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Optimal Stability for Inverse Elliptic Boundary
Value Problems with Unknown Boundaries

GIOVANNI ALESSANDRINI - ELENA BERETTA -
EDI ROSSET - SERGIO VESSELLA

Abstract. In this paper we study a class of inverse problems associated to elliptic
boundary value problems. More precisely, those inverse problems in which the
role of the unknown is played by an inaccessible part of the boundary and the role
of the data is played by overdetermined boundary data for the elliptic equation
assigned on the remaining, accessible, part of the boundary. We treat the case
of arbitrary space dimension n > 2. Such problems arise in applied contexts
of nondestructive testing of materials for either electric or thermal conductors,
and are known to be ill-posed. In this paper we obtain essentially best possible
stability estimates. Here, in the context of ill-posed problems, stability means the
continuous dependence of the unknown upon the data when additional a priori
information on the unknown boundary (such as its regularity) is available.

Mathematics Subject Classification (2000): 35R30 (primary), 35R25, 35R35,
35B60, 31B20 (secondary).

1. — Introduction

In this paper we shall deal with two inverse boundary value problems.

Suppose 2 is a bounded domain in R" with sufficiently smooth bound-
ary 3%, a part of which, say I (perhaps some interior connected component
of 3Q or some inaccessible portion of the exterior component of 9€2), is not
known. This could be the case of an electrically conducting specimen, which is
possibly defective due to the presence of interior cavities or of corroded parts,
which are not accessible to direct inspection. See for instance [K-S-V]. The aim
is to detect the presence of such defects by nondestructive methods collecting
current and voltage measurements on the accessible part A of the boundary 9<2.

If we assume that the inaccessible part I of 32 is electrically insulated,
then, given a nontrivial function ¥ on A, having zero average (which represents
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the assigned current density on the accessible part A of 3S2), we have that the
voltage potential u inside Q satisfies the following Neumann type boundary
value problem

(1.1a) div(oVu) =0, in Q,
(1.16) oVu-v=1y, on A,
(1.1¢) oVu-v=0, onl.

Here, v is the exterior unit normal to 92 and o = {0;;(x)}; j=1 denotes the
known symmetric conductivity tensor ant it is assumed to satisfy a hypothesis
of uniform ellipticity. Let us remark that the solution to (1.1a)-(1.1c) is unique
up to an undetermined additive constant. In order to specify a single solution,
we shall assume, from now on, the following normalization condition

(1.1d) /Q u=0.

Suppose, now, that X is an open subset of d€2, which is contained in A, and
on which the voltage potential can be measured. Then, the inverse problem
consists of determining / provided u|z is known. This is the first object of our
study and we shall refer to it as the Inverse Neumann Problem (Neumann case,
for short).

An allied problem is the one associated to the direct Dirichlet problem

(1.2a) div(coVu) =0, in Q,
(1.2b) u=g, onA,
(1.2¢) u=0, onl.

Here, as above, I, A are the inaccessible, respectively, accessible, parts of 9€2,
and o is the conductivity tensor satisfying the same hypotheses. Our second
object of study is the inverse problem consisting in the determination of / from
the knowledge of oVu - vz, where £ C A is as above. We shall refer to it as
the Inverse Dirichlet Problem (Dirichlet case, for short). We believe that also this
problem may be of interest for concrete applications of nondestructing testing,
for instance in thermal imaging. In this case, the inaccessible boundary I
could represent a priviledged isothermal surface, such as a solidification front.
Of course, it should be kept in mind that, dealing with thermal processes,
the evolutionary model based on parabolic, rather than elliptic, equations is in
general more appropriate, for related issues see, for instance, [B-K-W], [Bil],
[V1]. However, we trust that also a preliminary study of a stationary model
may be instructive.

Such two problems, the Neumann and Dirichlet cases, are known to be
ill-posed. Indeed there are examples that show that, under a priori assumptions
on the unknown boundary I regarding its regularity (up to any finite order of
differentiability), the continuous dependence (stability) of / from the measured
data (u|z in the Neumann case, o Vu - vjs in the Dirichlet case) is, at best, of
logarithmic type. See [Al2] and also [Al-R].
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The main purpose of this paper is to prove stability estimates of loga-
rithmic type (hence, best possible) for both the Neumann and Dirichlet cases,
(Theorems 2.1, 2.2), when the space dimension n > 2 is arbitrary. We recall
that, for the case n = 2, results comparable to ours have been found in [Be-V]
when o is homogeneous and in [R], [Al-R] when o can be inhomogeneous
and also discontinuous. Other related results for the case of dimension two can
be found in [Bu-C-Y1], [Bu-C-Y2], [Bu-C-Y3], [Bu-C-Y4], [An-B-J]. Let us
also recall that, typically, the above mentioned results are based on arguments
related, in various ways, to complex analytic methods, which do not carry over
the higher dimensional case.

In the sequel of this Introduction, we shall illustrate the new tools we
found necessary to develop and exploit when n > 2. But first, let us comment
briefly on the connection with another inverse problem which has become quite
popular in the last ten years, namely the inverse problem of cracks. On one
hand there are similarities, in fact a crack can be viewed as a collapsed cavity,
that is a portion of surface inside the conductor, such that a homogeneous
Neumann condition like (1.1¢) holds on the two sides of the surface. On the
other hand there are differences, for the uniqueness in the crack problem at
least two appropriate distinct measurements are necessary [F-V], whereas for
our problems, either the Neumann or the Dirichlet case, any single nontrivial
measurement suffices for uniqueness, see for instance [Be-V] for a discussion
of the uniqueness issue. Let us also recall that for the crack problem in
dimensions bigger than two, various basic problems regarding uniqueness are
still unanswered. See, for the available results and for references [Al-DiB]. It is
therefore clear that a study of the stability for the crack problem in dimensions
higher than two shall require new ideas. Nonetheless, the authors believe that
the techniques developed here might be useful also in the treatment of the crack
problem.

The methods we use in this paper are based essentially on a single unifying
theme: Quantitative Estimates of Unique Continuation, and we shall exploit it
under various different facets, namely the following ones.

(a) Stability Estimates of Continuation from Cauchy Data. Since we are given
the Cauchy data on X for a solution u to (1.1a), we shall need to evaluate
how much a possible error on such Cauchy data can affect the interior
values of u. Such stability estimates for Cauchy problems associated to
elliptic equations have been a central topic of ill-posed problems since the
beginning of their modern theory, [H], [Pul], [Pu2]. Here, since one of
our underlying aims will be to treat our problems under possibly minimal
regularity assumptions, we shall assume the conductivity o to be Lipschitz
continuous (this is indeed the minimal regularity ensuring the uniqueness
for the Cauchy problem, [P1], [M]). Our present stability estimates (Propo-
sitions 3.1, 3.2, 4.1, 4.2) will elaborate on inequalities due to Trytten [T]
who developed a method first introduced by Payne [Pal], [Pa2]. The ad-
ditional difficulty encountered here will be that we shall need to compare
solutions u;, u, which are defined on possibly different domains €2;, 2,
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whose boundaries are known to agree on the accessible part A only. Let
us recall that a similar approach, but restricted to the topologically simpler
two-dimensional setting, has already been used in [All], [Be-V]. We shall
obtain that, if the error on the measurement on the Cauchy data is small,
then for the Neumann case, also |Vu;| is small, in an L? average sense,
on Q; \ €, the part of ©; which exceeds Q,. And the same holds for
|Vusy| on €5 \'Q; (Propositions 3.1, 3.2). In the Dirichlet case instead we
shall prove that u itself is small in ©; \ Q;, and the same holds for u,
on ©, \ Q; (Propositions 4.1, 4.2).

Estimates of Continuation from the Interior. We shall also need interior
average lower bounds on u and on its gradient (Propositions 3.3, 4.3), on
small balls contained inside 2. Bounds of this type have been introduced
in [Al-Ros-S, Lemma 2.2] in the context of a different inverse boundary
value problem. The tools here involve another form of quantitative unique
continuation, namely the following.

Three Spheres Inequalities. Also this one is a rather classical theme in
connection with unique continuation. Aside from the classical Hadamard’s
three circles theorem, in the context of elliptic equations we recall Lan-
dis [La] and Agmon [Ag]. Under our assumptions of Lipschitz continuity
on o, our estimates (see (5.47) below) shall refer to differential inequalities
on integral norms originally due to Garofalo and Lin [G-L], later developed
by Brummelhuis [Br] and Kukavica [Ku].

Doubling Inequalities in the Interior. This rather recent tool has been intro-
duced by Garofalo and Lin in the above mentioned paper [G-L]. It provides
an efficient method of estimating the local average vanishing rate of a so-
lution to (1.1a). Let us recall that it also provides a remarkable bridge
to the powerful theory of Muckenhoupt weights [C-F] and that this last
connection has been crucially used in [Al-Ros-S] and also in [V2].

The last, fundamental, appearance of quantitative estimates of unique con-

tinuation is the following.

O]

Doubling Inequalities at the Boundary. For our purposes it will be crucial
to evaluate the vanishing rate of Vu (in the Neumann case) or of u (in
the Dirichlet case) near the inaccessible boundary I. In particular, the fact
that such a rate is not worse than polynomial (Propositions 3.5, 4.5) is an
essential ingredient in proving that the stability for our inverse problems are
not worse than logarithmic (see the proof of Theorem 2.1). Such evalua-
tions on vanishing rates near /, where an homogeneous boundary condition
applies (either (1.1¢) or (1.2.c)), can be obtained by the so called Dou-
bling Inequalities at the Boundary. The study of such inequalities has been
initiated by Adolfsson, Escauriaza and Kenig [A-E-K] and later developed
by Kukavica and Nystrom [Ku-N] and Adolfsson and Escauriaza [A-E]. In
particular, in [A-E] such inequalities are proven, for the Neumann problem,
when the boundary is C!'! smooth, and, for the Dirichlet problem, when
the boundary is C"* smooth, where the modulus of continuity ® is of
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Dini type. We shall use essentially such results, with the only difference
that, mainly for simplicity of exposition, we shall assume, in the Dirichlet
case, that w(t) = 1%, 0 < a < 1, that is of Hélder type (Propositions 3.5,
4.5). Let us also recall that the conjecture which has been left open by
the above mentioned papers is that the Doubling Inequality at the Bound-
ary should hold true when the boundary is Lipschitz. Hopefully, if such
conjecture were proven, then our stability results, Theorems 2.1, 2.2, might
be generalized as follows. If I is a priori known to be Lipschitz with a
sufficiently small Lipschitz constant, then the logarithmic stability estimates
of Theorems 2.1, 2.2 should apply also to this case. If instead the Lips-
chitz constant of I is large, then the best possible stability estimate might
be worse than logarithmic. This last expectation is motivated by the fact
that two Lipschitz surfaces with large Lipschitz constant may be arbitrarily
close in the sense of the Hausdorff distance, but locally they need not to
be representable as graphs in a common reference system (see Rondi [R]
for an example). If it happens that this is the case for the unknown bound-
aries I, I, then it might also happen that estimates on the smallness of
|Vu;] in £\ Q; (in the Neumann case, for instance) are worse than loga-
rithmic. In fact from the proofs of Propositions 3.2, 4.2, the importance of
proving that I, I, are locally represented as graphs in a common reference
system will become evident. This property of I;, I will be referred to by
saying that I;, I, are Relative Graphs. Sufficient conditions guaranteeing
that the boundaries of the two domains £2;, €2, are Relative Graphs will
be examined in Proposition 3.6. As we already mentioned, in this paper
we intend to strive after optimal results under possibly minimal a priori
assumptions of regularity (see i) and iii) in Section 2). Moreover, very
general assumptions on the unknown boundary /I are made. It may have a
finite, but undetermined, number of connected components, and no restric-
tion is placed on their topology. Furthermore we use a single measurement
corresponding to one boundary data, either ¢ or g, that can be prescribed
arbitrarily. Concerning their regularity, the assumptions (2.7a), (2.8a) are
quite loose and essentially correspond to the natural ones in the treatment
of the direct problems (1.1), (1.2) respectively. In addition, we shall re-
quire a bound on the oscillation character (frequency) of ¢ or of g. This
is expressed as a bound on a ratio of two norms: either

¥l 2 .
— L& < F, in the Neumann case,
"1[’"11—1/2(4)
x gl
12
1824 < F in the Dirichlet case.
gl 2(a)

Such control will be necessary in order to dominate the vanishing rates of
the solutions in terms of quantities which depend only on the prescribed
data. Notice that F may be arbitrarily large, but it is expected that the
constants in the estimates of Theorems 2.1, 2.2 may deteriorate as F — 00.
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The plan of the paper is as follows.

