locally represented as graphs in a common reference
system will become evident. This property of II, 12 will be referred to by
saying that II, 12 are Relative Graphs. Sufficient conditions guaranteeing
that the boundaries of the two domains S22 are Relative Graphs will
be examined in Proposition 3.6. As we already mentioned, in this paper
we intend to strive after optimal results under possibly minimal a priori
assumptions of regularity (see i ) and iii) in Section 2). Moreover, very
general assumptions on the unknown boundary I are made. It may have a

finite, but undetermined, number of connected components, and no restric-
tion is placed on their topology. Furthermore we use a single measurement
corresponding to one boundary data, either 1/1 or g, that can be prescribed
arbitrarily. Concerning their regularity, the assumptions (2.7a), (2.8a) are
quite loose and essentially correspond to the natural ones in the treatment
of the direct problems (1.1), (1.2) respectively. In addition, we shall re-
quire a bound on the oscillation character (frequency) of 1/1 or of g. This
is expressed as a bound on a ratio of two norms: either

in the Neumann case,

or

in the Dirichlet case .

Such control will be necessary in order to dominate the vanishing rates of
the solutions in terms of quantities which depend only on the prescribed
data. Notice that F may be arbitrarily large, but it is expected that the
constants in the estimates of Theorems 2.1, 2.2 may deteriorate as F - oo.
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The plan of the paper is as follows.
In Section 2 we shall state the main Theorems 2.1, 2.2, we also state

Corollary 2.3 which provides a finer interpretation of the stability estimates in
the previous theorems. Here, instead of estimating the Hausdorff distance of
the domains S21, 522, we shall estimate their distance locally, in terms of the
graph representation of their boundaries, and also globally, by viewing them as
imbedded differentiable manifolds with boundary.

Sections 3 and 4 contain the proofs of Theorem 2.1 and Theorem 2.2,
respectively. The proofs are preceded by the statements of various auxiliary
propositions (Propositions 3.1-3.6, Propositions 4.1-4.5). Section 4 contains
also the proof of Corollary 2.3.

Section 5 contains the proof of the propositions regarding the estimates of
continuation for Cauchy problems, and namely Propositions 3.1, 3.2, 4.1 and 4.2.
Such proofs are accompanied by some intermediate lemmas. Lemma 5.1 collects
some regularity results for the direct Neumann problem. Lemmas 5.2, 5.3 deal
with the technical notion of regularized distance as introduced by Lieberman.

Section 6 contains the proofs of Propositions 3.3, 4.3 concerning estimates
of continuation from the interior.

Section 7 contains all the proofs concerning doubling inequalities. Namely,
the proofs of Propositions 3.4, 4.4, dealing with the interior doubling inequalities,
the proofs of Propositions 3.5, 4.5, where the results of Adolfsson and Escauriaza
are adapted to the present purposes. Their result for the Dirichlet problem is
summarized in Lemma 7.1.

Section 8 deals with Relative Graphs, first in Lemma 8.1 we treat the

general case of Lipschitz boundaries, and we conclude with the proof of Propo-
sition 3.6.

2. - The main results

When representing locally a boundary as a graph, it will be convenient to
use the following notation. For every x E IEBn we shall set x = (x’, xn), where
x’ E E R.

DEFINITION 2.1. Let S2 be a bounded domain in Given a, 0  1,
we shall say that a portion S of 8Q is of class c1,a with constants po, E &#x3E; 0,
if, for any P E S, there exists a rigid transformation of coordinates under which
we have P = 0 and

where (p is a function on C RI-1 satisfying

and
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REMARK 2.1. To the purpose of simplifying the expressions in the various
estimates throughout the paper, we have found it convenient to scale all norms in
such a way that they are dimensionally equivalent to their argument and coincide
with the standard definition when the dimensional parameter po equals 1. For

instance, for any cp E we set

where

Similarly, we shall set

and so on for boundary and trace norms such as I

i) A priori information on the domain.
Our main Theorems 2.1, 2.2 will be based on the following assumptions

on the domain. Given po, M &#x3E; 0, we assume:

Here, and in the sequel, 10 1 denotes the Lebesgue measure of S2. We shall

distinguish two nonempty parts, A, I in a S2 and we assume

Here, interiors and boundaries are intended in the relative topology in 
Moreover we assume that we can select a portion within A satisfying for
some PI E ~

and also, denoting by the portion of of all x E such that dist(x, I )  po,

Regarding the regularity of aS2, given a, E, 0  a  1, E &#x3E; 0, we assume
that

(2.5) a S2 is of class with constants po, E .
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In addition, in Theorem 2.1, we shall also assume the following

(2.6) 1 is of class 1 with constants po, E .

REMARK 2.2. Observe that (2.5) automatically implies a lower bound on the
diameter of every connected component of a S2. Moreover, by combining (2.1 )
with (2.5), an upper bound on the diameter of S2 can also be obtained. Note
also that (2.1), (2.5) implicitly comprise an a priori upper bound on the number
of connected components of 

i i ) Assumptions about the boundary data.
Let us set

(that is: APO = We shall assume the following on the Neumann data
1/1 appearing in problem ( 1.1 )

and, for a given constant F &#x3E; 0,

Concerning the Dirichlet data g appearing in (1.2), we assume

As noted already in Remark 2.1, norms are suitably scaled so to be dimensionally
equivalent to their argument.

i i i ) Assumptions about the conductivity.
The conductivity a is assumed to be a given function from Ilgn with values

n x n symmetric matrices satisfying the following conditions for given constants
À, A, 0  h  1, A &#x3E; 0,

for every (ellipticity)

for every x, y E (Lipschitz continuity)

In the sequel, we shall refer to the set of constants E, a, M, F, À, A as
to the a priori data.
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THEOREM 2.1. Let 521, Q2 be two domains satisfying (2.1), (2.5). Let Ai, Ii,
i = 1, 2, be the corresponding accessible and inaccessible parts of their boundaries.
Let us assume that A 1 = A2 = A, 521, S22 lie on the same side of A and that (2.2)-
(2.4) are satisfied by both pairs Ai, Let h, 12 satisfy (2.6). Let Ui E be
the solution to ( 1.1 ) when S2 = Qi, i = 1, 2, and let (2.7), (2.9) be satisfied. If,
given E &#x3E; 0, we have

then we have

where co is an increasing continuous function on [0, oo) which satisfies

and C, 1], C &#x3E; 0, 0  1]  1 are constants only depending on the a priori data.

Here d1-l denotes the Hausdorff distance between bounded closed sets of II~n

THEOREM 2.2. Let 521, Q2 and Ai, Ii, i = l, 2, be as in Theorem 2.1. Let (2.1)-
(2.5) be satisfied. Let Ui E be the solution to (1.2) when S2 = Qi, i = 1, 2,
and let (2.8), (2.9) be satisfied. If, given E &#x3E; 0, we have

then we have

where (J) is as in (2.12) and the constants C, r~, C &#x3E; 0, 0  17  1 only depend on
the a priori data.