In Section 2 we shall state the main Theorems 2.1, 2.2, we also state
Corollary 2.3 which provides a finer interpretation of the stability estimates in
the previous theorems. Here, instead of estimating the Hausdorff distance of
the domains ;, 27, we shall estimate their distance locally, in terms of the
graph representation of their boundaries, and also globally, by viewing them as
imbedded differentiable manifolds with boundary.

Sections 3 and 4 contain the proofs of Theorem 2.1 and Theorem 2.2,
respectively. The proofs are preceded by the statements of various auxiliary
propositions (Propositions 3.1-3.6, Propositions 4.1-4.5). Section 4 contains
also the proof of Corollary 2.3.

Section 5 contains the proof of the propositions regarding the estimates of
continuation for Cauchy problems, and namely Propositions 3.1, 3.2, 4.1 and 4.2.
Such proofs are accompanied by some intermediate lemmas. Lemma 5.1 collects
some regularity results for the direct Neumann problem. Lemmas 5.2, 5.3 deal
with the technical notion of regularized distance as introduced by Lieberman.

Section 6 contains the proofs of Propositions 3.3, 4.3 concerning estimates
of continuation from the interior.

Section 7 contains all the proofs concerning doubling inequalities. Namely,
the proofs of Propositions 3.4, 4.4, dealing with the interior doubling inequalities,
the proofs of Propositions 3.5, 4.5, where the results of Adolfsson and Escauriaza
are adapted to the present purposes. Their result for the Dirichlet problem is
summarized in Lemma 7.1.

Section 8 deals with Relative Graphs, first in Lemma 8.1 we treat the
general case of Lipschitz boundaries, and we conclude with the proof of Propo-
sition 3.6.

2. — The main results

When representing locally a boundary as a graph, it will be convenient to
use the following notation. For every x € R"* we shall set x = (x/, x,,), where
x'eRvL x, eR.

DEFINITION 2.1. Let  be a bounded domain in R". Given a, 0 <« <1,
we shall say that a portion S of 32 is of class C*® with constants py, E > 0,
if, for any P € S, there exists a rigid transformation of coordinates under which
we have P =0 and

QN By (0) = {x € By (0) s.t. x, > (x)},
where ¢ is a C** function on B,,(0) C R*~! satisfying
90) = |Vp(@©0)| =0

and
"(oucl,a(ypo(o)) <Ep.
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ReEMARK 2.1. To the purpose of simplifying the expressions in the various
estimates throughout the paper, we have found it convenient to scale all norms in
such a way that they are dimensionally equivalent to their argument and coincide
with the standard definition when the dimensional parameter py equals 1. For
instance, for any ¢ € C!** (B,,(0)) we set

ol ctasy 0 = 191000 + Lol VOl L@, ) + £o+* VP la B -

where Vo) — Vo)
o(x') — Vo(y
IV@la,Byy@ =  sup T oa
x',y'€Bp (0) [x" —y'|
x'#y'

Similarly, we shall set

1/2
-n/2
lull 20y = Po " (,/sz u2) )

12
—n/2
el g1 ey = 5™ ( [+t IVulz) ,

and so on for boundary and trace norms such as || - l,2¢30) I - 51250
Il - "H—I/Z(asz)-
i) A priori information on the domain.

Our main Theorems 2.1, 2.2 will be based on the following assumptions
on the domain. Given pg, M > 0, we assume:

@.1) 121 < Mpj .

Here, and in the sequel, |Q2] denotes the Lebesgue measure of 2. We shall
distinguish two nonempty parts, A, I in 32 and we assume

2.2) JUA=0Q, INA=0, INA=03A=2l.

Here, interiors and boundaries are intended in the relative topology in 9.
Moreover we assume that we can select a portion X within A satisfying for
some P, € ¥

2.3) 0QN By (P CZ,
and also, denoting by 770 the portion of <2 of all x € 3€2 such that dist(x, I') < po,

Regarding the regularity of 9%, given @, E, 0 < a <1, E > 0, we assume
that

(2.5) aQ is of class C'*® with constants pg, E .
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In addition, in Theorem 2.1, we shall also assume the following

2.6) I is of class C!'! with constants pg, E .

REMARK 2.2. Observe that (2.5) automatically implies a lower bound on the
diameter of every connected component of dS2. Moreover, by combining (2.1)
with (2.5), an upper bound on the diameter of Q can also be obtained. Note
also that (2.1), (2.5) implicitly comprise an a priori upper bound on the number
of connected components of 9.

ii) Assumptions about the boundary data.
Let us set
Apy = {x € A s.t. dist(x, I) > po},
(that is: A,y = 92\ I™). We shall assume the following on the Neumann data
Y appearing in problem (1.1)

(2.7a) ¥ e L*(4), ¥ #0,
(2.7b) / ¥ =0,
A
(2.7¢) suppy¥ C Ay,
and, for a given constant F > 0,
Iy "H"I/Z(A)

Concerning the Dirichlet data g appearing in (1.2), we assume

(2.8a) ge H*(A), g#0,
(2.8b) suppg C Ay »
2.8¢) "8"111/2(,4) <

"g"LZ(A)

As noted already in Remark 2.1, norms are suitably scaled so to be dimensionally
equivalent to their argument.

iii) Assumptions about the conductivity.

The conductivity o is assumed to be a given function from R” with values
n x n symmetric matrices satisfying the following conditions for given constants
A, A,O<A<1,A=0,

(29a) AlEP<o(x)E-&<A7lgJ?, for every x, £ €R", (ellipticity)

Ix —yl

295) Jox)—o(y)|<A 4 , for every x, yeR".(Lipschitz continuity)

In the sequel, we shall refer to the set of constants E, a, M, F, A, A as
to the a priori data.



INVERSE PROBLEMS WITH UNKNOWN BOUNDARIES 763

THEOREM 2.1. Let Q), Q, be two domains satisfying (2.1), (2.5). Let A;, I;,
i = 1, 2, be the corresponding accessible and inaccessible parts of their boundaries.
Let us assume that Ay = Ay = A, Q4, 2 lie on the same side of A and that (2.2)-
(2.4) are satisfied by both pairs A;, I;. Let I, I satisfy (2.6). Let u; € H(R;) be
the solution to (1.1) when Q = Q;,i = 1,2, and let (2.7), (2.9) be satisfied. If,
given € > 0, we have

2.10) s — wall 2y < €,

then we have

@.11) (@1, 0) < pow | ———— |,
poll¥ll g-172¢4)

where w is an increasing continuous function on [0, 00) which satisfies
(2.12) w(t) <C|logt|™, foreveryt <1,

and C, 1, C > 0, 0 < n < 1 are constants only depending on the a priori data.
Here d;; denotes the Hausdorff distance between bounded closed sets of R"

THEOREM 2.2. Let 4, Q and A;, I;,i = 1,2, be as in Theorem 2.1. Let (2.1)-
(2.5) be satisfied. Let u; € H'(Q;) be the solution to (1.2) when Q@ = Q;,i = 1,2,
and let (2.8), (2.9) be satisfied. If, given € > 0, we have

(2.13) polloVuy -v—oVuy - vlle(E) <e€,

then we have

2.14) (1, ) < pooo | ——— |,
: "8"1-11/2(,1)

where w is as in (2.12) and the constants C, n, C > 0, 0 < n < 1 only depend on
the a priori data.

COROLLARY 2.3. Let the hypotheses of either Theorem 2.1 or Theorem 2.2 be
satisfied. There exist ro, 0 < ro < po, only depending on py, E, a, and €y > 0, only
depending on the a priori data, such that if € < €g then for every P € 321 U 9K2,
there exists a rigid transformation of coordinates under which P = 0 and

(2.15) Qi N B,y (0) = {x € B;y(0) s.t. x, > i (x)}, i=1,2,

where @1, @, are C* functions on B,,(0) C R"~! which satisfy, for every B,
0<B<a,

.
2.16) o1 = @2llcrsa o < K@ T
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where €
——————, when Theorem 2.1 applies ,
‘= P0||¢||H—1/2(A)
= €
—_ when Theorem 2.2 applies ,
llg ||H1/2(A)

w is as in (2.12) and K > 0 only depends on E, @ and B. Furthermore, there
exists a C1 diffeomorphism F : R* — R" such that F(2;) = Q2 and for every B,
0<B<a,

@17 IF = Idllc1pn < poKo@ T

with K, w as above. Here Id : R* — R" denotes the identity mapping.

3. — Proof of Theorem 2.1

Here and in the sequel we shall denote by G the connected component of
Q; N, such that £ C G.

The proof of Theorem 2.1 is obtained from the following sequence of
propositions.

ProrosiTioN 3.1 (Stability Estimate of Continuation from Cauchy Data). Let
the hypotheses of Theorem 2.1, except (2.6), be satisfied. We have

€
3.1 /'IWPswwV_ o[l — ), i=12,
oG 0N TR AWT N poll ¥l g-1/204

where w is an increasing continuous function on [0, 00) which satisfies

(3.2) o(t) < C(og|logt])™*/™,  foreveryt <e™!,

and C > 0 depends on A, A, E, a and M only.

DerINITION 3.1. Let Q be a bounded domain in R". We shall say that
a portion S of 32 is of Lipschitz class with constants py, E > 0, if, for any
P € S, there exists a rigid transformation of coordinates under which we have
P =0 and
QN By (0) = {x € Byy(0) s.t. x, > p(x)},

where ¢ is a Lipschitz continuous function on B,,(0) C R"~! satisfying
90)=0

and
||‘P||Co,1 (BPO(O)) = EPO .
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Here the C*! norm is scaled according to the principles stated in Remark 2.1,
that is

||‘P"C0,1 (Bpo(o)) = "¢"Loo (Bpo(o)) + p0|¢|l,Bp0(0) .
ProrosITION 3.2 (Improved Stability Estimate of Continuation from Cauchy
Data). Let the hypotheses of Proposition 3.1 hold and, in addition, let us assume

that there exist L > 0 and ro, 0 < ry < pg, such that 3G is of Lipschitz class with
constants ro, L. Then (3.1) holds with w given by

(3.3) w(t) <Cllogt|™?, for every t < 1,
wherey > 0and C > 0 only depend on A, A, E, a, M, L and py/ro.
We shall denote
Q, = {x € Q s.t. dist(x,dQ2) > r}.

ProrposiTiON 3.3 (Lipschitz Stability Estimate of Continuation from the In-
terior). Let Q2 be a domain satisfying (2.1), such that 3S2 is of Lipschitz class with
constants pg, E. Let u € H'(2) be the solution to (1.1), where \ satisfies

(3.:4a) ¥ e L’(0Q), ¢ #0,
(3.4b) / V=0,
aQ
and, for a given constant F > 0,
(3.4C) "'//"LZ(aQ) <
"‘/f"H—lﬂ(ag) -
and o satisfies (2.9). For every p > 0 and every xo € 45, we have
2 2
3.5) /. o P = CAIV -

where C > Odepends on A, A, E, M, F and p/pg only.