COROLLARY 2.3. Let the hypotheses of either Theorem 2.1 or Theorem 2.2 be
satisfied. There exist ro, 0  ro :5 po, only depending on po, E, a, and Eo &#x3E; 0, only
depending on the a priori data, such that if E  Eo then for every P E a Q U a Q2
there exists a rigid transformation of coordinates under which P = 0 and

where (pl, are c1,a functions on C which satisfy, for every ~8,
0  P  a,
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where
when Theorem 2.1 applies,

when Theorem 2.2 applies,

(J) is as in (2.12) and K &#x3E; 0 only depends on E, a and (J. Furthermore, there
exists a C 1’a diffeomorphism F : Rn-* such that F (Q2) = S21 and for every fi,
0  p  ot,

with K, lù as above. Here I d : denotes the identity mapping.

3. - Proof of Theorem 2.1

Here and in the sequel we shall denote by G the connected component of
S21 nQ2 such that C G.

The proof of Theorem 2.1 is obtained from the following sequence of
propositions.

PROPOSITION 3.1 (Stability Estimate of Continuation from Cauchy Data). Let
the hypotheses of Theorem 2.1, except (2.6), be satisfied. We have

where (J) is an increasing continuous function on [0, oo) which satisfies

and C &#x3E; 0 depends on À, A, E, a and M only.
DEFINITION 3.1. Let S2 be a bounded domain in W. We shall say that

a portion S of is of Lipschitz class with constants po, E &#x3E; 0, if, for any
P E S, there exists a rigid transformation of coordinates under which we have
P = 0 and

where w is a Lipschitz continuous function on C satisfying

and
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Here the Co, 1 norm is scaled according to the principles stated in Remark 2.1,
that is

PROPOSITION 3.2 (Improved Stability Estimate of Continuation from Cauchy
Data). Let the hypotheses of Proposition 3.1 hold and, in addition, let us assume
that there exist L &#x3E; 0 and ro, 0  ro  po, such that a G is of Lipschitz class with
constants ro, L. Then (3.1 ) holds with (J) given by

where y &#x3E; 0 and C &#x3E; 0 only depend on À, A, E, a, M, L and po/ro.
We shall denote

PROPOSITION 3.3 (Lipschitz Stability Estimate of Continuation from the In-
terior). Let S2 be a domain satisfying (2.1), such that 8S2 is of Lipschitz class with
constants po, E. Let U E H1 (Q) be the solution to (1.1), where * satisfies

and, for a given constant F &#x3E; 0,

and Q satisfies (2.9). For every p &#x3E; 0 and every Xo E Q4p, we have

where C &#x3E; 0 depends on À, A, E, M, F and plpo only.
REMARK 3.1. Let us notice that if 1Jr satisfies (2.7a)-(2.7d), then it also

satisfies (3.4a)-(3.4c) up to possibly replacing F with a multiple cF, where
c only depends on E. In fact, for functions 1/1 satisfying (2.7c) the following
equivalence relations can be obtained

PROPOSITION 3.4 (Interior Doubling Inequality). Let S2 be a domain satisfy-
ing (2.1 ), such that a Q is of Lipschitz class with constants po, E. Let u E H (Q) be
the solution to ( 1.1 ), where 1/1 satisfies (3.4) and a satisfies (2.9). For every p &#x3E; 0
and every Xo E Qp, we have

for every r, fl s. t. 1  fJ and 0  p ,

where C &#x3E; 0 and K &#x3E; 0 depend on À, A, E, M, F and p/ po only.
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PROPOSITION 3.5 (Doubling Inequality at the Boundary). Let Q be a domain
satisfying (2.1) and (2.5). Let us assume that the accessible and inaccessible parts
A, I of its boundary satisfy (2.2)-(2.4) and (2.6). Let u E be the solution
to (1.1) and let (2.7) and (2.9) be satisfied. Let Xo E I. For any r &#x3E; 0 and any
{3 &#x3E; 1 we have

where C &#x3E; 0 and K &#x3E; 0 depend on À, A, E, M and F only.
In the sequel, it will be expedient to introduce a quantity which is a slight

variation of the Hausdorff distance between SZ I and S22 .
DEFINITION 3.2. We call modified distance between S21 I and S22 the number

Notice that we obviously have

but, in general, dm does not dominate the Hausdorff distance, and indeed it
does not satisfy the axioms of a distance function. This is made clear by
the following example: Ql = BI (0), S22 = B1 (o) B Bl/2(O). In this case

dm (S21, S22) = 0, whereas d1t(f2I, S22) = 1 /2.
PROPOSITION 3.6 (Relative Graphs). Let 521, S22 be bounded domains satisfy-

ing (2.5). There exist numbers do, ro, do &#x3E; 0, 0  ro  po, for which the ratios PO I
!1l. only depend on a and E, such that if we have 

- 

Po

PO

then the following facts hold:
i) For every P E 8 521, up to a rigid transformation of coordinates which maps P

into the origin, we have

where ~p2 are on C lRn-1 satisfying

for every P, 0  fl  a ,

where C &#x3E; 0 only depends on a, fl and E.
ii) There exists an absolute constant C &#x3E; 0 such that

i i i ) Any connected component G of S21 I nQ2 has boundary of Lipschitz class with
constants ro, L, where ro is as above and L &#x3E; 0 only depends on a and E.
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PROOF OF THEOREM 2.1. Let us denote, for simplicity,
Let n &#x3E; 0 be such that

Our first goal is the proof of the following inequality

where C &#x3E; 0 and K &#x3E; 0 depend on X, A, E, M and F only. As a pre-
liminary step, let us show that (3.15) holds true when d is replaced with
dm = Q2), the quantity introduced in Definition 3.2. Let us assume, with
no loss of generality, that there exists xo E h C such that dist(xo, S22) = dm.
From (3.14) we obviously have

Suppose now dm  po. By Proposition 3.5, picking r = dm, P = we have

where C &#x3E; 0 and K &#x3E; 0 depend on X, A, E, M and F only. From (2.5) we can
find a ball Br (wo) of radius r = compactly contained in SZ 1 f1 

2 

Hence, applying Proposition 3.3 with p = r/4, we have

where C &#x3E; 0 depends on X, A, E, M and F only. From (3.16)-(3.18) we
derive

On the other hand, when dm &#x3E; po, (3.19) follows from (3.18) and from the
trivial estimate
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with C only depending on E and M. Hence ~e have proved that

where C &#x3E; 0 and K &#x3E; 0 depend on X, A, E, M and F only.
With no loss of generality, let yo E be such that dist(yo, Q2) = d.