ReEMARK 3.1. Let us notice that if ¢ satisfies (2.7a)-(2.7d), then it also
satisfies (3.4a)-(3.4c) up to possibly replacing F with a multiple cF, where
¢ only depends on E. In fact, for functions i satisfying (2.7c) the following
equivalence relations can be obtained

1
(3.6) Z"‘/’"H—lﬂm) = "1/’"11—1/2(39) = "‘/f"H—I/Z(A) .

ProprosiTiON 3.4 (Interior Doubling Inequality). Let 2 be a domain satisfy-
ing (2.1), such that S is of Lipschitz class with constants po, E. Letu € H'(2) be
the solution to (1.1), where r satisfies (3.4) and o satisfies (2.9). For every p > 0
and every xy € Q2,, we have

/ Vu <cg¥ [ Vul?,
3.7 Bg, (x0) By (xp)

foreveryr,Bst. 1 <fand0 < Br <p,
where C > 0and K > Odependon A, A, E, M, F and p/pg only.
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ProposITION 3.5 (Doubling Inequality at the Boundary). Let 2 be a domain
satisfying (2.1) and (2.5). Let us assume that the accessible and inaccessible parts
A, I of its boundary satisfy (2.2)-(2.4) and (2.6). Letu € H 1(Q) be the solution
to (1.1) and let (2.7) and (2.9) be satisfied. Let xo € I. For any r > 0 and any
B > 1 we have

(3.8) / VP < B / Vul,
QnBg, (x0) QnB; (x9)

where C > 0and K > 0 depend on A, A, E, M and F only.

In the sequel, it will be expedient to introduce a quantity which is a slight
variation of the Hausdorff distance between £2; and ;.

DErFINITION 3.2. We call modified distance between £2; and 2, the number

(3.9) dn (21, 7) = max { sup dist(x, 2;), sup dist(x, Ql)} .
xX€I) X€IR)

Notice that we obviously have

(3.10) dm(R21, R2) < d3(Q1,22),

but, in general, d,, does not dominate the Hausdorff distance, and indeed it
does not satisfy the axioms of a distance function. This is made clear by
the following example: Q; = B;(0), € = B1(0) \ Bi2(0). In this case
dm(Q1, ) = 0, whereas dn(Q, Q) = 1/2.

ProposiTION 3.6 (Relative Graphs). Let 2;, 2, be bounded domains satisfy-
ing (2.5). There exist numbers dy, ro, dp > 0, 0 < ro < py, for which the ratios %,

%% only depend on a and E, such that if we have

(3.11) dn (1, Q) < dy,

then the following facts hold:

i) Forevery P € 3K2;, up to a rigid transformation of coordinates which maps P
into the origin, we have

Qi N Byy(P) = {x € B,,(0) s.t. x, > ;(x")}, i=1,2,
where @y, @, are C1* functions on B,,(0) C R*~! satisfying

e N
(3.12) ller = @2llc1.88,40) = CPo (A1 (21, Q7)) e,
forevery 8,0 < B <a,

where C > 0 only depends on a, f and E.
ii) There exists an absolute constant C > 0 such that

(3.13) d3 (R, 22) < Cdp (R, ).

iii) Any connected component G of 21 N Q, has boundary of Lipschitz class with
constants ry, L, where ry is as above and L > 0 only depends on o and E.
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ProoF oF THEOREM 2.1. Let us denote, for simplicity, d = dn(Q1, 22).
Let n > 0 be such that

(3.14) max IVu;|* <.
i=1,2 \G

Our first goal is the proof of the following inequality

7 1/K
(3.15) d<Cpp| —2 )
) p(')l II¢'I§1—1/2(A)

where C > 0 and K > O depend on A, A, E, M and F only. As a pre-
liminary step, let us show that (3.15) holds true when d is replaced with
dm = dp (24, 22), the quantity introduced in Definition 3.2. Let us assume, with
no loss of generality, that there exists xo € I; C 9£2; such that dist(xg, $22) = dp.
From (3.14) we obviously have

(3.16) / IVur? < n.
Q1NBy,, (xp)
Suppose now d,, < pp. By Proposition 3.5, picking r =dp,, B = %, we have
2 dn\¥ 2
(3.17) vazc (%) | Vs P,
Q)NBy,, (x0) Po Q1NBpg (x0)

where C > 0 and K > 0 depend on A, A, E, M and F only. From (2.5) we can
find a ball B,(wg) of radius r = ﬁ compactly contained in 1 N B, (xo).
+

Hence, applying Proposition 3.3 with p = r/4, we have

ORI Vil = [ VP 2 oI g
Q1NBp (x0) Bp(wp)

where C > O depends on A, A, E, M and F oniy. From (3.16)-(3.18) we
derive

d K
(3.19) 12 CoV i ()

On the other hand, when d, > pg, (3.19) follows from (3.18) and from the
trivial estimate

(3.20) d < diam(£2;) + diam(£2;) <

Em
po Po

c,
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with C only depending on E and M. Hence we have proved that

n 1/K
(3.21) dn <Cpp | —F— ,
" PV -1

where C > 0 and K > O depend on A, A, E, M and F only.

With no loss of generality, let yp € ©2; \ €, be such that dist(yo, Q2) = d.
Let us notice that in general yp needs not to belong to 32;, see the example
below Definition 3.2. For this reason it is necessary to analyse various different
cases separately. Denoting by h = dist(yo, 3€2), let us distinguish the following

three cases:
iyh<4$,

i) h>%, h>%,
ity h>4, h <%,
where dp is the number introduced in Proposition 3.6.

If case i) occurs, taking zo € 32 such that |yo — zo| = h, we have that
dist(zp, 22) >d — h > %, so that d < 2d,, and (3.15) follows from (3.21).

If case ii) occurs, let us set

d dy
3.22 di =min{ —, — 3 .
3.22) 1 mm{2 2}
We have that
(3.23) By (yo) C 21\ 2,.

By applying Proposition 3.4 with r =d;, 8 = 2%’1-, we have

2d K
324) 1= / Vi = f |Vu1|220(——‘) / Vi,
21\ By, 6o) do By 2000

where C > 0 and K > 0 depend on A, A, E, ¢, M and F only. Since h > ﬂzl,
we can apply Proposition 3.3 with p = %1, obtaining

(3.25) /B [Vurl? = Cog 311204 »
do/2(%0)

where C > 0 depends on A, A, E, @, M and F only. From (3.24) and (3.25)
we have

1/K
=~ n
(3.26) dy < Cpo (——> )
P(')’llilflll,’,—l/zm)
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Let 7 = (ﬁ%)"pg||¢||§1_,,zw If n < i, then d; < %2, so that d = 2d;
and (3.15) follows from (3.26). If, otherwise, n > 7, then (3.15) follows
trivially, likewise we did in (3.20).
If case iii) occurs, then d < dp and Proposition 3.6 applies, so that
by (3.13) and (3.19) we again obtain (3.15).
)—K

Hence, by Proposition 3.1, we obtain
log €
P0||¢”H—1/2(A)
where C > 0 depends on A, A, E, M and F only, whereas K > 0 depends on
the same quantities and in addition on «. Thus we have obtained a stability
estimate of log-log type. Next, by (3.27), we can find €y > 0, only depending
on A, A, E, , M and F, such that if € < ¢y then d < dy. Therefore, by
Proposition 3.6, G satisfies the hypotheses of Proposition 3.2. Hence in (3.15)
we may replace n with p(')'lt//llil o( ), where o is as in Propo-

log

3.27) d <Cpp (

€
~12(4)"  poll¥lg—1724
sition 3.2 (a modulus of continuity of log type) and obtain (2.11), (2.12). O

4. — Proof of Theorem 2.2 and of Corollary 2.3

Here and in the sequel we shall denote by G the connected component of
Q1 N, such that ¥ C G.

The proof of Theorem 2.2 is obtained from the following sequence of
propositions, which closely parallel Propositions 3.1-3.5.

PRrOPOSITION 4.1 (Stability Estimate of Continuation from Cauchy Data). Let
the hypotheses of Theorem 2.2 be satisfied. We have

€
4.1) max |u;| < gl 1z p0 | —— |, i=1,2,
2\G i H1/2(4) "3"111/2(,4)

where w is an increasing continuous function on [0, 00) which satisfies

4.2) o(t) < C(og|logt)™V",  foreveryt <e™!,

where C > 0 depends on A, A, E, a and M only.

ProrosiTION 4.2 (Improved Stability Estimate of Continuation from Cauchy
Data). Let the hypotheses of Proposition 4.1 hold and, in addition, let us assume
that there exist L > 0 and rg, 0 < rg < po, such that 3G is of Lipschitz class with
constants ro, L. Then (4.1) holds with » given by

4.3) w(t) < Cl|logt|™?, for every t < 1,
where y > 0and C > 0 only depend on A, A, E, a, M, L and py/ro.
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ProposITION 4.3 (Lipschitz Stability Estimate of Continuation from the In-
terior). Let Q be a domain satisfying (2.1), such that 32 is of Lipschitz class with
constants po, E. Let u € H' () be the solution to (1.2), where g satisfies

(4.49) ge H'?(@Q), g#0,
and, for a given constant F > Q,

llg "Hl/Z(asz) <

(4.4b) <
llgll L2(3Q)

and o satisfies (2.9). For every p > 0 and every xo € S, we have
45 / u? > Colllgl? :
( ) Bp(xg) pO "g"Hl/Z(aQ)

where C > O depends on A, A, E, M, F and p/po only.

REMARK 4.1. Let us notice that if g satisfies (2.8a)-(2.8¢c), then it also
satisfies (4.4a)-(4.4b) up to possibly replacing F with a multiple cF, where ¢
only depends on E. In fact, for functions g satisfying (2.8b) the following
equivalence relations can be obtained

4.6) ||g||H1/2(A) =< "gllﬂl/2(ag) = C||g||H1/2(A) .

ProrosiTION 4.4 (Interior Doubling Inequality). Let 2 be a domain satisfy-
ing (2.1), such that 3K is of Lipschitz class with constants py, E. Letu € H'(Q) be
the solution to (1.2), where g satisfies (4.4) and o satisfies (2.9). For every p > 0
and every xo € Q,, we have

@.7 u? < CﬂK/ u®, foreveryr,Bst 1<Band0<pr<p,
Bgr(xp) Br(xp)

where C > 0 and K > Odependon A, A, E, M, F and p/po only.

ProrposiTIiON 4.5 (Doubling Inequality at the Boundary). Let 2 be a domain
satisfying (2.1) and (2.5). Let us assume thatthe accessible and inaccessible parts A,
I of its boundary satisfy (2.2)-(2.4). Letu € H 1(Q) be the solution to (1.2) and
let (2.8) and (2.9) be satisfied. Let xo € 1. For anyr > 0 and any f > 1 we have

(4.8) / u? < cpX u?,
QﬁBﬁ, (x0) QNBr(xg)

where C > 0 and K > Odepend on A, A, E, a, M and F only.
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PrROOF OF THEOREM 2.2. By using the trivial estimate

2
/ u? < Mp} (maxluil) , =12,

Q\G \G

the proof is obtained similarly to the proof of Theorem 2.1, up to obvious
changes. O

PrROOF OF COROLLARY 2.3. We have that (2.15)-(2.16) follow immediately
from (3.12), (2.12) and either (2.11) (when Theorem 2.1 applies) or (2.14)
(when Theorem 2.2 applies).

Next, let us prove (2.17). We can find r), h, 0 <r; <rg, 0 < h < 1o,
only depending on «, E, pp, and a number N only depending on o, E, M,
such that there exist points P; € d2; and cylinders C,1=1,...,N, centered
at P, having height 2h and basis a (n — 1)-dimensional disk of radius r;, such
that UY,C’ covers both 3Q; and 32, and each C' has axis along the direction
labeled by x, in the local representation (2.15) when P = P;. Moreover we
assume 2C' C By, (Py) for every l. Here 2C' denotes the cylinder with double
sizes and the same center. Notice that, possibly replacing €y by a smaller
number, we may assume that the functions ¢; in (2.15) satisfy

h
le1 ()], le2(x)] < 2 for every x', |x'| < 2r.