Let us notice that in general yo needs not to belong to a 0 1, see the example
below Definition 3.2. For this reason it is necessary to analyse various different
cases separately. Denoting by h = dist(yo, let us distinguish the following
three cases:

where do is the number introduced in Proposition 3.6.
If case i ) occurs, taking zo E 1 such that yo - zo - h, we have that

d - h ? 2, so that d  2dm and (3.15) follows from (3.21).
If case i i ) occurs, let us set

We have that

By applying Proposition 3.4 with r = d i , B = d0 , we havei

where C &#x3E; 0 and K &#x3E; 0 depend on X, A, E, a, M and F only. Since h &#x3E; do
we can apply Proposition 3.3 with p = ~, obtaining

where C &#x3E; 0 depends on À, A, E, a, M and F only. From (3.24) and (3.25)
we have
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Let If 17  fi, then d i  ~ , so that d = 2d i
and (3.15) follows from (3.26). If, otherwise, 17 &#x3E; ~, then (3.15) follows

trivially, likewise we did in (3.20).
If case i i i ) occurs, then d  do and Proposition 3.6 applies, so that

by (3.13) and (3.19) we again obtain (3.15).
Hence, by Proposition 3.1, we obtain

where C &#x3E; 0 depends on X, A, E, M and F only, whereas K &#x3E; 0 depends on
the same quantities and in addition on a. Thus we have obtained a stability
estimate of log-log type. Next, by (3.27), we can find co &#x3E; 0, only depending
on X, A, E, a, M and F, such that co then d  do. Therefore, by
Proposition 3.6, G satisfies the hypotheses of Proposition 3.2. Hence in (3.15)
we may replace q with where co is as in Propo-
sition 3.2 (a modulus of continuity of log type) and obtain (2.11), (2.12). 0

4. - Proof of Theorem 2.2 and of Corollary 2.3

Here and in the sequel we shall denote by G the connected component of
S21 nQ2 such that EGG.

The proof of Theorem 2.2 is obtained from the following sequence of
propositions, which closely parallel Propositions 3.1-3.5.

PROPOSITION 4.1 (Stability Estimate of Continuation from Cauchy Data). Let
the hypotheses of Theorem 2.2 be satisfied. We have

where (J) is an increasing continuous function on [0, oo) which satisfies

where C &#x3E; 0 depends on À, A, E, a and M only.
PROPOSITION 4.2 (Improved Stability Estimate of Continuation from Cauchy

Data). Let the hypotheses of Proposition 4.1 hold and, in addition, let us assume
that there exist L &#x3E; 0 and ro, 0  ro  po, such that a G is of Lipschitz class with
constants ro, L. Then (4.1 ) holds with co given by

where y &#x3E; 0 and C &#x3E; 0 only depend onk, A, E, a, M, L and po/ro.
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PROPOSITION 4.3 (Lipschitz Stability Estimate of Continuation from the In-
terior). Let S2 be a domain satisfying (2.1), such that a S2 is of Lipschitz class with
constants po, E. Let U E HI(Q) be the solution to (1.2), where g satisfies

and, for a given constant F &#x3E; 0,

and Q satisfies (2.9). For every p &#x3E; 0 and every Xo E Q2p, we have

where C &#x3E; 0 depends onk, A, E, M, F and p/,oo only.

REMARK 4.1. Let us notice that if g satisfies (2.8a)-(2.8c), then it also
satisfies (4.4a)-(4.4b) up to possibly replacing F with a multiple cF, where c
only depends on E. In fact, for functions g satisfying (2.8b) the following
equivalence relations can be obtained

PROPOSITION 4.4 (Interior Doubling Inequality). Let SZ be a domain satisfy-
ing (2.1 ), such that a Q is of Lipschitz class with constants po, E. Let u E be
the solution to (1.2), where g satisfies (4.4) and a satisfies (2.9). For every p &#x3E; 0
and every xo E S2 p, we have

for every r, f3 s.t. 1  f3 and 0  f3r  p ,

where C &#x3E; 0 and K &#x3E; 0 depend on À, A, E, M, F and p/,oo only.

PROPOSITION 4.5 (Doubling Inequality at the Boundary). Let S2 be a domain
satisfying (2.1 ) and (2.5). Let us assume that the accessible and inaccessible parts A,
I of its boundary satisfy (2.2)-(2.4). Let U E be the solution to (1.2) and
let (2.8) and (2.9) be satisfied. Let Xo E I. For any r &#x3E; 0 and any P &#x3E; 1 we have

where C &#x3E; 0 and K &#x3E; 0 depend on À, A, E, a, M and F only.
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PROOF OF THEOREM 2.2. By using the trivial estimate

the proof is obtained similarly to the proof of Theorem 2.1, up to obvious
changes. D

PROOF OF COROLLARY 2.3. We have that (2.15)-(2.16) follow immediately
from (3.12), (2.12) and either (2.11) (when Theorem 2.1 applies) or (2.14)
(when Theorem 2.2 applies).

Next, let us prove (2.17). We can find rl, h, 0  rl  ro, 0  h  ro,

only depending on a, E, po, and a number N only depending on a, E, M,
such that there exist points Pl E 1 and cylinders Cl, I = 1,..., N, centered
at Pl, having height 2h and basis a (n - I)-dimensional disk of radius ri, such
that UN 1 CI covers both 8Qi 1 and a 522, and each Cl has axis along the direction
labeled by xn in the local representation (2.15) when P = Pl. Moreover we
assume 2Cl C for every I. Here 2Cl denotes the cylinder with double
sizes and the same center. Notice that, possibly replacing Eo by a smaller
number, we may assume that the functions Vi in (2.15) satisfy

for every

Let us fix I = 1 and let us define FI : R" as follows. Letting x = (x’, xn )
suitable coordinates near P = Pi,

where

Here: TJ, 0  ~  1, is a smooth function such that = 1 when Ix’l  rl,
- 0 when 2r,, and i (a , b; ~ ) : R -+ R is an uniformly smooth

function for every a, b E [-h/2, h/2] satisfying

for every S E R,

for every 

and also

t (a, b; b) = a .

Here c  1 is an absolute constant. For instance we can choose r as a suitable

smoothing of the piecewise linear function whose graph joins (-h, -h), (b, a),
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(h, h), within the square (-h, h) x (-h, h) and coincides with the bisector of
the first and third quadrant outside. Now we have

and hence

One can verify that FI (Q2nCI) = Fl (x) = x for every x E aQI naQ2,
F = FI satisfies (2.17) and also that if S22 is replaced with FI(Q2), then (2.16)
continues to hold. We may iterate this procedure defining inductively analogous
maps /~ which deform coordinates within the cylinder 2Cl and replacing at each
stage S22 with F’¡(Q2). In the end we set F = FN o... o Fl. F is an orientation
preserving c1,a diffeomorphism satisfying (2.17) such that = a S21 and
also F = I d outside of the fixed small neighbourhood of a S21 given by U£ 12C’ .
Therefore F ( S22 ) = 0

5. - Proofs of the estimates of continuation for Cauchy problems

Throughout this section, let Qi, S22 be two domains satisfying (2.1), (2.5).
Let Ai, Ii, i = 1, 2, be the corresponding accessible and inaccessible parts of
their boundaries. Let us assume that A 1 - A2 = A, 521, S22 lie on the same
side of A and that (2.2)-(2.4) are satisfied by both pairs A~ , Ii.