Let us fix I = 1 and let us define F; : R" — R" as follows. Letting x = (x’, x,,)
suitable coordinates near P = P,

Fi(x', x,) = (', 2(x", x3))

where
z2(x', xp) = n(x)T(@1(x"), @2(x), x2) + (1 — n(x"))xn .

Here: n, 0 < n <1, is a smooth function such that n(x’) = 1 when |x'| < r,
n(x’) = 0 when |x'| = 2r;, and t(a,b;-) : R - R is an uniformly smooth
function for every a, b € [—h/2, h/2] satisfying

9
a—t(a,b;s) >c¢>0, foreveryseR,
s

t(a,b;s) =s, for every s,|s|>h,

and also
t(a,b;b) =a.

Here ¢ < 1 is an absolute constant. For instance we can choose 7 as a suitable
smoothing of the piecewise linear function whose graph joins (—k, —h), (b, a),
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(h, k), within the square (—h, h) x (—h, h) and coincides with the bisector of
the first and third quadrant outside. Now we have

L aO
A, x)  \ (VeI 2 )°
9x,

and hence

8F1 9z
det = > .
‘ ¢ (3(x’,xn))} z¢>0

One can verify that Fi(2;NC!) = Q,NC!, F;(x) = x for every x € 3Q;N3Qy,
F = F) satisfies (2.17) and also that if Q, is replaced with F;(£2;), then (2.16)
continues to hold. We may iterate this procedure defining inductively analogous
maps F; which deform coordinates within the cylinder 2C’ and replacing at each
stage €2, with Fj(£2;). In the end we set F = Fyo...oFj. F is an orientation
preserving C Le diffeomorphism satisfying (2.17) such that F(3S2;) = aQ; and
also F = Id outside of the fixed small neighbourhood of 32, given by UY ,2C’.
Therefore F(£2;) = ;. O

5. — Proofs of the estimates of continuation for Cauchy problems

Throughout this section, let Q), £, be two domains satisfying (2.1), (2.5).
Let A;, I;, i = 1,2, be the corresponding accessible and inaccessible parts of
their boundaries. Let us assume that A; = A; = A, Qq, Q, lie on the same
side of A and that (2.2)-(2.4) are satisfied by both pairs A;, I;.

We shall denote

U ={x € Q; st dist(x, Ay) < p}.

It is clear that
Uuf =uUs =uU°,  for every p < py.

LEMMA 5.1. The following Schauder type estimates hold

5.1 lluillcl,a(W) < Cooll¥ l yg-112¢4y, Sori=1,2,

(5.2 lluy — uzllcre@ngg) < Cooll ¥l g-1/2¢ay »

where C > 0 depends on A, A, E, a and M only.
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PrOOF OF LEMMA 5.1. Set Q =Q;, u=u;, i =1,2. Since cVu-v=20
on 32\ A,,, by standard elliptic estimates we have

(5.3) "”"clva(m) =< CIIMIILOO(W) < Cllull 2y »

where C depends on A, E, @ and M only. Moreover we have

5.4 M'W"H—lﬂ(ag) =< "Vu"LZ(Q) =< k——l"'/f"H—IIZ(aQ) .

From (5.3), (5.4), (3.6) and Poincaré inequality, (5.1) follows. Since oV (u; —
uz)-v =0 on A, we derive similarly a bound for the C* norm of u; —u, in
UP/2 and, in view of (5.1), (5.2) follows. O

In the proof of Proposition 3.1 we shall need to approximate the domains €2,
with regularized domains, say ., r > 0. We shall define €2,, roughly speak-
ing, as the level set of a regularized distance J, approximating d(-, 92), which
was constructed by Lieberman (see [Li]). To this aim, let us state the follow-
ing Lemma 5.2 (about regularized distance) and Lemma 5.3 (about regularized
domains).

LEMMA 5.2 (Lieberman). For any bounded domain 2 satisfying (2.5), one can
construct a function d € C%(Q) N C*(Q) (called regularized distance) such that
the following facts hold.

< dist(x, 9€2) <

5.5 = ,

(5.5) Y =< i - 1

(5.6) IVd(y)| = C1,  foreveryy € Q\ Qupy,
(5.7) Il < C2p0,

where Yy, y1, b, C1 and C, are positive constants only depending on E, a. Fur-
thermore, let Q1, 22, be two domains as above, with A;, I; being the accessible and
inaccessible parts of 3S2;, i = 1,2, as in (2.2), and such that, as in Theorem 2.1,
A = Ay = A and Qy, Q2 lie on the same side of A. If d; are the regularized
distances associated to 2;, i = 1, 2, then we have

(5.8) dy = d, inuUPo/4,
ProoF ofF LEMMA 5.2. The proof follows from [Li, Theorem 1.3, Theo-
rem 2.1, Theorem 2.3]. O

LEMMA 5.3. For any bounded domain 2 satisfying (2.5), one can construct a
family of regularized domains Q;, C , for 0 < h < apo, having C' boundary such
that

(5.9) Qn, cQuy, O<hy<h,
(5.10) yoh < dist(x, 9Q2) < y1h, for every x € Sy,
(5.11) 12\ Sl < 2Mpj 'k,

(5.12) 1011 < y3Mpo§~",
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for every x € 3y, there exists y € 92 s..

. h®
(5-13) ly — x| =dist(x, 9R), [v(x) —v())| = Vaza
0

where v(x), v(y) denote the outer unit normal to Q, at x and to Q at y respectively,
anda, y;, j =0,1,...,4, are positive constants depending on E and o only. Here
| - [n—1 denotes the surface measure. Furthermore, let Q, 2, be as in Lemma 5.2.
If Q; j are the families of regularized domains associated to 2;, i = 1, 2, then we
have

(5.14) Qi NUPYA = Q, NP,

PROOF OF LEMMA 5.3. Let d be the Lieberman’s regularized distance intro-
duced in Lemma 5.2. Let

il 1 ( G )'/“
a= — — | =——=— .
71 v \24/nC;
For h < apy, let Q" be the connected component of the - set {x € Q s.t. J(x) <
h} whose closure contains 32. Let us define Q= Q\fzh. We have that (5.9)

is trivial and (5.10) follows from (5.5). Since, by (5.5), Q" c Qn*, (5.11)
follows from the following estimate

(5.15) 12\ ] < ClQl—,
Po

where C depends on E only. It is nearly evident that, locally, the width of
Q\ Q, is of the order of r, as r — 0. A complete proof of (5.15) requires
somewhat lengthy but not difficult estimates, details can be found in [Al-Ros,
Lemma 2.8]. By (5.10) and by the choice of a, we have that dist(x, 3$2) < bpo,
for any x € 32;. Applying the implicit function theorem, from (5.6) and (5.7)
we have that 9, is a surface of class C! with constants p;, E;, where

2/nn—1)Cy
p1 = hyo, El= ——FHr—.
G
In order to prove (5.12), let us tessellate R" with internally nonoverlapping
closed cubes of diameter yoh. Let {Qj,..., On} be the collection of those
cubes having nonempty intersection with 32;. By (5.10), each Q; is contained
in 2\ Qg+y)n, so that

Nygh"

(5.16) prys

<12\ Qugtypnl -



INVERSE PROBLEMS WITH UNKNOWN BOUNDARIES 775

From (5.15) and (5.16) we have that

N

10Qnln-1="D_ 1384 N Qjln1 < y3sMp} ™",
j=1

where y3 only depends on E and «. For any x € 8, and for any y € 39
such that |y — x| = dist(x, 8(2)2 we have

vd(x) vd(y)
U(X) = —_——=, v(y) = - = .
[Vd(x)| IVd(y)l
so that (5.13) follows easily from (5.5)-(5.7). Finally, (5.14) follows from
(5.8). |

In order to derive the Cauchy estimates for the difference of the solutions u;
and u, , first of all we need to dominate in terms of € the L2 norm of u; — us
and of V(u; — uy) in a neighbourhood in ¥ of the point P, € X appearing
in (2.3).

According to (2.5), there exists a cartesian coordinate system under which
Pl =0 and

Qi N By (0) = {x € By (0) s.t. x, > 0(x)}, i=1,2,

where ¢ is a C'** function on B, (0) C R*! satisfying
¢(0) = [Ve(0)| =0

and
"(oucl.a(gpo(o)) <Epo.
Let
Lo
5.17 r = —,
©1n ey

To = {(x', xp) st. x| < rp,x0 = @(x)}.

By the choice of r;, we have Xy C X.

ProOF OF PROPOSITION 3.1 (Preparation). We premise the proof with two
auxiliary steps.

Step 1. Let € < poll¥ ll y-1/2(4)- We have

(1 — uz) + p? / V(1 — uz)l?
X0 o

(5.18)
€

poll¥ "H—I/Z(A)

’

. Tt T
< Cog " (ol ¥l g-172(a)) ( )

where C > 0 depends on A, A, E, @ and M only.
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Step 2. Let € < pol|¥|l y-1/24)- There exist C > O only depending on A,
A and E, and 6, 0 < 8 < 1, only depending on A, A, E and «, such that

28
€
(5.19) / IVt = un)l? < COUIV IR imppn | ———— )
Bj(z0) 0 P2\ poll ¥l =172,

where z9 = P; — 6v p= ﬁfﬁ and v denotes the outer unit normal to Q
at P;.

Proor oF Step 1. Let us denote
(5.20) w=u;—u,
and let v defined in B, (0) C R*"! by
v(x) = wi’, ().

Given x = (x', p(x’)) € Xy, we have

(5.21) Uy (&) = wy; () + wy, ey (x), i=1,...,n—1,
(=Vo(x), 1)
V1+ | Ve(x)?

Denoting by V;w the tangential gradient of w in X, from (5.21) and (5.22)
we have

(5.22) v(x) =

(5.23) IVsw(x)| < |Vu@x')].

Since (cVw - v)(x) =0, we have

9
(5.24) A2 < v,
av
with C only depending on A. Hence
(5.25) |Vw| < C|Vw|, on Yy,

where C only depends on A.
Let us recall the following interpolation inequalities

1
(5.26) IVolloo < C (lvw:/‘”“) lvl|d+e) 4 guvuw) ,

where C only depends on E and «,

G521 Ivlleo = € (IVOIEDED 5D oD 4y )
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where C only depends on E. From (5.26) we have
(5.28) wlicr < ClvlLM o) 5,
where C only depends on E and «, and from (5.27) we have
(5.29) vl < CllolZ5™ Vo) &7+,

where C only depends on E. From (5.28) and (5.29) it follows that

n+l 2
(5.30) Ivllcr < Clivll 236 vl f‘;*"” )

where C only depends on E and «. By using (5.21), we can estimate the
norms of v in terms of those of w:

(531 lvlloo < llwlloo,xq »
(5.32) IVv]lo < (1 + E)[IVWlloo, 5, »
(5.33) "1’“1,2(1;,l op = lwll 2y -

Since |x — y| < +/1+ EZ%|x’ — y'|, we have
(34 Vila < (4 E)XA+EYP V0l e + quuoo
By using (5.31), (5.32) and (5.34), we have that

(5.35) lvlicre < C"w"cl.a(ul’oﬂ) )

where C only depends on E. From (5.17), (5.23), (5.25), (5.30), (5.33)
and (5.35) we have

n+1
poll Velloo,5g =< Cllwll 55 a2, 1wl sz,':'*) :

where C depends on E, o and A only. From (5.2) we have
2
€ Tatn T
[Vwlioo, 5y = Cl¥ Il g-1204y) | —77— ,
| oo)S(Z oI Poll¥ll g-172(a)

where C depends on A, A, E and a only. Notice also that the surface mea-
sure |Xg| of Xy satisfies

n—1
Wn—109

X0l = (1+ E)-2/2°
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hence we have

1/2
(n—1)/2 €
Vwl* ) < Co P IYlgo1p | ——
(/;o H=E® POlW’"H—I/Z(A)

where C depends on A, A, E and « only. Therefore (5.18) follows. O

Proor oF STEP 2. We shall make use of the stability estimates for the
Cauchy problem for elliptic equations in divergence form with Lipschitz coef-
ficients established by Trytten ([T]).