We shall denote

It is clear that

for every , 4

LEMMA 5.1. The following Schauder type estimates hold

where C &#x3E; 0 depends onX, A, E, a and M only.
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PROOF OF LEMMA 5.1. Set Q = Qi, u = i = 1, 2. Since = 0
on 8Q B Ap, by standard elliptic estimates we have

where C depends on ~., E, a and M only. Moreover we have

From (5.3), (5.4), (3.6) and Poincar6 inequality, (5.1 ) follows. Since 
U2) - v = 0 on A, we derive similarly a bound for the norm of u 1 - u 2 in

and, in view of (5.1), (5.2) follows. 0

In the proof of Proposition 3.1 we shall need to approximate the domains 0,
with regularized domains, say r &#x3E; 0. We shall define roughly speak-
ing, as the level set of a regularized distance d, approximating d(-, 8Q), which
was constructed by Lieberman (see [Li]). To this aim, let us state the follow-
ing Lemma 5.2 (about regularized distance) and Lemma 5.3 (about regularized
domains).

LEMMA 5.2 (Lieberman). For any bounded domain Q satisfying (2.5), one can
construct a function d E C2(Q) fl (called regularized distance) such that
the following facts hold.

where yo, yl, b, CI and C2 are positive constants only depending on E, a. Fur-

thermore, let 521, S22 be two domains as above, with Ai, Ii being the accessible and
inaccessible parts of a Qi, i = 1, 2, as in (2.2), and such that, as in Theorem 2.1,
A 1 = A2 = A and SZ 1, S22 lie on the same side of A. If di are the regularized
distances associated to S2i, i = 1, 2, then we have

PROOF OF LEMMA 5.2. The proof follows from [Li, Theorem 1.3, Theo-
rem 2.1, Theorem 2.3]. C7

LEMMA 5.3. For any bounded domain S2 satisfying (2.5), one can construct a
family of regularized domains S2h C Q, for 0  h  apo, having C1 boundary such
that

for every ,
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for every x E a S2h, there exists y E a S2 s. t.

where v (x), v (y) denote the outer unit normal to S2h at x and to 0 at y respectively,
and a, yj, j = 0, 1, ... , 4, are positive constants depending on E and a only. Here
I . In-l denotes the surface measure. Furthermore, let 521, Q2 be as in Lemma 5.2.
If Oi,h are the families of regularized domains associated to S21, i = 1, 2, then we
have

PROOF OF LEMMA 5.3. Let d be the Lieberman’s regularized distance intro-
duced in Lemma 5.2. Let

For h  apo, let S2h be the connected component of the set {x E S2 s.t. d(x) 
h } whose closure contains Let us define f2h = We have that (5.9)
is trivial and (5.10) follows from (5.5). Since, by (5.5), S2h C S2Ylh, (5.11)
follows from the following estimate

where C depends on E only. It is nearly evident that, locally, the width of
Q B is of the order of r, as r -~ 0. A complete proof of (5.15) requires
somewhat lengthy but not difficult estimates, details can be found in [Al-Ros,
Lemma 2.8]. By (5.10) and by the choice of a, we have that dist(x, a S2)  bpo,
for any x E Applying the implicit function theorem, from (5.6) and (5.7)
we have that 8ih is a surface of class C 1 with constants pi, Ei , where

In order to prove (5.12), let us tessellate RI with internally nonoverlapping
closed cubes of diameter yoh. Let {61,.~. , QN) be the collection of those
cubes having nonempty intersection with By (5.10), each Qi is contained
in S2 B so that
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From (5.15) and (5.16) we have that

where y3 only depends on E and a. For any X E a S2h and for any y E a S2
such that y - x = dist(x, we have 

-

so that (5.13) follows easily from (5.5)-(5.7). Finally, (5.14) follows from

(5.8). D

In order to derive the Cauchy estimates for the difference of the solutions u I
and u 2 , first of all we need to dominate in terms of E the L 2 norm of Ul - u 2
and U2) in a neighbourhood in :E of the point PI G £ appearing
in (2.3).

According to (2.5), there exists a cartesian coordinate system under which
PI = 0 and

where w is a Cl,l function on C satisfying

and

Let

By the choice of ri, we have Eo c E.

PROOF OF PROPOSITION 3.1 (Preparation). We premise the proof with two
auxiliary steps.

STEP 1. Let We have

where C &#x3E; 0 depends on X, A, E, a and M only.
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STEP 2. Let There exist C &#x3E; 0 only depending on X,
A and E, and 8, 0  8  1, only depending on X, A, E and a, such that

where and v denotes the outer unit normal to Q

at Pi.

PROOF OF STEP 1. Let us denote

and let v defined in C JRn-1 by

Given x = (x’, E £o, we have

Denoting by the tangential gradient of w in Eo, from (5.21) and (5.22)
we have

Since v)(x) = 0, we have

with C only depending on X. Hence

where C only depends on ~..
Let us recall the following interpolation inequalities

where C only depends on E and a,
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where C only depends on E. From (5.26) we have

where C only depends on E and a, and from (5.27) we have

where C only depends on E. From (5.28) and (5.29) it follows that

where C only depends on E and a. By using (5.21), we can estimate the
norms of v in terms of those of w:

Since we have

By using (5.31), (5.32) and (5.34), we have that

where C only depends on E. From (5.17), (5.23), (5.25), (5.30), (5.33)
and (5.35) we have

where C depends on E, a and Å only. From (5.2) we have

where C depends on ~., A, E and a only. Notice also that the surface mea-

sure I of Eo satisfies
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hence we have

where C depends on X, A, E and a only. Therefore (5.18) follows. 0

PROOF OF STEP 2. We shall make use of the stability estimates for the
Cauchy problem for elliptic equations in divergence form with Lipschitz coef-
ficients established by Trytten ([T]).

Let Po = PI + and let w = u i - u 2. For appropriately chosen p &#x3E; 1,
K &#x3E; 0, only depending on X, A and E, we can derive from [T] the following
estimate

where

with S 1, 0  81  1 and C &#x3E; 0 only depending on X, A and E. By (2.9a),
(3.6) and (5.4) we have

On the other hand,

where C depends on ~., A and E only. Recalling that
from (5.18), (5.36), (5.39) and (5.40) we have that
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were I Finally, it is evident that

that the thesis follows. 0

PROOF OF PROPOSITION 3.1 (Conclusion). With no loss of generality we
can assume that 4 where A, 0  A  e-1, is a constant

only depending on À, A, E, a and M, which will be chosen later on, since,
otherwise, (3.1) becomes trivial.