Let Py = P + 541\) and let w = u; — uy. For appropriately chosen p > 1,
K > 0, only depending on A, A and E, we can derive from [T] the following

’

20
)m

estimate
5
r C
J—'(—‘) <= / w2+p§/ IVw]?
2 Po \JxZo Zo
(5.36) 1-5;
x(/ w2+p§/ |Vw|2+po/chw-Vw) ,
o o G
where

r K
(537 f(r)=/ s-P/ oVw-Vw+ — / w2+pg/ Vw]? |,
Ly GNBs(Py) Lo p)} o
1

——r,
Wit B2

with 8;, 0 < 8; <1 and C > O only depending on A, A and E. By (2.9a),
(3.6) and (5.4) we have

/an-Vw <2 / oVui-Vu, + oVuy -Vuy
(5.39) G Q) Q9

= 4)"—3p8 IIWI'iI—l/Z(A) .

538) n=

On the other hand,

n 31 - 1-p 2
(540) F{=) = s—F oVw-Vw > Cp [Vw|*,
3 0
2 371 GNBs(Py) GnB%rl(Po)

where C depends on A, A and E only. Recalling that € < poll¥ll g-1/2(4)
from (5.18), (5.36), (5.39) and (5.40) we have that

28
€
Vw2 < Cog vl _ipp | —— |
LnB3rl(P0) H /(A) PO"W"H—I/Z(A)
8
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where § = o204 Finally, it is evident that B;(z0) C G N B3, (Py) C G, so
that the thesis follows. o

ProOF OF PropOSITION 3.1 (Conclusion) With no loss of generality we
can assume that € < po||¥ |l 4- 1/2(A);L, where i, 0 < ji < e”!, is a constant
only depending on A, A, E, ¢ and M, which will be chosen later on, since,
otherwise, (3.1) becomes trivial.

Let 6 =min{a, Tm}’ where a, y; have been introduced in Lemma 5.3.

We have that 6 depends on E and o only. Let 7 = ppf and let

2;,1; = {x € @; s.t. dist(x, X) = dist(x, ;) = yi7}, i=12.

Since yi7 < {2, we have

I _y2 _
Zl =32 =5,;.

Let r <7, that is = < 6. By (5.10) we have I,; C Q1,NQ,. LetV,
be the connected component of ;, N, whose closure contains 2,7 Let

us notice that, by (5.14), dist(x,X) > po/4 for any x € Q,-,\V,. Let us
prove (3.1)-(3.2) when i = 1, the case i = 2 being analogous. We have

21\ G C [(1\21,)\GIU[Q,,\ V],
3@, N\V,)=T1,Uly,,

where I‘l r is the part of boundary contained in 8521 r and I‘z, is the part
contained in 8522 PN av, Therefore we have

(5.41) / |Vu1|25/ ) IVu1|2+/_ R\
Q\G (€@1\21 \G Q \Vr
By (5.1) and (5.11) we have
2 -1 2 - 2
(5.42) /Ql\é“)\GWunl < Coo~ ¥ N g-17297 = Coo WY Ng—17200y7° »

with C only depending on A, A, E, @ and M. From the divergence theorem
we have

(5.43) / Vg * <a7! / I(GVun-V)u1|+[ [(oVuy-viul ) .
Qr\Vr Tyr Ty,

Let x € I'1,. By (5.10), dist(x, 3Q;) < y1r. On the other hand, x € Q;, \ V;,
so that, as noticed above, dist(x, X) > po/4 > y1r. Hence, there exists y €
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9821 \ X such that |y — x| = dist(x, 3Q;) < yyr. Since (oVu; - v)(y) = 0,
from (5.1), (5.10) and (5.13) we have

(544) I(o‘Vu1 . v)(x)l =< C"W"H_l/z(A) (é) R

where C only depends on A, E, o and M.
Similarly, given x € I';,, there exists y € €2, \ ¥ such that |y — x| =
dist(x, 3€2;) < yir. Since (o0Vu; - v)(y) =0, we have

(5.45) (o Vs - | < C (uwu,,-mw (i) + |Vw(x)|) :

where w is given by (5.20) and C only depends on A, E, ¢ and M. From (5.1),
(5.12), (5.41)-(5.45), we have

r a
(5.46) / [Vui|? < Co | I3 (—) + 1%l y-1/2(4) max |V | ,
oG 0 H-1/2(4) 00 H (A) 7

where C only depends on A, E, a and M.
In order to estimate max‘.,—IVwI, we shall make use of Step 2.

Since min{dist(zo, 3Q;), dist(zo, 32)} > ﬁig > yir, we have that

z0 € V;, where zo has been introduced in Step 2. Let x be any other point
in V,. Since min{dist(x, 8;), dist(x, 9,)} > yor, it follows that x € G, .

Let y be an arc in V, joining x to zo. Let us define {x;}, i =1,...,s, as
follows: x; = 29, X;+1 = Y (%), where t; = max{t s. t. |y(t) — x;i| = Zgi} if
xi — x| > Zgi, otherwise let i = s and stop the process. By construction, the
balls ng;(x,-) are pairwise disjoint, |x;1; — x| = %, for i =1,...,5 -1,

lxs — x| < X", Hence we have s < S (2)", with S only depending on E, «
and M.

At this stage we shall make use of a three spheres inequality for solutions v
to (1.1a), where o satisfies (2.9), more precisely: for every B;, B2, 1 < B1 < Ba,
there exist T, 0 < 7 < 1, C > 1, only depending on A, A, B; and B,, such that
for every x € Qp,, we have

- 1-7
(5.47) / v <C ( / v2> / v2>
Bg () Br(x) Bg,r(x)

This result can be derived, through minor adaptations, from the estimates found
by Garofalo and Lin in their proof of the unique continuation properties for
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this type of equations, [G-L]. See also [Ku,Theorem 4.1]. In particular, writ-

ing (5.47) for v—c, with ¢ = (%) [p, () v and with gy =Tr/2, B, = 4r, and
applying Caccioppoli and Poincaré inequalities, we have

T 1-7
(5.48) / [Vv]2<C ( / |Vv|2) / |Vvl?
B3, (x) Br(x) By (x)

An iterated application of the three spheres inequality (5.48) for w gives that
there exist T, 0 < 7 < 1, C > 1, only depending on A and A such that for

any r,0<r<r,
1-t
IVwP < C ( / |Vw|2)
G

(5.49) /B
Zgl (x)

From now on, let us denote
€ =

s

()

s

€
P0"W||H—1/2(A) .

Since 125 < p, we can estimate the right hand side of (5.49) by Step 2 and
by (5.39) and obtain

(5.50) [ IVl < Cop
B

135 (x)

where §, 0 <d <1, and C > 1 depend on A, A, E and o only. Let us recall
now the following interpolation inequality

B . 12
(5.51) Ivlleo < C / v lE™ + — / v? :
By o By

which holds for any function v defined in the ball B, C R" and for any «,
0 < @ < 1. By applying (5.51) to Vw in BQL(X), we have, by (5.1) and (5.50),

p0\"? ~y1S
(5.52) IVl 0 sc(—r—) 1912

where y = 2%"‘1‘_5—”, 0 <y <1, and C depends on A, A, E « and M only.
From (5.46) and (5.52) we have that for any r <r

o nf2
2 ) r Po ere’
(5.53) /QI\GIVMI < COIV I -120n, ((m) +(,) é )

with C only depending on A, A, E o and M.
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Let us set i = exp{—1 exp(2U%ET)} i = min{iz, exp(—y~2)}. We have
that i < e~! and it depends on A, A, E o« and M only. Let € < ji and let

2S|log | )‘/"

r€=po <log llogé”|

Since r(€) is increasing in (0, e~!) and since r (i) <r (i) = pob = r, inequal-
ity (5.53) is applicable when r = r(€) and we obtain

(5.59) / IVur > < Cogllv I3 —12 A (108|l°ggy|)—a/n ’
oG 4)

where C depends on A, A, E « and M only. On the other hand, since
€ < exp(—y~2), we have that logy > —% log | log €|, so that

1
(5.55) log |logé” | > —2—log [logé€| .

Therefore (3.1)-(3.2) follow. O

ProOOF OF PrROPOSITION 3.2. Also in this case, it is not restrictive to assume
€ = ——<—— < i, where i1, 0 < 1 < 1, is a constant only depending
pO“V"“H—l/Z(A)
on A, A, E, a, L and M, which will be chosen later on. Let us prove (3.1)

and (3.3) when i = 1, the case i =2 being analogous. We have
(5.56) / |V > < 27! / uy(oVuy - v),
Q\G 3(Q\G)

A\ G) C (321 \ A U@ NIG\U?).

Since oVu; -v =0 on 9, \ Ay and oVuy - v =0 on 92 \ Ay, denoting
w = u; — Uy, by (5.1) we have that

/ (Vg ?
Q\G

5.57)

5)\"1/ ur(ocVw - v)| < Coll¥ |l y-1/2, 4y max |Vuw|,
aszznac\upo/zl 1( po"‘ply 12(4) na. |

where C depends on A, A, E, @ and M only. Let us introduce the following

notation.
Given z € R", £ e R", [§]| =1, 6 > 0, r > 0, we shall denote by

x—2)-&

> cos@, |x — z| <r} s
lx —z| .

Cz, & 0,r) = {x CR" s t

the intersection of the ball B.(z) with the open cone having vertex z, axis in
the direction & and width 20. Since 3G is of Lipschitz class with constants ry,
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L, for any z € 3G there exists & € R", || = 1, such that C(z,&,60,r) C G,
where 6 = arctan %
Let us notice that G4, is connected for r < % Let us fix z € 3G, and let

)~1=miﬂ{ dL , 0 , £ - },
1+sind’ 3sind’ 16(1 + E2)sind

0 — . (sinf

| = arcsin (——4—) ,

w1=z+11§,

p1=l1$in91.

We have that B, (w;) C C(z,§, 61, 70), Bap (w1) C C(z,§,0,r9) C G, so that
wy € Gap,, and Gy, is connected since p; < %% Moreover 4p; < p, so that
Bap,(20) C G, where zo, p have been introduced in Step 2 of the proof of

Proposition 3.1. Arguing as in the proof of Proposition 3.1, we obtain, by an
iterated application of (5.48),

1-15 T
(5.58) / [Vw?<C ( / |Vw|2) / Vw?] .
Bpl (wy) G Bpl (zg)

where 7, 0 <7 < 1, and C > 1 depend on A and A only, and s < —m’l'
By (5.19) and (5.39) we have

(559 [ 1Vl < Co I
By (wy)

where B;, 0 < 81 < 1, depends on A, A, E, o, L, M and gg only, and C > 1
depends on A, A, E, L and ’;’3 only. Let us approach z € 3G, by constructing
a sequence of balls contained in C(z, &, 61, rp). We define, for k > 2,

wy =2+ ME,
Ak = XAk-1,
Pk = XPk-1,
with .
_ 1 —sin 6,

X= 1 +sin6;

Hence pp = x*'o1, M = x*"'A1, By (Wis1) C Bip (i) C Bag, (i) C
C(z,§,0,r0) C G. Denoting

dk) = |lwi — z| — px,
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we have
dk) = x*'d(),
with
d(1) =XAi(1 —sin6;).