Let where a, y, have been introduced in Lemma 5.3.

We have that 0 depends on E and a only. Let i- = po9 and let

Since we have

Let r  r, that is 2013 ~ 9. By (5.10) we have EYF C fl S22,r · Let V,.
be the connected component of f1 whose closure contains Let

us notice that, by (5.14), po /4 for any x E Vr. Let us

prove (3.1)-(3.2) when i = 1, the case i = 2 being analogous. We have

where is the part of boundary contained in and r2,r is the part
contained in aQ2,r fl Therefore we have 

°

By (5.1 ) and (5.11) we have

with C only depending on Ä, A, E, a and M. From the divergence theorem
we have

Let x E By (5.10), dist(x, 9~i) ~ yl r. On the other hand, x E B Vr,
so that, as noticed above, po/4 &#x3E; ylr. Hence, there exists y E
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a S21 B E such that - yl r. Since v)(y) = 0,
from (5.1), (5.10) and (5.13) we have

where C only depends on ~., E, a and M.

Similarly, given x E r2,,., there exists y E aQ2 B ~ such that y - x ~ I =
dist(x, a S22)  yl r. Since v) (y) = 0, we have

where w is given by (5.20) and C only depends on À, E, a and M. From (5.1 ),
(5.12), (5.41)-(5.45), we have

where C only depends on À, E, a and M.
In order to estimate we shall make use of Step 2.r
Since min{dist(zo, dist(zo, a S22) } ? PO . &#x3E; Yl r, we have that
_ 

- 16(1+E2) -

Zo E where zo has been introduced in Step 2. Let x be any other point
in Yr. Since yor, it follows that x E Gyor-
Let y be an arc in Vr joining x to zo. Let us define = 1, ... , s, as
follows: xl = zo, y (ti), where ti = maxft s. t. if

~xl - x ~ I &#x3E; ~, otherwise let i = s and stop the process. By construction, the
balls are pairwise disjoint, I = 2 for i = 1,..., s - 1,
Ixs Hence we have s  with S only depending on E, a
and M.

At this stage we shall make use of a three spheres inequality for solutions v
to (l.la), where cr satisfies (2.9), more precisely: for every P2, 1  PI  P2,
there exist 1’, 0  l’  1, C ~ 1, only depending on X, A, fli 1 and such that
for every x E we have

This result can be derived, through minor adaptations, from the estimates found
by Garofalo and Lin in their proof of the unique continuation properties for
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this type of equations, [G-L]. See also [Ku,Theorem 4.1]. In particular, writ-
ing (5.47) for v - c, with c = (wnlrn) fBr(x) V and with fil = 7r/2, fl2 = 4r, and
applying Caccioppoli and Poincar6 inequalities, we have

An iterated application of the three spheres inequality (5.48) for w gives that
there exist only depending on h and A such that for
any r, 0  r ~ r,

From now on, let us denote 
-,

Since ~  p, we can estimate the right hand side of (5.49) by Step 2 and
by (5.39) and obtain

where 8, 0  8  1, and C &#x3E; 1 depend on X, A, E and a only. Let us recall
now the following interpolation inequality

which holds for any function v defined in the ball Bp C R~ and for any a,
0  a  1. By applying (5.51) to o w in we have, by (5.1) and (5.50),

where y = 0  y  1, and C depends on X, A, E a and M only.
From (5.46) and (5.52) we have that for any r  r

with C only depending on X, A, E a and M.
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Let us set }, A = min[A, exp(-y-2)}. We have
that ji  e-1 and it depends on X, A, E a and M only. Let I s 1-i and let

Since r (i) is increasing in (o, e-1 ) and since = po9 = ¡, inequal-
ity (5.53) is applicable when r = r(i) and we obtain

where C depends on X, A, E a and M only. On the other hand, since

, we have that log y so that

Therefore (3.1)-(3.2) follow. 0

PROOF OF PROPOSITION 3.2. Also in this case, it is not restrictive to assume
where is a constant only depending

on À, A, E, a, L and M, which will be chosen later on. Let us prove (3.1 )
and (3.3) when i = 1, the case i = 2 being analogous. We have

Since v = 0 on 8Qi 1 B APO and v = 0 on B A,00, denoting
w = u 1 - u2, by (5.1 ) we have that

where C depends on X, A, E, a and M only. Let us introduce the following
notation.

Given ,z E E Igl = 1, 9 &#x3E; 0, r &#x3E; 0, we shall denote by

the intersection of the ball Br(z) with the open cone having vertex z, axis in
the direction ~ and width 26 . Since a G is of Lipschitz class with constants ro,
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L, for any z E aG there exists ~ E = 1, such that C G,
where 0 = arctan t.

Let us notice that G4,. is connected for r  ~. Let us fix z E aG, and let

We have that Bp, (w 1) C C(z, ~, 01, ro), B4p, (w 1) C C (z, ~, 9, ro) C G, so that
Wi 1 E G4PI’ and -64p, 1 is connected since Moreover 4PI :::: p, so that
B4p, (zo) C G, where zo, p have been introduced in Step 2 of the proof of
Proposition 3.1. Arguing as in the proof of Proposition 3.1, we obtain, by an
iterated application of (5.48),

where r, 0  r  1, and C &#x3E; 1 depend on X and A only, and

By (5.19) and (5.39) we have

where 0  fil  1, depends on X, A, E, a, L, M and ~ only, and C &#x3E; 1

depends on X, A, E, L and ’00 only. Let us approach z E a G, by constructingro
a sequence of balls contained in C (z,03BE 01, ro). We define, for k &#x3E; 2,

with

Hence ,
. Denoting
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we have

with

For any r, 0  r  d(1), let k(r) be the smallest positive integer such that
d(k)  r, that is

By an iterated application of the three spheres inequality (5.48) over the chain
of balls Bpl (w 1 ), ... , (Wk(r)), we have

where C depends on X, A, E, L and §/ only. From the interpolation inequal-ro

ity (5.51) and from (5.2) we have

where depends on X, A, E, a, L, M and ill only. Let us considerrn

the point Zr = Z + r~. We have that E (5.62) and (5.2),
we have that for any r, 0  r  

Let

with

Let We have that and for any ~,
Choosing r = r (~) in (5.63) and recalling (5.57) and (5.60), we

have
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where C depends on X, A, E, a, M, L and only. Therefore (3.1 ) and (3.3)ro
follow with y = D

PROOF OF PROPOSITION 4.1. Similarly to the previous propositions, it is not
restrictive to assume E  where ji, 0  [t  e-1, is a constant

only depending on X, A, E, a and M, which will be chosen later on. Since

u = 0 on A,~ and u 1 - u 2 = 0 on A, arguing similarly to the proof of
Lemma 5.1, and recalling (4.6), we derive the following Schauder type estimates

where C &#x3E; 0 depends on X, A, E, a and M only. Let us prove (4.1)-(4.2)
when i = 1, the case i = 2 being analogous. Let us denote w = U I - U2 - Since
w = 0 on E, we have that Vu; = on E and therefore

so that

From now on, let us denote

From (5.36), (5.65) and (5.66) we have

where 81, 0  81  1, C &#x3E; 0 and p &#x3E; 1 depend on X, A and E only and we
refer to the notations introduced in the proof of Step 2 of Proposition 3.1. On
the other hand, we have (see [T])

where C depends on ~., A and E only. From (5.67) and (5.68) we have
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where C depends on À, A and E only and zo and p have been introduced in
Step 2 of the proof of Proposition 3.1.