For any r, 0 < r < d(1), let k(r) be the smallest positive integer such that
d(k) <r, that is

r r
‘log — llog —_—
(5.60) D] iy -1 4D
[log x| |log x|

By an iterated application of the three spheres inequality (5.48) over the chain
of balls B, (wy), ..., B,,k(r) (wk()), we have

- k(r)—1
(5.61) i Vol < CoplvI oy @™
Bokry k()

where C depends on A, A, E, L and ?01 only. From the interpolation inequal-
ity (5.51) and from (5.2) we have

=By rk()~1

(5.62) IVwlico,Bpy, wriry) = ClY Il H—1/2(A)W ,

where 8, = 22:;1-11 depends on A, A, E, a, L, M and ‘;’3 only. Let us consider
the point z, = z +r&. We have that z, € Bpk(r) (Wk(r)). From (5.62) and (5.2),

we have that for any r, 0 < r <d(1),

r a gﬂ2‘rk(’)_l
(5.63) IVw@)| < ClY lg-12a ((E) + }W) :

Let _B
r@) = d(1) |1ogeﬂ2| ,
with
_ logxl
2|logz|’

Let oo = exp(—,Bz‘l). We have that r(i1) = d(1) and r(€) < d(1) for any ¢,
0 < € < fi. Choosing r = r(€) in (5.63) and recalling (5.57) and (5.60), we

have
—aB

1)

/ VP S G i g
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where C depends on A, A, E, a, M, L and %}l only. Therefore (3.1) and (3.3)
follow with y = aB. O

PrOOF OF PROPOSITION 4.1. Similarly to the previous propositions, it is not
restrictive to assume € < [|gll y1/2¢4)/t, Where i, 0 < o1 < e!, is a constant
only depending on A, A, E,  and M, which will be chosen later on. Since
u; =0 on 3Q; \ Ap, and u; —uz =0 on A, arguing similarly to the proof of
Lemma 5.1, and recalling (4.6), we derive the following Schauder type estimates

(5.64) (78 “Cl"’(m) <Cligligizeny, fori=1,2,
(5.65) [l2ey — u2"C1v°‘(an§22) < C"g"Hl/Z(A) s

where C > O depends on A, A, E, @ and M only. Let us prove (4.1)-(4.2)
when i = 1, the case i = 2 being analogous. Let us denote w = u; —u;. Since
w =0 on X, we have that Vw = %"’v on X and therefore

w

l—’sl'l loVw - v|, on X,

av
so that
(5.66) /w +p0/ |Vw|? = p? /le|2<A‘2 Zpp1.

T
From now on, let us denote
‘= €
||g||Hl/2(A) '

From (5.36), (5.65) and (5.66) we have

r —p— "
(5.67) F (7') < o Ngluyn @

where 81, 0 <8 <1, C>0and p > 1 depend on A, A and E only and we
refer to the notations introduced in the proof of Step 2 of Proposition 3.1. On
the other hand, we have (see [T])

(5.68) / w* < CrtlE(r),
GNBr(Py)
where C depends on A, A and E only. From (5.67) and (5.68) we have

(5'69) /'(ZO) w2 = Cp(')' "g"ill/Z(A)gzsl )
p



786 GIOVANNI ALESSANDRINI - ELENA BERETTA - EDI ROSSET — SERGIO VESSELLA

where C depends on A, A and E only and zo and p have been introduced in
Step 2 of the proof of Proposition 3.1.

Let <-=J_
r<p o/iie and let

= {x € Q; s.t. dist(x, X) = dist(x, 3Q;) =r}, i=12.

Notice that 21 22 =X,, for any r <p. Let V, be the connected component of
Q1N whose closure contains ¥,. Since min{dist(zo, 3S21), dist(zo, 3$22)} >
p > r, we have that zo € V,. Let x be any other point in V,. By repeating
arguments in the proof of Proposition 3.1, with the obvious changes, and by
using (5.65) and (5.69), we obtain that there exists 7, 0 < 7 < 1, such that for
any r, 0 <r < p, we have

2 2 ~2517°
(5.70) /B G T

where s < S (0p/r)", with S only depending on M and C > 0 only depending
on A, A, E, « and M. By the local boundedness of solutions to elliptic
equations in divergence form (see, for instance, [G-T]), we have

00 n/2 I
(5.71) "w"oo,B%(x) <C (7> gl r1/24)€"

where C depends on A, A, E, @ and M only. Let W, be the connected
component of the set {x € G s.t. dist(x,dG\A) > r} whose closure contains X.
Since 2;\ G C 2; \ W, and by using the maximum principle, we have

5.72 max |u1| < max J|uy|.
(5.72) max ur] < | max |

Hence it is sufficient to estimate supyy, 4 [u1l.
Let x € 3W, \ A, hence x € G and dist(x, 3G \ A) =r. Let us distinguish
two cases:

i) dist(x,dG) =r,
ii) dist(x,9G) <r.

Let us assume that i) occurs and let us again distinguish two cases:
I) there exists y € I} such that |[x — y| = dist(x,dG \ A) =r.

II) there exists y € I such that |x — y| = dist(x, 0G \ A) =r.
If I) occurs, from (5.64) we have
1)) < Cllgll 1204y —
< 1/204y— »
1 H1/24) 2

where C only depends on A, E, o and M.
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If 11) occurs, by (5.71) and (5.64), we have

a1 ()] < [w()| + lua(x) — ur ()|

Po n/2 s r
<C (—r—) lgll 1204, €% +Clglaza -

where C only depends on A, A, E, @ and M.
If case ii) occurs, then there exists z € A such that |[x—z|=dist(x, 3G) < r.
Since

dist(x, X) > dist(X, 3G \ A) —dist(x,dG\ A) > po—r >r > |x — 2|,

it follows that z ¢ X, so that u;(z) = 0. Hence
lui(x)| < Cligll —
1 8llg12 )

where C only depends on A, E, @ and M.
Therefore, for any r, 0 <r < p, we have

r

r 0o nf2 5128
(5.73) max il < Clgllangy ( =+ (—) @)

where C only depends on A, A, E, a and M.

Let us set j1 = exp{-—-% exp(2S| logtl(%l)")}, i = min{u, exp(—81_2)}. We
have that i <e~! and it depends on A, A, E, @ and M only. Let € < ji and
let

25| log 7| )”"

&=l

Since r(€) is increasing in (0, e~') and since r (1) < r(@) = jp, inequality (5.73)
is applicable when r = r(€) and we obtain

~—1/
(5.74) g}z\% fui] < C“g"HI/Z(A) (log |log €]) ",

where C depends on A, A, E, @ and M only. Therefore (4.1)-(4.2) follow. O

PROOF OF PROPOSITION 4.2. The same arguments involved in the proof of
Proposition 3.2, with the obvious changes, give the desired estimate. O
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6. — Proofs of the estimates of continuation from the interior

Proor ofF ProprosITION 3.3. This estimate was obtained in [Al-Ros-S,
Lemma 2.2] and we refer to it for a proof. Let us just recall that the main
ingredients are: a repeated use of the three spheres inequality (5.48) and the
following estimate

6.1 / [Vu? < cpg-‘ruwuiz(am, for every r > 0,
Q\Qs,

where C > 0 only depends on A, A, M and E, see the final remark in
[Al-Ros-S]. O

PrOOF OF PROPOSITION 4.3. Let P € 9S2. There exists a rigid transformation
of coordinates under which we have P =0 and

QN By (0) = {x € By (0) sit. x, > o(x")},

where ¢ is a Lipschitz continuous function on B, (0) C R"1 satisfying ¢(0) =
0 and IIthICo,l(BpO(O)) < Epp. Let r > 0, with 2r < po/4, and let p; =

j(‘ffr;*fpo. If X' € By C R and s € [0,2r], then (¥',p(x') +5) €
QN B, (0) and dist((x’, 9(x")+s), 3B, (0)) > dist((x’, o(x')+s), Gy), where G,
denotes the intersection of the graph of ¢ with B, (0). Hence dist((x’, (x") +
5), 92) = dist((x’, p(x") + 5), G,), for every x’ € Bp(:) and every s € [0, 2r].
Let us denote by S, = {(x’, x,) s.t. x' € Bp(/), o) +r <x, < (') +2r} and
let s € [r, 2r], with 2r < po/4. For every x’ € Bp(/) we have

o (x")+s

62) ', )P <2 <s I
14

")

|ty (', X) [Pdxn + [u(x, o(x") + S)Iz) ,

and integrating with respect to s in [r, 2r] one gets

rlux’, p(x))?

6.3 o(x')+2r 2r
@) 52<2r2 / [ty (', %) 2d 2, + / lu(x’,<o<x’)+s)|2ds).
o(x") r

Integrating (6.3) over B ;s We derive
1
(6.4) / lux’, p(x"))%dx’ <2 <2r / |Vul*dx + - uzdx) :
B, Q

r
o NBp, ) Sr
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Denoting by y the intersection of the graph of ¢ with Bp(/) x R, we obtain

(6.5) / u’ds <21+ E2 (Zr /S2
Y

1
|Vul?dx + = [ u?dx) .
NBpg (0) rJs

Let d denote the diameter of € and let Q be a cube of side 2d containing .

We have that d < Cpy, where C > 0 depends on E and M only. Let us divide
the sides of Q in m equal parts where

2],

(6.6) m= [ -
Po

/

In this way we divide Q in m" subcubes with sides of size T < —3%. Let us

denote by {Q{}j=1,..,,1 the family of the subcubes of this partition such that
0QNQ! # 0. Forany j € {1,..., J} we choose x; € 3QNQ/ and we denote by
C;j, up to a suitable rotation which brings x; in the origin, the set B,,N(B o) xR).

We have that QJ C By (xj) C Cj and 3Q = U_,0QNn Q! c U_9QnC;.

= L . . = i ,’ ! £ =
Let d o] Then S, C Q4q. In fact let 7, = dist((x’, p(x’) + 5), 92)

dist((x’, (x") + 5), G,), with s € [r,2r]. It is easy to see that 7, < s <
+/1+ E2?t;. Hence 4d < t;, which implies that if (x’,¢(x') + s) € S, then
(x', 9(x") +5) € Qaq. Since inequality (6.5) holds for y; = dQ N C; for every
j=1,...,J, summing up over j and using the fact that S, C 44, we have

1
6.7) / ulds <2v/1+ E2J (Zr / |Vu|?dx + - / uzdx) ,
aQ Q r JQu,

where J <m", with m" depending on M and E only. Let d0=min{£,;-—’3°1/—2—2,%}
+

and let d < dp. Let us fix xo € £, and let us denote

1/2
€ = / u2 .
Bp(xg)

Given x € 44, repeating arguments in the proof of Proposition 3.1, we can
consider a chain of pairwise disjoint spheres of radius d with center at points
of a path / connecting x to xo in Q4g, for d < dp. An iterated application of
the three spheres inequality (5.47) gives

1-8Na .
(6.8) / uldx <C ( / u2) 2
Bg(x) Q
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where 8, 0 < 6 < 1, and C depend on A and A only and N; < %ﬂoﬁ.
Covering €244 with internally nonoverlapping closed cubes {Q;};_; . N of side

d/./n, we have

Qg

4
Ny
uldx < E / utdx
i=1 74
!

Ny -
< E / ) u2dx5CN",(/u2> P
; Bg(x') Q

i=1

6.9

. /2 pg 0
where x' € Q44N Q; and N < “—22 From (6.7) and (6.9) we get

o 1-8Nd N
(6.10) / ulds <C d/ |Vul2dx + —=2 (/ u2) P
a9 Q drtl \ Jg

where C depends on A, A, E and M only. Letting o = ;ZPT‘"T‘P—, we
0 Hl

rewrite (6.10) as follows

d n+1
(6.11) / wids < Cof M uld | = + (@) o)
Q 00 d

where C depends on A, A, E and M only. Let

2M|1 "
ap = exp (—exp (Iw—ogSI (%) )) <1.
n

Let us notice that %01 depends on E and -p% only, so that ap depends on A, A,
E, M and -p% only. If @ < ap we choose d = d,, where

2M| 1 In
dy = po (|_°83|) .
w, log | log a|
Then dy < d(ag) = dp and from (6.11) we have

6.12) /a _ wds < oy Il (g loga) /",

where C depends on A, A, E and M only. If & > ap, from (6.11), using the
fact that ¢ < 1, and substituting d with dy, we derive

B dO 00 n+1 a
6.13 / wlds < Col Yul? —+(—) —,
(6.13) o 00 lully: » & p”
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where C depends on A, A, E and M only. Since a <e2(log2)!/"(log | loga|)~!/",
from (6.12) and (6.13) we have

61 [ wass € ot (1’9)"+1 I, (log [ loga)™/" ,
a0 a dp

where C depends on A, A, E and M only. From (6.14) and from
(6.15) g3 20 < lulin < Cligli g -

where C depends on A, E and M only, we have

n
(6.16) esepenp(—ew(S(2)" P2 2
. = € po €Xp Xp a0 \do "g"Hl/z(asz)’

where C depends on A, A, E and M only. Therefore (4.5) follows with the
stated dependence. ]

7. = Proofs of the Doubling Inequalities

Proor OF PrROPOSITION 3.4. The starting point here is the doubling inequality
of Garofalo and Lin [G-L]. Given a solution v to

div(cVv) =0, in Bg(x),

where o satisfies (2.9), and denoting by N = N(r) (this is a slight variant of
the so called Almgren’s frequency function)

r? / |Vol?
Br(x)
Joia”
Br(x)

we have that there exists T, 0 < 7 < 1, only depending on A, such that

/ v2 < C}/K/ 'U2,
(7.2) Byr(x) Br(x)

for every r,y st. 1 <y and 0 < yr <tR.