Let and let

Notice that r for any Let Vr be the connected component of
whose closure contains Er- Since min{dist(zo, 8Qi), dist(zo, 8Q2)) g

p &#x3E; r, we have that zo E Vr. Let x be any other point in Vr. By repeating
arguments in the proof of Proposition 3.1, with the obvious changes, and by
using (5.65) and (5.69), we obtain that there exists r, 0  r  1, such that for
any r, 0  r ~ /), we have

where s s S (po/r)n, with S only depending on M and C &#x3E; 0 only depending
on À, A, E, a and M. By the local boundedness of solutions to elliptic
equations in divergence form (see, for instance, [G-T]), we have

where C depends on X, A, E, a and M only. Let Wr be the connected
component of the set {x E G s.t. dist(x, a G B A) &#x3E; r } whose closure contains .
Since S2 i B G C S21 B Wr and by using the maximum principle, we have

Hence it is sufficient to estimate I U 
Let x E a W,. B A, hence x E G and dist(x, a G B A) = r. Let us distinguish

two cases:

i ) dist(x, aG) = r,
ii) dist(x, aG)  r.

Let us assume that i ) occurs and let us again distinguish two cases:

I) there exists yEll such that Ix - yl = dist(x, a G B A) = r.
II) there exists y E 12 such that Ix - yl = dist(x, aG B A) = r.

If I ) occurs, from (5.64) we have

where C only depends on X, E, a and M.
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If I I) occurs, by (5.71) and (5.64), we have

where C only depends on X, A, E, a and M.
If case i i ) occurs, then there exists z E A such that a G)  r.

Since

it follows that z §t E, so that u 1 (z) = 0. Hence

where C only depends on X, E, a and M.
Therefore, for any r, 0  r  p-, we have

where C only depends on X, A, E, a and M.
Let us set ji We

have that A  e-I and it depends on X, A, E, a and M only. and
let

I , lln

Since r(~) is increasing in (0, ~ ~) and since r (ji) j = p, inequality (5.73)
is applicable when r = r(~) and we obtain

where C depends on X, A, E, a and NI only. Therefore (4.1)-(4.2) follow. 0

PROOF OF PROPOSITION 4.2. The same arguments involved in the proof of
Proposition 3.2, with the obvious changes, give the desired estimate. 0
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6. - Proofs of the estimates of continuation from the interior

PROOF OF PROPOSITION 3.3. This estimate was obtained in [Al-Ros-S,
Lemma 2.2] and we refer to it for a proof. Let us just recall that the main
ingredients are: a repeated use of the three spheres inequality (5.48) and the
following estimate

where C &#x3E; 0 only depends on ~., A, M and E, see the final remark in

[Al-Ros-S j . 0

PROOF OF PROPOSITION 4.3. Let P E There exists a rigid transformation
of coordinates under which we have P = 0 and

where V is a Lipschitz continuous function on BfJO(O) C JRn-1 satisfying
and , with and let

If . and then

and dist( where G.
denotes the intersection of the graph of cp with Hence dist(

, for every and every ,

Let us denote by and

let S E [r, 2r], with 2r  po /4. For every x’ E B po we have

and integrating with respect to s in [r, 2r] one gets

Integrating (6.3) over we derive
0
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Denoting by y the intersection of the graph of w with B Pó x R, we obtain

Let d denote the diameter of Q and let Q be a cube of side 2d containing Q.
We have that d  Cpo, where C &#x3E; 0 depends on E and M only. Let us divide
the sides of Q in m equal parts where

In this way we divide Q in mn subcubes with sides of size Let us

denote by
." 

--

the family of the subcubes of this partition such that

For any, we choose Xj E a SZ fl Qi and we denote by
up to a suitable rotation which brings xy in the origin, the set

We have that and

Let d : Then ~ I In fact let

with I It is easy to see that

Hence which implies that if I then
Since inequality (6.5) holds for for every

, summing up over j and using the fact that S,. C 04d, we have

where J  m n , with m n depending on M and E only. Let I

and let d s do. Let us fix Xo E S22 p and let us denote

Given x E Q4d, repeating arguments in the proof of Proposition 3.1, we can
consider a chain of pairwise disjoint spheres of radius d with center at points
of a path I connecting x to xo in Q4d, for d  do. An iterated application of
the three spheres inequality (5.47) gives
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where 8, 0  8  1, and C depend on X and A only and
, of sideCovering 94d with internally nonoverlapping closed cubes

d /..jn, we have

where X’ E Q i and From (6.7) and (6.9) we get

where C depends on X, A, E and M only. Letting we

rewrite (6.10) as follows

where C depends on À, A, E and M only. Let

Let us notice that ~ depends on E and :0 only, so that ao depends on ~., A,
E, M and -L only. If a  ao we choose d = da, where

Then da s d(ao) = do and from (6.11) we have

where C depends on À, A, E and M only. If a &#x3E; ao, from (6.11), using the
fact that a  1, and substituting d with do, we derive
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where C depends E and M only. Since
from (6.12) and (6.13) we have

where C depends on ~., A, E and M only. From (6.14) and from

where C depends on À, E and M only, we have

where C depends on À, A, E and M only. Therefore (4.5) follows with the
stated dependence. 0

7. - Proofs of the Doubling Inequalities

PROOF OF PROPOSITION 3.4. The starting point here is the doubling inequality
of Garofalo and Lin [G-L]. Given a solution v to

where a satisfies (2.9), and denoting by N = N(r) (this is a slight variant of
the so called Almgren’s frequency function)

we have that there exists r, 0  r s 1, only depending on A, such that

for every r, y s.t. 1:::: y and 

Here C &#x3E; 0 only depends on X and A, whereas x &#x3E; 0 only depends on À,
A and, increasingly, on See [G-L, Theorem 1.3] and also, for a more
recent proof, Kukavica [Ku, Theorem 3.1], to which we refer for notation and
details.
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The matter here is to translate (7.2) into a doubling inequality for Vu and
to evaluate N(rR) in terms of F, the frequency of the boundary data 1/1.

Let xo E let us fix fJ &#x3E; 1 and pick v = u - c and y = 2fl, where
c = 1 n u. By the use of Caccioppoli and Poincar6 inequalities, the

wnr . J J r 0

doubling inequality (7.2) leads to

for every r, fJ s.t. 1  fJ and

Here C &#x3E; 0 only depends on h and A, whereas K &#x3E; 0 only depends on À, A
and, increasingly, on

Using once more Caccioppoli inequality and by Proposition 3.3, (3.6) and (5.4),
we can majorize N(rp) by a constant C &#x3E; 0 only depending on À, A, E, M,

P and F. Thus (3.7) follows, provided The case when 2  pPO 
- 2 2 -

can be easily treated, again by the use of Proposition 3.3. 0

PROOF OF PROPOSITION 4.4. The arguments here are analogous to those used
for the proof of Proposition 3.4, the key difference being in the evaluation of
N(rp) in terms of the frequency of the Dirichlet data g, instead of the Neumann
data. Such an evaluation is obtained by the use of Proposition 4.3 instead of
Proposition 3.3. 0

PROOF OF PROPOSITION 3.5. First, let us assume = Id. We fix
coordinates (x’, xn ) suitable for the local representation of the boundary as a
graph as in Definition 2.1. Namely we have xo = 0 and

Where w is a C1,1 1 function on C I satisfying

and
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Following ideas in [A-E], we can costruct a map 4$ E C 1’ 1 (B,~ (O), RI) such
that

for every

for every

where pi - 0  Oi  1, i = 1, 2, and C1, C2, 01, 02 only depend on Ä,
A and E.

Denoting

we have

for

for every

for every

where C3 and C4 only depend on ~,, A and E. We have that v E H 1 ( B~ (o) )
is a weak solution to

in A

for

For every y E let us denote by a’(y) the symmetric matrix whose
entries are given by

if either
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We have that o-’ satisfies the same ellipticity and Lipschitz continuity conditions
as 03C3

Denoting

we have that W E H 1 ( B,~ (o) ) is a weak solution to

Moreover, from (7.4d) we have that

Choosing p = p2/2 in (7.3), we have

for every r, f3 s.t. 1  f3 and 0  p3,

where P3 = 8P2, 0  8  1/4, with 8 only depending on X, A and E and
where C and K depend on ~., A, E, and N (p3 ) only, with

where

Let From (7.8) we have that

where C depends on ~., A and E only. From (7.9) we have

where C and K depend on À, A, E and N (p3 ) only. From the two last

inequalities we have
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where C and K depend on ~., A, E and N (p3 ) only. From Caccioppoli
inequality and (7.8), we can estimate

where C depends on À, A and E only. Setting P = (0, P3/8),
we have that c Q n B P3/4(0)- From (7.12), (5.4) and Proposition 3.3
we have

where C depends on X, A, E M and F only.
On the other hand,

where C only depends on ~., A and E. Therefore we can majorize N (p3 ) by
a constant C &#x3E; 0 only depending on ~., A, E, M and F. Thus (3.8) follows,
provided p3/2. The case when P3/2  fir can be easily treated, again by
the use of Proposition 3.3.

In the general case Id, we can consider a linear transformation

S : R’ such that, setting we have = I d (here,
as above, we identify xo = 0). We have that, under such a transformation, the
modified coefficient cr, the transformed domain and the boundary data
satisfy a priori assumptions analogous to (2.1)-(2.7) and (2.9) with constants
which are dominated by the a priori constants po, M, E, a, F, X, A, up to
multiplicative factors which only depend on X. We also have that the ellipsoids
S(Bp (xo)) satisfy

Therefore, by a change of variables, using the result just proved when 
I d, we obtain (3.8). 0

We premise the proof of Proposition 4.5 with an auxiliary lemma which, in
a more general form, is due to Adolfsson and Escauriaza [A-E, Theorem 1.1].
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LEMMA 7.1 (Adolfsson-Escauriaza). Let Q’ be a domain such that 8 Q’ is of
Lipschitz class with constants ro, L &#x3E; 0 and 0 E a S2’. Let w be a nonconstant
solution to

for some Ro &#x3E; 0, where a’ is a function from with values n x n symmetric
matrices satis, fying the following assumptions, for given constants Ào and C:
i)

ii)

iii)

iv)

, for every x

Then there exists R, 0  R  Ro, with R/Ro only depending onko and L, such that

for every r, P s. t. 1  p and 0  fir  R ,

where C &#x3E; 0 only depends on a, C whereas K &#x3E; 0 only depends on
- R - 

ro

X0, a, C, R0 and, increasingly, on lV(Ro), where0

PROOF OF LEMMA 7.1. The proof is contained in [A-E, Proof of Theo-
rem 1.1 ], the only differences being in a more explicit evaluation of the con-
stants C and K in terms of the a priori data, and a slight modification of the
expression of Ñ. 0
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PROOF OF PROPOSITION 4.5. Up to a rigid motion, we can set xo = 0 and

where V is a function on C lEBn-1 satisfying

and

We shall follow the main lines of the proof of Theorem 0.4 of [A-E]. The idea
is to construct a diffeomorphism (D from S2’ fl BP2 (0) to S2 fl B pl (0), where

{y E BP2(O) s.t. yn &#x3E; ’~I~’ ( y’) } and 1/1 E (Bp2 (0) C for
some pl &#x3E; 0, p2 &#x3E; 0, showing that w(y) = u((D(y)) satisfies the assumptions
of Lemma 7.1 and hence inequality (7.17).

Let 1 and let

Following the computations in [A-E], we have that there exist p 1, p2, 0  
po, 0  p2  po, with pilpo, p2 / po only depending on E and a, such that
O E (Bp2 (0), RI) satisfies

for every

for every

is of Lipschitz class with constants p2, L ,

where C2 &#x3E; 0 and L &#x3E; 0 only depend on E and a.
Denoting by
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we have

for every y E S2’ n B,,2 (0) and every ~ 

for every

for every

for every

where C3 &#x3E; 0 only depends on X, A, a and E. Moreover, we have that
w E n BP2(O» is a weak solution to

in

on

All the above properties (7.21)-(7.23) follow extending the arguments of the
proof of Theorem 0.4 of [A-E] to operators in divergence form. In particu-
lar, (7.21e) and (7.22c) are obtained by observing that a 0, n BP2(O) is the C 

1

graph defined implicitly by a function * satisfying

and by differentiating implicitly (7.24a).
Hence we can apply Lemma 7.1 to the solution w to (7.23), with ro =

Ro = P2, Ào = À/8, ë = C3(p2)a so that C only depends on X, A, E and a.PO
Hence we obtain

for every r, fJ s.t. 1  fJ and 0  fir  p3 ,

where 0  p3  p2, with p3/po, C &#x3E; 0 only depending on X, A, E and a,
whereas K &#x3E; 0 only depends on X, A, E, a and ~V(/03).