7.1 N(r) =

Here C > 0 only depends on A and A, whereas K > 0 only depends on A,
A and, increasingly, on N(tR). See [G-L, Theorem 1.3] and also, for a more
recent proof, Kukavica [Ku, Theorem 3.1], to which we refer for notation and
details.
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The matter here is to translate (7.2) into a doubling inequality for Vu and
to evaluate N(tR) in terms of F, the frequency of the boundary data ¥.
Let xo € €2, let us fix B > 1 and pick v = u —c and y = 28, where
= ZI,,IW J By(xpy 4~ BY the use of Caccioppoli and Poincaré inequalities, the
doubling inequality (7.2) leads to

] IVul? < CQBX / Val?,
Bﬁr (x0) Br(xg)

7.3) o
forevery r,f st. 1 <8 and0<ﬂr5?p.

Here C > 0 only depends on A and A, whereas K > 0 only depends on A, A
and, increasingly, on

(20)? / Vul?
Bzp(xg)
/ lu — cf?
Brp(xg)

Using once more Caccioppoli inequality and by Proposition 3.3, (3.6) and (5.4),
we can majorize N(tp) by a constant C > 0 only depending on A, A, E, M,
% and F. Thus (3.7) follows, provided gr < *2. The case when % < Br < p

can be easily treated, again by the use of Proposition 3.3. |

N(zp) =

PROOF OF PROPOSITION 4.4. The arguments here are analogous to those used
for the proof of Proposition 3.4, the key difference being in the evaluation of
N(tp) in terms of the frequency of the Dirichlet data g, instead of the Neumann
data. Such an evaluation is obtained by the use of Proposition 4.3 instead of
Proposition 3.3. m]

ProOOF OF ProPOSITION 3.5. First, let us assume that o (xg) = Id. We fix
coordinates (x’, x,) suitable for the local representation of the boundary as a
graph as in Definition 2.1. Namely we have xp = 0 and

QN By (0) = {x € By(0) s.t. x, > @(x)},
where ¢ is a C!! function on B, (0) C R*~! satisfying
90) = [Ve(0)| =0

and
"(p"Cl'l(BpO(O)) s EPO .
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Following ideas in [A-E], we can costruct a map ® € C"!(B,,(0), R") such
that

(7.4a) ®(Bp, (1) C B, (0),
(7.4b) ®(y',0) = (¢, 9(y")), for every y' € B,,(0) CR*',
(74c) ®(B; (0)) C QN By, (0),

1
(7.4a) Ely =2z < |®(y) - P@)| < Cily —z|, for every y,z € B)(0),
1
(7.4¢) > < |detD®| < C;,

where p; = 6;00, 0 < 6; <1,i =1,2, and Cy, C3, 61, 6; only depend on A,
A and E.
Denoting

&(y) = |det DO(DD )@ () (P)DP ™) (@),
v(y) = u(®(y),

we have

(7.5a) 6(0)=1d,

(7.5b) o (y',0)=0, fork=1,...,n—1,

(7.5¢) 2:12 5> <5 ()& -& <Csl[%, for every ye B} (0) and every & €R”,
i _ Cs N

(7.5d) lo(y) —o(2)| < Ely —z|, forevery y,z€ sz(O) ,

where C; and C4 only depend on A, A and E. We have that v € H ‘(B;’Z(O))
is a weak solution to

(7.6a) div(@(y)Vv(y)) =0, in 3;2(0),
v

7.6b
(7.6b) o

(»',0)=0, for |y'| <ps.

For every y € B,,(0), let us denote by o’'(y) the symmetric matrix whose
entries are given by

/iy, ) = Gij(y', lynl), ifeither 1 <i,j<n-—1l,ori=j=n,

0',:_,'()’/, Yn) = 0']{,,(}’,, Yn) = Sgn(yn)a'jn(y,a lyaD), fl1<j<n-—1.
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We have that ¢’ satisfies the same ellipticity and Lipschitz continuity conditions
as o.
Denoting
w(y) =v(y’, lyal), for y € B,,(0),

we have that w € H l(sz (0)) is a weak solution to

1.7 div(e'(y))Vw(y)) =0, in B,,(0).

Moreover, from (7.4d) we have that

(7.8) QN B,;»0) C <I>(B;(O)) C QN Bc,,(0), for every p < p>.
Choosing p = p3/2 in (7.3), we have

] IVwl? < CB¥ / IVwP,
7.9) Bg,(0) Br(0)

for every r, 8 s.t. 1 < and 0 < fr < ps3,

where p3 = 803, 0 < § < 1/4, with § only depending on A, A and E and
where C and K depend on A, A, E, and N(p3) only, with

P2 / Vul?
Bp3 (0

N(p3) = ——,
/ lw = cf?
Bpy (0)
— 1
where ¢ = 5 [5 o) -

Let 0 <r < Br < p3/2. From (7.8) we have that

/ IVul? < C / VP2,
QNBg, (0) By, ©)

where C depends on A, A and E only. From (7.9) we have

[, wf=cescor [

RO Bc,©

(7.10)

IVoP? < CBCHX / Vul?,
QNB,(0)

where C and K depend on A, A, E and N(p3) only. From the two last
inequalities we have

(7.11) / IVul? < CgX / |Vul?,
QnBg, (0) QNB; (0)
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where C and K depend on A, A, E and N(p3) only. From Caccioppoli
inequality and (7.8), we can estimate

[ w-ctzchd [ jvup
Bpy (0) By /2(0)

zci [ wbzcl [ v,
Bp3/2 QﬂBp3/4

(7.12)

where C depends on A, A and E only. Setting py = —%—, P = (0, p3/8),
644/ 14+E2
we have that By, (P) C N Bp,/4(0). From (7.12), (5.4) and Proposition 3.3

we have

(7.13) [ w-ctzcad [ v,
Bp (0) Q

where C depends on A, A, E M and F only.
On the other hand,

(7.14) / |[Vw|? < 2/ [Vv]? < c/ [Vu|?,
Bp3(0) B, (0) Q

3
where C only depends on A, A and E. Therefore we can majorize N(p3) by
a constant C > 0 only depending on A, A, E, M and F. Thus (3.8) follows,
provided Br < p3/2. The case when p3/2 < Br can be easily treated, again by
the use of Proposition 3.3.
In the general case o(xp) # Id, we can consider a linear transformation

S : R* — R” such that, setting 6(Sx) = S%;?TS]T’ we have 6 (xp) = Id (here,
as above, we identify xo = 0). We have that, under such a transformation, the
modified coefficient &, the transformed domain S(€2) and the boundary data
satisfy a priori assumptions analogous to (2.1)-(2.7) and (2.9) with constants
which are dominated by the a priori constants pg, M, E, a, F, A, A, up to
multiplicative factors which only depend on A. We also have that the ellipsoids

S(B,(xp)) satisfy

Bﬁp(xo) C S(B,(x0)) C B%(xo), for every p > 0.

Therefore, by a change of variables, using the result just proved when o (xp) =
Id, we obtain (3.8). O

We premise the proof of Proposition 4.5 with an auxiliary lemma which, in
a more general form, is due to Adolfsson and Escauriaza [A-E, Theorem 1.1].
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LeMMA 7.1 (Adolfsson-Escauriaza). Let Q' be a domain such that 3Q' is of
Lipschitz class with constants ro, L > 0 and 0 € 9. Let w be a nonconstant
solution to
(7.15a) div(e'Vw) =0, inQ' N Bgy(0),

(7.15b) w=0 ondQ N Bg0),

for some Ry > O, where o’ is a function from R" with values n x n symmetric
matrices satisfying the following assumptions, for given constants Ly and C:

i)

(7.16a) Ml <o’ (X)E -& <AF'IE* foreveryx, & €R",
ii)

(7.16b) o'(0)=1Id,

iii)

(7.16¢) o'(x)x-v>0 forae x €3Q' N Bg,y(0),

iv)

C
(7.16d) |Vo'(x)| < F;lxl"", lo’(x) —o'(0)] < ;C,;IJCI“, for every x € Bg,(0).
0 0

Then there exists R, 0 < R < Ry, with R/ R only depending on Ay and L, such that

[ wscr [ w
(7.17) Q'NBg,(0) Q'NBr(0)
foreveryr,Bst 1 <Band0 < Br <R,

~ R
where C > 0 only depends on Ao, a, C and TOQ’ whereas K > 0 only depends on

Ao &, C‘, gg and, increasingly, on N (Ro), where

r? / |Vw|?
Q'NBr(0)

fronio™”
Q'NBr(0)

ProoF oF LEMMA 7.1. The proof is contained in [A-E, Proof of Theo-
rem 1.1], the only differences being in a more explicit evaluation of the con-
stants C and K in terms of the a priori data, and a slight modification of the

expression of N. ]

(7.18) N@) =
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ProoF oF ProrosITION 4.5. Up to a rigid motion, we can set xo = 0 and
QN By (0) = {x € By(0) s.t. x, > p(x)},
where ¢ is a C!'® function on B, (0) C R""! satisfying
¢(0) =[Ve(©0)| =0

and
“(oucl.a (BP()(O)) < EPO .

We shall follow the main lines of the proof of Theorem 0.4 of [A-E]. The idea
is to construct a C1® diffeomorphism & from Q'N B,,(0) to QN B,, (0), where
Q' N By, (0) = {y € By, (0) st. y, > ¥(y)} and ¥ € C* (B,,(0) C R*!), for
some p; > 0, po > 0, showing that w(y) = u(P(y)) satisfies the assumptions
of Lemma 7.1 and hence inequality (7.17).

_ 32°-1)2E
Let C; = A(MZL)T’ and let
C
(7.19) @', yn) = (y’, Yn + p—.,l,lyl"“) ,
0
C
(7.20) Q= {y € Byy(0) s.t. yn > 0(y) — p—;lyl""“} .
0

Following the computations in [A-E], we have that there exist p;, p2, 0 < p1 <
po, 0 < p2 < po, with p;1/po, p2/po only depending on E and o, such that
® € C* (B,,(0), R") satisfies

c
(7.21a) ® (y’, () — ;é—lyl““) =0 00,
(7.21b) ®(2' N B,,(0)) C 2N B, (0),

1
(721¢) ily —z| < |P(y) — P(2)| < Caly —z|, for every y,z € By, (0),

1
(7.21d) 3 <|detD®(y)| <2, for every y € B, (0),
(7.21e) Q' N B,,(0) is of Lipschitz class with constants p;, L ,

where C, > 0 and L > 0 only depend on E and a.
Denoting by

o'(y) = | det DO (DD~ )@ () (@)D~ HT (P (),
w(y) = u(P®(y),
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we have

A 8
(7.22a) g]&lzﬁa'(y)é;‘-{-‘ 5X|€I2 for every yeQ'N B,,(0) and every £ €R",

(7.22b) o'(0) = Id,
(7.22¢) o’'(y)y -v =0 for every y € 3Q' N B,,(0),
C
(1.22d) IVo'(y)| < ;(%lyl“_' for every y € @' N B,,(0),

C
(7.22¢) |o'(y) —0'(2)| < ;?Iy —z|* for every y,z € Q' N B,,(0),

where C3 > 0 only depends on A, A, ¢« and E. Moreover, we have that
w € H'(Q' N B,,(0)) is a weak solution to

(7.23a) div(c’'Vw) =0, in Q'N B,,(0),
(7.23b) w=0 on Q' N B,(0).