Moreover, from (7.21c) we have that
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Let 0  r  Or  P3/2. From (7.25) and (7.26) we have, arguing similarly to
the proof of Proposition 3.5, that

where C and K only depend on X, A, E, a and N(~3). From (7.26) and (6.15)
we can estimate

where C &#x3E; 0 only depends on X, E, a and M. On the other hand

where C only depends on X, E and a.
Setting , we have that

From (7.29) and Proposition 4.3 we have

where C only depends on ),, A, E, M and F. Therefore we can majorize
9 (P3) by a constant C &#x3E; 0 only depending on X, A, E, a, M and F. Thus
(4.8) follows, provided ~Br  P3/2. The case when p3/2  fir can be easily
treated, again by the use of Proposition 4.3.

In the general case Id, (4.8) is derived by repeating arguments in
the proof of Proposition 3.5. a

8. - Relative Graphs

We premise the proof of Proposition 3.6 with one lemma.

LEMMA 8.1. Let QI, Q2 be two bounded domains. There exist absolute con-
stants Lo, 80, Lo &#x3E; 0, 0  So  1, such that if

(8.1a) the boundaries of 0 1, Q2 are of Lipschitz class with constants po, L ,

and also
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then the following facts hold true:
i) for every P E 8521, up to a rigid transformation of coordinates which maps P

into the origin, we have

where ro = with a suitable absolute constant 81, ðo  81 :5 1, and (pi, (p2
are Lipschitzfunctions on Bro (0) C W-1 satisfying

i i ) we have

where dm is the modified distance introduced in Definition 3.2. Here, the
quantities L 1, Kt, K2 are also positive absolute constants.

REMARK 8.1. It may be interesting to note that the above lemma may fail
if the smallness hypothesis (8.1 b) on the Lipschitz constant is dropped. In fact,
a two dimensional example by Rondi [R, Remark 2.3] shows that i ) may not
hold when L = 1.

PROOF OF LEMMA 8.1. Up to a dilation of the coordinate system, we can
assume, without loss of generality, that po = 1. Let us denote, for simplicity,

and let us set

(8.5) a = arctan L, ao = arctan L o .

Let us fix P E and let (x’, xn ) be the coordinate system centered at P
appearing in the local graph representation of a S21 1 given in Definition 3.1. Let
us define the following truncated conical regions

for every h &#x3E; 0. By (8.1 c) and (8.4) we have

and, again by (8.4), there exists Q E S22 fl Bi(0) such that
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Let Q = (y’, and let l ( Q) be the following vertical segment

Now, provided Lo and So are chosen sufficiently small, we have that the top
endpoint of /(6) is Q ~ f22, whereas the bottom endpoint of /(6) is outside
of Tilcos. and hence, by (8.7), outside of 02. Therefore there exists Q’ ~

thus

Observe also that, by the same reasoning, we can prove that for every Q E a g2
there exists P’ E a S21 1 such that

where In other words, we have proven that

Now, by the Lipschitz character of a SZ2 and by (8.11), we have that, given Q’
as above,

where R : W -+ 1Rn is a suitable rotation such that Bl (Q’) has the local
graph representation of Definition 3.1 in the rotated coordinates Rx, x = (x’, xn).
Therefore, by (8.7),

This condition poses a constraint on the angle 6 between the unit vectors en,
Ren. Indeed, by some trigonometry, we can obtain

where the function L) ~ 0 tends to zero as (d, L) -~ (0, 0). Therefore,
if 80, Lo are chosen sufficiently small, then we can find constants SI, L 1,
So  ð1 :::: 1, Lo s L i , such that a SZ2 fl Ba (0) is a Lipschitz graph also with
respect to the coordinates (x’, xn ), with Lipschitz constant L 1. Therefore (8.2a),
(8.2b) hold. Next we prove (8.2c). For every x’ E Ba (0) C in view
of (8.11), let (y’, ~1 (y’)) E ant 1 be such that

Therefore
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Hence we may pick I~l - ( 1 + Lo)C, where C is as in (8.10), and (8.2c)
follows. Finally, we prove (8.3). Suppose, without loss of generality, that

Q E a S21 are such that IP - QI - d With the
local representation of a S21 within Bs (P), as introduced above, let Q = (y’, yn ) .
By (8.2a), we must have w2(y’) and, posing P’ = (y’, CPI(Y’), we have

&#x3E; yn. Therefore

Possibly choosing a smaller 80, we can find a point (X’, (x’)) E Bs, (0) such
that

Therefore

and also, by (8.12),

Therefore (8.3) holds with K2 = L + 1. 0

PROOF OF PROPOSITION 3.6. Notice that, if = 1, 2, are of class C l,a
with constants po, E, then they are also of Lipschitz class with constants p,

for every p, 0  p  po. Therefore, if we fix po such that
PO 

- -

E (° )"  Lo, and do is chosen in such a way that 8o pl, then the hypothesesPO 
- 

. 

- 

of Lemma 8.1 are met, provided po is replaced with pl. Notice that now we
shall have ro = 81 pi , hence ro/po only depends on a and E. Let P E aS21 and
let (x’, xn ) the coordinates used in the local representation of 8Qi as a Cl,’
graph given by Definition 2.1.We already know that also aQ2 is represented
near P by the graph of a Lipschitz function ~p2. We need to show that also w2
is We know that there exists a coordinate system for which a Q2nBro (0)
is represented as a graph of a Cl,’ function. Let (~,~), ~ E E R,
be such coordinate system in and let p e Bro (0) C R n-I
the function such that

and also Denoting by v the exterior unit normal to a S22 within
we have
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and therefore we can easily compute a constant K &#x3E; 1 such that

Setting we obtain

for every

Turning back to the (x’, xn ) coordinates, if
obtain

we

Rephrasing now (8.13) in terms of the coordinates (x’, xn ) :

we easily derive

where C &#x3E; 0 is an absolute constant. Now, for any fl, 0  f3  a, we can use

the interpolation inequalities

where CI &#x3E; 0 only depends on a and P, C2 &#x3E; 0 only depends on a, and norms
and seminorms are taken on C We obtain, by (8.2c),

where, as above, Cl &#x3E; 0 only depends on a and P, C2 &#x3E; 0 only depends on a.
Again by (8.2c) we deduce
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where C &#x3E; 0 only depends on a and P. Now, do  80pi  po,
we obtain (3.12). Finally i i ) and iii) follow from Lemma 8.1, more precisely
from (8.3) and (8.2) respectively. C7
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