All the above properties (7.21)-(7.23) follow extending the arguments of the
proof of Theorem 0.4 of [A-E] to operators in divergence form. In particu-
lar, (7.21e) and (7.22c¢) are obtained by observing that 4’ N B, (0) is the C!
graph defined implicitly by a function i satisfying

C
(7.24a) v () = 0() - p—,,‘-lyl““ ,
0
(7.24b) ¥(0) =0,

and by differentiating implicitly (7.24a).

Hence we can apply Lemma 7.1 to the solution w to (7.23), with ry =
Ro=p2, Ao=1/8, C = C3(%)°‘, so that C only depends on A, A, E and a.
Hence we obtain

/ w? <C k w2,
(7.25) @'NBg,(0) Q'NB(0)
for every r,8 s.t. 1 < B and 0 < fBr < p3,

where 0 < p3 < p, with p3/pp, C > 0 only depending on A, A, E and a,
whereas K > 0 only depends on A, A, E, @ and N(p3).
Moreover, from (7.21c) we have that

(726) QN B,p0) C (' NB,0) C QN Bc,,(0) for every p < p.
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Let 0 <r < Br < p3/2. From (7.25) and (7.26) we have, arguing similarly to
the proof of Proposition 3.5, that

(7.27) / u? < cpX u?,
QNBg, (0) QNBy(0)

where C and K only depend on A, A, E, a and N(p3). From (7.26) and (6.15)
we can estimate

2 n—-2 2
(7.28) /9 V= €y

where C > 0 only depends on A, E, « and M. On the other hand

2

(7.29) us,

/ w?>C
Q/NBps (0) QNB,, 2(0)
where C only depends on A, E and «.

Setting pg = 32\/——'313?, P = (0, p3/4), we have that By, (P) C QNB,,/2(0).
From (7.29) and Proposition 4.3 we have

(7.30) / w? > Collgl? 1z 00 -
Q’an3(0) pO 4 HI/Z(BQ)

where C only depends on A, A, E, M and F. Therefore we can majorize
N(p3) by a constant C > 0 only depending on A, A, E, &, M and F. Thus
(4.8) follows, provided Br < p3/2. The case when p3/2 < Br can be easily
treated, again by the use of Proposition 4.3.

In the general case o (xg) # Id, (4.8) is derived by repeating arguments in
the proof of Proposition 3.5. O

8. — Relative Graphs

We premise the proof of Proposition 3.6 with one lemma.

LemMA 8.1. Let 24, 25 be two bounded domains. There exist absolute con-
stants Lo, &g, Lo > 0, 0 < 8¢ < 1, such that if

(8.1a)  the boundaries of 21, S2; are of Lipschitz class with constants py, L ,

and also

(8.1b) L <Ly,
(8.1c) dn(Q1, Q) < dopo,
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then the following facts hold true:

i) for every P € 32, up to a rigid transformation of coordinates which maps P
into the origin, we have

(8-2a) Qi N B,y (P) = {x € B,,(0) s.t. x» > i(x)}, i=1,2,

where ry = 81 po, with a suitable absolute constant 81, 8 < 8, < 1, and ¢y, ¢2
are Lipschitz functions on By, (0) C R*~! satisfying

(8.2b) Ioillcon (g, 0) < PoL1. i =1,2,
(8.2¢) o1 = @2ll oo (5, ) < K16, ).
ii) we have

(8.3) dn(Q1, Q) < Kadn(Q1, ),

where dy, is the modified distance introduced in Definition 3.2. Here, the
quantities Ly, Ky, K, are also positive absolute constants.

REMARK 8.1. It may be interesting to note that the above lemma may fail
if the smallness hypothesis (8.15) on the Lipschitz constant is dropped. In fact,
a two dimensional example by Rondi [R, Remark 2.3] shows that i) may not
hold when L = 1.

Proor oF LEMMA 8.1. Up to a dilation of the coordinate system, we can
assume, without loss of generality, that pp = 1. Let us denote, for simplicity,

8.4) d=dy(Q, ),
and let us set
(8.5) a =arctanL, oy =arctanLy.

Let us fix P € 9Q, and let (x’, x,) be the coordinate system centered at P
appearing in the local graph representation of 9S2; given in Definition 3.1. Let
us define the following truncated conical regions

(8.6-) T, = {(x’, x,) € B1(0) s.t. x, > —L|x'| — h},
(8.6+) T, = {(x', x,) € B1(0) s.t. x, > L|x'| +h},

for every h > 0. By (8.1c) and (8.4) we have

8.7) QN B1_50) C Tj/cosa s

and, again by (8.4), there exists Q € ©; N B;(0) such that
|Q—P|<d.
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Let O = (y', y») and let I(Q) be the following vertical segment
(8.8 1(Q) = {(*, x) € Bi_5,(0) s.t. x' =Y, X, < ya},

Now, provided Lo and §o_are chosen sufficiently small, we have that the top
endpoint of I(Q) is Q € 2;, whereas the bottom endpoint of /(Q) is outside
of Tjcoso and hence, by (8.7), outside of 2,. Therefore there exists Q' €

9 NI(Q) N T cosqr thus

89) IQ’—PISIQ’—QI+IQ—PI5(—2—+1)d5( 2 +l)d.
cosa cos ap

Observe also that, by the same reasoning, we can prove that for every Q € 3$2;
there exists P’ € 32; such that

(8.10) |Q-P|<Cd,

2
cos g

where C = + 1. In other words, we have proven that

8.11) dy(0921,082) < Cd.

Now, by the Lipschitz character of 3Q2; and by (8.11), we have that, given Q’
as above, .
92 D R T()+ + Ql )

where R : R* — R" is a suitable rotation such that £, N B;(Q’) has the local
graph representation of Definition 3.1 in the rotated coordinates Rx, x = (x', x,).
Therefore, by (8.7),

(RT3 + @) N B1_5,(0) C T/ coqq -

This condition poses a constraint on the angle 6 between the unit vectors e,,
Re,. Indeed, by some trigonometry, we can obtain

6<0d,lL),

where the function ©(d, L) > 0 tends to zero as (d, L) — (0, 0). Therefore,
if 8g, Lo are chosen sufficiently small, then we can find constants §;, L,
do < 81 <1, Lo < Ly, such that 3S2; N B, (0) is a Lipschitz graph also with
respect to the coordinates (x', x,), with Lipschitz constant L;. Therefore (8.2a),
(8.2b) hold. Next we prove (8.2c). For every x' € Bs (0) C R*"!, in view
of (8.11), let (¥, ¢1(»")) € 32 be such that

(X' =¥ + lg2(x) — 01 0)HY? < Ca.
Therefore

lp2(x") — 01 (x")] < lg2(x") — @1 O + o1 (x") — 1 ()] < Cd + LCd.
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Hence we may pick K; = (1 + Ly)C, where C is as in (8.10), and (8.2¢)
follows. Finally, we prove (8.3). Suppose, without loss of generality, that
Q€ B\ Qq, PecdQ are such that |P — Q| =d = dist(Q, Q;). With the
local representation of 9Q2; within Bj, (P), as introduced above, let Q = (¥, y,).
By (8.2a), we must have y, > ¢2(y’) and, posing P’ = (¥', ¢1(»")), we have
¢1(y") > yn. Therefore

(8.12) d=<|10-Pl=01(0) =y <01()) — 200).

Possibly choosing a smaller 8, we can find a point (x’, 91(x’)) € Bs,(0) such
that

1V, 20)) — (&, pr(x)] = dist((y', 92(3)), @) < d (21, 22) -

Therefore
010) —o1(x’) < Lyi|x" — y'| < L1dn(R21, R2),

and also, by (8.12),

d<01(y)) —0) <o(y) — 1) + o1 (x") — 2(y")
< L1dn(Q1, Q2) + dpn (21, 22) -

Therefore (8.3) holds with K, = L + 1. O

ProOF OF PrROPOSITION 3.6. Notice that, if 3S2;, i = 1,2, are of class C1
with constants pg, E, then they are also of Lipschitz class with constants p,
E(%)“ for every p, 0 < p < po. Therefore, if we fix p; < pp such that
E(2)* < Ly, and dj is chosen in such a way that dy < 8,01, then the hypotheses
of Lemma 8.1 are met, provided py is replaced with p;. Notice that now we
shall have ry = §;01, hence ry/pp only depends on @ and E. Let P € 92; and
let (x’,x,) the coordinates used in the local representation of 32, as a Cl®
graph given by Definition 2.1.We already know that also d€2; is represented
near P by the graph of a Lipschitz function ¢,. We need to show that also ¢,
is C1**. We know that there exists a coordinate system for which 99, N B,,(0)
is represented as a graph of a C* function. Let (¢, &,), & € R*", &, € R,
be such coordinate system in B,,(0), and let ¥ € C I"”(B,O @), B,,(0) C R*1,
the function such that

32 N B, (0) = {(§', &) € B,(0) st. & =¥ (&)},

and also |Vy|, < py“E. Denoting by v the exterior unit normal to 32, within
B,,(0), we have

(8.13) V= M ,
1+ lVEIzMZ
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and therefore we can easily compute a constant K > 1 such that

v, ¥ (&) — v, ¥(E)) < KEpy “§ — &%,
for every &, & € By)(0) C R*!.

Setting Q; = (&, ¥'(§))), i = 1,2, we obtain
[v(Q1) = v(Q2)| < KEpy*|Q1 — Q2|%, for every Q1, Q2 € 92, N B,,(0).

Turning back to the (x’,x,) coordinates, if Q; = (x/,¢2(x])), i = 1,2, we
obtain
Iv(Q1) — v(Q2)| < KEpy®(1 + L3)**|x| — xj.

Rephrasing now (8.13) in terms of the coordinates (x’, x,):

(Vyrg2, —1)

VI+|Vep?’

we easily derive
IVip2la < CEpy®,

where C > 0 is an absolute constant. Now, for any 8, 0 < B < o, we can use
the interpolation inequalities

o, 1
(8.14) IVxglp < C1 | IVepla™ llpllas™ + 7510l |
0
1 o 1
(8.15) IVolloo < Ca [wx«olﬁa loll & + guwuw} ,

where C; > 0 only depends on « and 8, C; > 0 only depends on ¢, and norms
and seminorms are taken on B, (0) C R"~!. We obtain, by (8.2¢),

1+ —d(l+ ) a—
V(o1 — ¢2)lp < Ci [Eﬁlipo T gfre +r5“+‘”d} ,

o

1 — a
V(o1 — ¢2)llo < C2 [Empf"_'dm +ro"‘d] ,

where, as above, C; > 0 only depends on o and 8, C; > 0O only depends on «.
Again by (8.2c) we deduce

1 1--& a _
lor = @2llcrs g,y @ < Cld+E™apy T dTe + pory'd

148 148208 o L
+Eﬁgpo P~ ‘“:Cg'*‘l’(ﬁﬂ"ol ﬂd],
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where C > 0 only depends on a and B. Now, using d < dyp < dop1 < Po,
we obtain (3.12). Finally ii) and iii) follow from Lemma 8.1, more precisely

from (8.3) and (8.2) respectively. (m]
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